Beneficial Fatty Acid Ratio of Salvia hispanica L. (Chia Seed) Potentially Inhibits Adipocyte Hypertrophy, and Decreases Adipokines Expression and Inflammation in Macrophage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Chemicals
2.2. Chia Seed Collection and Fatty Acid Extraction
2.3. Analysis of Chia Seed Fatty Acid Content
2.4. Collection of Blood, Isolation of Monocyte and Stimulation of Monocyte to Macrophage Using Lipopolysaccharide (LPS)
2.5. Cell Culture and Adipocyte Differentiation
2.6. Cytotoxicity Assay
2.7. Experimental Design
2.8. Oil red O and Nile Red Staining Analysis
2.9. Analysis of Triglyceride, Free Glycerol, High Density Lipoprotein, Low Density Lipoprotein and Lactate Dehydrogenase Activity
2.10. Mitochondrial Membrane Potential (JC-1 Staining) Asssay
2.11. Analysis of Gene Expression
2.12. Quantification of Proteins by ELISA Method
2.13. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dennis, E.A.; Norris, P.C. Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 2015, 15, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Fullerton, J.N.; Gilroy, D.W. Resolution of inflammation: A new therapeutic frontier. Nat. Rev. Drug Discov. 2016, 15, 551–567. [Google Scholar] [CrossRef]
- Blasbalg, T.L.; Hibbeln, J.R.; Ramsden, C.E.; Majchrzak, S.F.; Rawlings, R.R. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am. J. Clin. Nutr. 2011, 93, 950–962. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C.; Yaqoob, P. Understanding omega-3 polyunsaturated fatty acids. Postgrad. Med. 2009, 121, 148–157. [Google Scholar] [CrossRef]
- Maeda, N.; Shimomura, I.; Kishida, K.; Nishizawa, H.; Matsuda, M.; Nagaretani, H.; Furuyama, N.; Kondo, H.; Takahashi, M.; Arita, Y.; et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med. 2002, 8, 731–737. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes. Nutrients 2010, 2, 355–374. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, X.; Hao, J.; Yang, L. Proper balance of omega-3 and omega-6 fatty acid supplements with topical cyclosporine attenuated contact lens-related dry eye syndrome. Inflammopharmacology 2016, 24, 389–396. [Google Scholar] [CrossRef]
- Alshatwi, A.A.; Subash-babu, P. Effects of increasing ratios of dietary omega-6/omega-3 fatty acids on human monocyte immunomodulation linked with atherosclerosis. J. Funct. Foods 2018, 41, 258–267. [Google Scholar] [CrossRef]
- Tripathy, D.; Mohanty, P.; Dhindsa, S.; Syed, T.; Ghanim, H.; Aljada, A.; Dandona, P. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes 2003, 52, 2882–2887. [Google Scholar] [CrossRef] [Green Version]
- Donath, M.Y.; Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 2011, 11, 98–107. [Google Scholar] [CrossRef]
- Ghanim, H.; Aljada, A.; Hofmeyer, D.; Syed, T.; Mohanty, P.; Dandona, P. Circulating mononuclear cells in the obese are in a proinflammatory state. Circulation 2004, 110, 1564–1571. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821–1830. [Google Scholar] [CrossRef]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W., Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef]
