Effects of Immersion Freezing on Ice Crystal Formation and the Protein Properties of Snakehead (Channa argus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Freezing and Storage
2.3. Microscopic Analysis
2.4. Fourier Transform Infrared Spectroscopy (FT-IR)
2.5. Differential Scanning Calorimetry (DSC)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Thermal Characteristics in IF Processes
3.2. Ice crystal Microstructure
3.3. FT-IR Analysis
3.4. Protein Thermal Stability Properties Determined by DSC
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhu, Z.W.; Zhou, Q.Y.; Sun, D.W. Measuring and controlling ice crystallization in frozen foods: A review of recent developments. Trends Food Sci. Technol. 2019, 90, 13–25. [Google Scholar] [CrossRef]
- Li, B.; Sun, D.W. Novel methods for rapid freezing and thawing of foods—A review. J. Food Eng. 2002, 54, 175–182. [Google Scholar] [CrossRef]
- Kiani, H.; Sun, D.W. Water crystallization and its importance to freezing of foods: A review. Trends Food Sci. Technol. 2011, 22, 407–426. [Google Scholar] [CrossRef]
- Kaale, L.D.; Eikevik, T.M.; Rustad, T.; Nordtvedt, T.S.; Bardal, T.; Kjorsvik, E. Ice crystal development in pre-rigor Atlantic salmon fillets during superchilling process and following storage. Food Control 2013, 31, 491–498. [Google Scholar] [CrossRef]
- Xu, B.G.; Zhang, M.; Bhandari, B.; Cheng, X.F.; Islam, M.N. Effect of ultrasound-assisted freezing on the physico-chemical properties and volatile compounds of red radish. Ultrason. Sonochem. 2015, 27, 316–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.P.; Heldman, D.R. Introduction to Food Engineering, 5th ed.; Academic Press: San Diego, CA, USA, 2014. [Google Scholar] [CrossRef]
- Mahato, S.; Zhu, Z.W.; Sun, D.W. Glass transitions as affected by food compositions and by conventional and novel freezing technologies: A review. Trends Food Sci. Technol. 2019, 94, 1–11. [Google Scholar] [CrossRef]
- Lucas, T.; Francois, J.; Bohuon, P.; Raoult-Wack, A.L. Factors influencing mass transfer during immersion cold storage of apples in NaCl/sucrose solutions. LWT Food Sci. Technol. 1999, 32, 327–332. [Google Scholar] [CrossRef]
- Zhu, S.M.; Ramaswamy, H.S.; Le Bail, A. Ice-crystal formation in gelatin gel during pressure shift versus conventional freezing. J. Food Eng. 2005, 66, 69–76. [Google Scholar] [CrossRef]
- Galetto, C.D.; Verdini, R.A.; Zorrilla, S.E.; Rubiolo, A.C. Freezing of strawberries by immersion in CaCl2 solutions. Food Chem. 2010, 123, 243–248. [Google Scholar] [CrossRef]
- Wiktor, A.; Schulz, M.; Voigt, E.; Witrowa-Rajchert, D.; Knorr, D. The effect of pulsed electric field treatment on immersion freezing, thawing and selected properties of apple tissue. J. Food Eng. 2015, 146, 8–16. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Guo, Y.H.; Ding, S.H.; An, K.J.; Wang, Z.F. Freezing by immersion in liquid CO2 at variable pressure Response surface analysis of the application to carrot slices freezing. Innov. Food Sci. Emerg. Technol. 2014, 22, 167–174. [Google Scholar] [CrossRef]
- Sun, D.W.; Li, B. Microstructural change of potato tissues frozen by ultrasound-assisted immersion freezing. J. Food Eng. 2003, 57, 337–345. [Google Scholar] [CrossRef]
- Hou, Q.; Cheng, Y.P.; Kang, D.C.; Zhang, W.G.; Zhou, G.H. Quality changes of pork during frozen storage: Comparison of immersion solution freezing and air blast freezing. Int. J. Food Sci. Technol. 2020, 55, 109–118. [Google Scholar] [CrossRef]
- Bodin, N.; Lucas, V.; Dewals, P.; Adeline, M.; Esparon, J.; Chassot, E. Effect of brine immersion freezing on the determination of ecological tracers in fish. Eur. Food Res. Technol. 2014, 238, 1057–1062. [Google Scholar] [CrossRef]