- Grimble, R.F. Inflammatory status and insulin resistance. Curr. Opin. Clin. Nutr. Metab. Care 2002, 5, 551–559. [Google Scholar] [CrossRef]
- Suganami, T.; Nishida, J.; Ogawa, Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: Role of free fatty acids and tumor necrosis factor alpha. Arterioscl. Throm. Vas. 2005, 25, 2062–2068. [Google Scholar] [CrossRef] [Green Version]
- Anfossi, G.; Russo, I.; Trovati, M. Platelet dysfunction in central obesity. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 440–449. [Google Scholar] [CrossRef]
- Clement, K.; Viguerie, N.; Poitou, C.; Carette, C.; Pelloux, V.; Curat, C.A.; Sicard, A.; Rome, S.; Benis, A.; Zucker, J.D.; et al. Weight loss regulates inflammation related genes in white adipose tissue of obese subjects. FASEB J. 2004, 18, 1657–1669. [Google Scholar] [CrossRef] [Green Version]
- Cancello, R.; Henegar, C.; Viguerie, N.; Taleb, S.; Poitou, C.; Rouault, C.; Coupaye, M.; Pelloux, V.; Hugol, D.; Bouillot, J.L.; et al. Reduction of macrophage infiltration and chemo attractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery induced weight loss. Diabetes 2005, 54, 2277–2286. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Tobias, D.K.; Hruby, A.; Rifai, N.; Tworoger, S.S.; Hu, F.B. An increase in dietary quality is associated with favorable plasma biomarkers of the brain-adipose axis in apparently healthy US Women. J. Nutr. 2016, 146, 1101–1108. [Google Scholar] [CrossRef] [Green Version]
- Villanueva-Bermejo, D.; Calvo, M.V.; Castro-Gómez, P.; Fornari, T.; Fontecha, J. Production of omega 3-rich oils from underutilized chia seeds. Comparison between supercritical fluid and pressurized liquid extraction methods. Food Res. Int. 2019, 115, 400–407. [Google Scholar] [CrossRef]
- Subash-Babu, P.; Alshatwi, A.A. Ononitol monohydrate enhances PRDM16 & UCP-1 expression, mitochondrial biogenesis and insulin sensitivity via STAT6 and LTB4R in maturing adipocytes. Biomed. Pharmacother. 2018, 19, 375–383. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, J.K.; Kwon, D.Y.; Park, R. Anti-adipogenic effects of Garcinia extract on the lipid droplet accumulation and the expression of transcription factor. Biofactors 2004, 22, 193–196. [Google Scholar] [CrossRef]
- Cloey, T.; Bachorik, P.S.; Becker, D.; Finney, C.; Lowry, D.; Sigmund, W. Re-evaluation of serum-plasma differences in total cholesterol concentration. JAMA 1990, 263, 2788–2789. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 1967, 72, 248–254. [Google Scholar] [CrossRef]
- Yuan, J.S.; Reed, A.; Chen, F.; Stewart, C.N. Statistical analysis of real-time PCR data. BMC Bioinform. 2006, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Duncan, B.D. Multiple range test for correlated and heteroscedastic means. Biometrics 1957, 13, 359–364. [Google Scholar] [CrossRef]
- Kim, H.S.; Moon, J.H.; Kim, Y.M.; Huh, J.Y. Epigallocatechin exerts anti-obesity effect in brown adipose tissue. Chem. Biodivers 2019, 16, e1900347. [Google Scholar] [CrossRef]
- Furuyashiki, T.; Nagayasu, H.; Aoki, Y.; Bessho, H.; Hashimoto, T.; Kanazawa, K.; Ashida, H. Tea catechin suppresses adipocyte differentiation accompanied by down-regulation of PPARgamma2 and C/EBPalpha in 3T3-L1 cells. Biosci. Biotechnol. Biochem. 2004, 68, 2353–2359. [Google Scholar] [CrossRef] [Green Version]
- Subash-Babu, P.; Alshatwi, A.A. Aloe-emodin inhibits adipocyte differentiation and maturation during in vitro human mesenchymal stem cell adipogenesis. J. Biochem. Mol. Toxicol. 2012, 26, 291–300. [Google Scholar] [CrossRef]
- Murray, P.J. Macrophage Polarization. Annu. Rev. Physiol. 2017, 79, 541–566. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Tortosa-Caparrós, E.; Navas-Carrillo, D.; Marín, F.; Orenes-Piñero, E. Anti-inflammatory effects of omega 3 and omega 6 polyunsaturated fatty acids in cardiovascular disease and metabolic syndrome. Crit. Rev. Food Sci. Nutr. 2017, 57, 3421–3429. [Google Scholar] [CrossRef]
- Lee, M.S.; Shin, Y.; Jung, S.; Kim, S.Y.; Jo, Y.H.; Kim, C.T.; Yun, M.K.; Lee, S.J.; Sohn, J.; Yu, H.J.; et al. The inhibitory effect of tartary buckwheat extracts on adipogenesis and inflammatory response. Molecules 2017, 22, 7. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.R.; Alvarez, S.M.; Illesca, P.; Giménez, M.S.; Lombardo, Y.B. Dietary Salba (Salvia hispanica L.) ameliorates the adipose tissue dysfunction of dyslipidemic insulin resistant rats through mechanisms mechanisms involving oxidative stress, inflammatory cytokines and peroxisome proliferator-activated receptor γ. Eur. J. Nutr. 2018, 57, 83–94. [Google Scholar] [CrossRef]
- Chañi, E.M.M.; Pacheco, S.O.S.; Martínez, G.A.; Freitas, M.R.; Ivona, J.G.; Ivona, J.A.; Craig, W.J.; Pacheco, F.J. Long-Term dietary intake of chia seed is associated with increased bone mineral content and improved hepatic and intestinal morphology in Sprague-Dawley Rats. Nutrients 2018, 10, 922. [Google Scholar] [CrossRef] [Green Version]
- Kang, B.; Kim, C.Y.; Hwang, J.; Jo, K.; Kim, S.; Suh, H.J.; Choi, H.S. Punicalagin, a Pomegranate-Derived Ellagitannin, Suppresses Obesity and Obesity-Induced Inflammatory Responses Via the Nrf2/Keap1 Signaling Pathway. Mol. Nutr. Food Res. 2019, 63, e1900574. [Google Scholar] [CrossRef]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Schwarzkopf, K.M.; Queck, A.; Thomas, D.; Angioni, C.; Cai, C.; Freygang, Y.; Rüschenbaum, S.; Geisslinger, G.; Zeuzem, S.; Welsch, C.; et al. Omega-3 and -6 fatty acid plasma levels are not associated with liver cirrhosis-associated systemic inflammation. PLoS ONE 2019, 14, 0211537. [Google Scholar] [CrossRef]
- Rui, Y.; Yang, S.; Chen, L.H.; Qin, L.Q.; Wan, Z. Chia seed supplementation reduces senescence markers in epididymal adipose tissue of high-fat diet-fed SAMP8 Mice. J. Med. Food. 2018, 21, 755–760. [Google Scholar] [CrossRef]
- Zha, D.; Wu, X.; Gao, P. Adiponectin and its receptor in diabetic kidney diseases: Molecular mechanisms and clinical potential. Endocrinology 2017, 158, 2022–2034. [Google Scholar] [CrossRef] [Green Version]
Primer | Forward Sequence (5′ to 3′) | Reverse Sequence (5′ to 3′) |
---|---|---|
C/EBPα | CCGGGAGAACTCTAACTC | GATGTAGGCGCTGATGT |
PPARγ | TCATAATGCCATCAGGTTTG | CTGGTCGATATCACTGGAG |
HSL | CCTCATGGCTCAACTCC | GGTTCTTGACTATGGGTGA |
LPL | AGGACCCCTGAAGACAG | GGCACCCAACTCTCATA |
Adiponectin | CTACTGTTGCAAGCTCTCC | CTTCACATCTTTCATGTACACC |
UCP-1 | AGGCTTCCAGTACCATTAGGT | CTGAGTGAGGCAAAGCTGATTT |
PPARγC1α | CCCTGCCATTGTTAAGACC | TGCTGCTGTTCCTGTTTTC |
SREBP1c | GGAGCCATGGATTGCACATT | GCTTCCAGAGAGGAGGCCAG |
PRDM16 | CCCCACATTCCGCTGTGA | CTCGCAATCCTTGCACTCA |
IL-1β | GCAAGGGCTTCAGGCAGGCCGCG | GGTCATTCTCCTGGAAGGTCTGTGGGC |
IL-12β1 | ATCAGGGACATCATCAAACCG | ACGCACCTTTCTGGTTACACTC |
IL-6 | TTCGGTCCAGTTGCCTTCTC | GAGGTGAGTGGCTGTCTGTG |
IL-4 | CAAACGTCCTCACAGCAACG | AGGCATCGAAAAGCCCGAAA |
IL-33 | TGAGACTCCGTTCTGGCCTC | CTCTTCATGCTTGGTACCCGAT |
IKBKg | AACCAGCATCCAGATTGA C | GCCATCATCCGTTCTACC |
TNFα | CTCCAGGCGGTGCCTTGTTC | CAGGCAGAAGAGCGTGGTG |
NF-κB | GCGCTTCTCTGCCTTCCTTA | TCTTCAGGTTTGATGCCCCC |
TLR-4 | CCCTCATGACATCCCTATTTCA | CTCTCAGTACCAAGGTTGAGAGC |
TGFBR2 | TGCCGCCCTTCTTCCCCTC | GGAGCACAAGCTGCCCACTGA |
Beta Actin | GATCTTGATCTTCATGGTGCTAGG | TTGTAACCAACTGGGACCATATGG |
Serial Number | Compound Name | Chia Seed Extract | |
---|---|---|---|
RT * | Peak Area (%) | ||
1 | Hexadecenoic acid | 24.457 | 9.49 |
2 | 9,12-octadecadienoic acid (ω-6 fatty acid) | 27.623 | 21.35 |
3 | 9,12,15-octadecatrienoic acid (ω-3 fatty acid) | 27.773 | 56.16 |
4 | Methylstearate | 28.222 | 3.94 |
5 | Linoleic acid ethyl ester | 28.799 | 7.56 |
6 | Heptadecanoic acid | 29.287 | 1.51 |
Groups | Triglyceride (mg/dL) | Free Glycerol (mg/dL) | HDL (mg/dL) | LDL (mg/dL) | LDH Activity ¥ |
---|---|---|---|---|---|
Vehicle control | 6.2 ± 0.21 | 9.3 ± 0.25 | 0.42 ± 0.05 | 0.62 ± 0.03 | 0.21 ± 0.06 |
Chia seed 0.2 μg/mL | 3.1 ± 0.26 | 5.2 ± 0.34 * | 0.51 ± 0.06 | 0.53 ± 0.03 | 0.13 ± 0.03 |
Chia seed 0.4 μg/mL | 2.3 ± 0.14 * | 3.9 ± 0.29 * | 0.85 ± 0.03 * | 0.32 ± 0.02 * | 0.09 ± 0.01 * |
Orlistat, 6 µM | 2.9 ± 0.13 | 5.4 ± 0.28 * | 0.59 ± 0.02 | 0.39 ± 0.01 * | 0.12 ± 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandurangan, S.-B.; Al-Maiman, S.A.; Al-Harbi, L.N.; Alshatwi, A.A. Beneficial Fatty Acid Ratio of Salvia hispanica L. (Chia Seed) Potentially Inhibits Adipocyte Hypertrophy, and Decreases Adipokines Expression and Inflammation in Macrophage. Foods 2020, 9, 368. https://doi.org/10.3390/foods9030368
Pandurangan S-B, Al-Maiman SA, Al-Harbi LN, Alshatwi AA. Beneficial Fatty Acid Ratio of Salvia hispanica L. (Chia Seed) Potentially Inhibits Adipocyte Hypertrophy, and Decreases Adipokines Expression and Inflammation in Macrophage. Foods. 2020; 9(3):368. https://doi.org/10.3390/foods9030368
Chicago/Turabian StylePandurangan, Subash-Babu, Salah A. Al-Maiman, Laila Naif Al-Harbi, and Ali A. Alshatwi. 2020. "Beneficial Fatty Acid Ratio of Salvia hispanica L. (Chia Seed) Potentially Inhibits Adipocyte Hypertrophy, and Decreases Adipokines Expression and Inflammation in Macrophage" Foods 9, no. 3: 368. https://doi.org/10.3390/foods9030368
APA StylePandurangan, S. -B., Al-Maiman, S. A., Al-Harbi, L. N., & Alshatwi, A. A. (2020). Beneficial Fatty Acid Ratio of Salvia hispanica L. (Chia Seed) Potentially Inhibits Adipocyte Hypertrophy, and Decreases Adipokines Expression and Inflammation in Macrophage. Foods, 9(3), 368. https://doi.org/10.3390/foods9030368