- Liu, S.L.; Zhang, Z.Y.; Tang, W.Y.; Zhao, D.D.; Chen, S.P.; Sui, C.; Ding, Y.T. Effect of immersion freezing on quality changes of snakehead blocks during frozen storage. Food Sci. 2020, 40, 256–262. [Google Scholar] [CrossRef]
- Webster, C.D.; Lim, C.E. Nutrient Requirements and Feeding of Finfish for Aquaculture; CABI Publishing: Wallingford Oxon, UK, 2002. [Google Scholar]
- Zhu, S.M.; Le Bai, A.; Ramaswamy, H.S. Ice crystal formation in pressure shift freezing of atlantic salmon (Salmo salar) as compared to classical freezing methods. J. Food Process. Preserv. 2003, 27, 427–444. [Google Scholar] [CrossRef]
- Pan, J.F.; Shen, H.X.; Luo, Y.K. Changes in salt extraction protein and Ca2+-ATPase activity of mince from silver carp (hypophthalmichthys mollitrix) during frozen storage: A kinetic study. J. Muscle Foods 2010, 21, 834–847. [Google Scholar] [CrossRef]
- Xu, B.G.; Zhang, M.; Bhandari, B.; Sun, J.C.; Gao, Z.X. Infusion of CO2 in a solid food: A novel method to enhance the low-frequency ultrasound effect on immersion freezing process. Innov. Food Sci. Emerg. Technol. 2016, 35, 194–203. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, H.J.; Yang, H.S. Effects of sucrose addition on the rheology and microstructure of kappa-carrageenan gel. Food Hydrocoll. 2018, 75, 164–173. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, Q.R.; Miao, S.; Zhang, Y.; Zheng, B.D.; Zhang, L.T. Effect of ultrasound on physicochemical properties of emulsion stabilized by fish myofibrillar protein and xanthan gum. Innov. Food Sci. Emerg. Technol. 2019, 54, 225–234. [Google Scholar] [CrossRef]
- Korzeniowska, M.; Cheung, I.W.Y.; Li-Chan, E.C.Y. Effects of fish protein hydrolysate and freeze-thaw treatment on physicochemical and gel properties of natural actomyosin from Pacific cod. Food Chem. 2013, 138, 1967–1975. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Guizani, N.; Al-Khaseibi, M.; Al-Hinai, S.A.; Al-Maskri, S.S.; Al-Hamhami, K. Analysis of cooling curve to determine the end point of freezing. Food Hydrocoll. 2002, 16, 653–659. [Google Scholar] [CrossRef]
- Su, G.M.; Ramaswamy, H.S.; Zhu, S.M.; Yu, Y.; Hu, F.F.; Xu, M.L. Thermal characterization and ice crystal analysis in pressure shift freezing of different muscle (shrimp and porcine liver) versus conventional freezing method. Innov. Food Sci. Emerg. Technol. 2014, 26, 40–50. [Google Scholar] [CrossRef]
- Xu, B.G.; Zhang, M.; Bhandari, B.; Cheng, X.F.; Sun, J.C. Effect of ultrasound immersion freezing on the quality attributes and water distributions of wrapped red radish. Food Bioprocess Technol. 2015, 8, 1366–1376. [Google Scholar] [CrossRef]
- Kiani, H.; Zhang, Z.H.; Sun, D.W. Effect of ultrasound irradiation on ice crystal size distribution in frozen agar gel samples. Innov. Food Sci. Emerg. Technol. 2013, 18, 126–131. [Google Scholar] [CrossRef]
- Delgado, A.E.; Rubiolo, A.C. Microstructural changes in strawberry after freezing and thawing processes. LWT Food Sci. Technol. 2005, 38, 135–142. [Google Scholar] [CrossRef]
- Neri, L.; Hernando, I.; Perez-Munuera, I.; Sacchetti, G.; Mastrocola, D.; Pittia, P. Mechanical properties and microstructure of frozen carrots during storage as affected by blanching in water and sugar solutions. Food Chem. 2014, 144, 65–73. [Google Scholar] [CrossRef]
- Petzold, G.; Aguilera, J.M. Ice morphology: Fundamentals and technological applications in foods. Food Biophys. 2009, 4, 378–396. [Google Scholar] [CrossRef]
- Kaale, L.D.; Eikevik, T.M.; Rustad, T.; Nordtvedt, T.S. Changes in water holding capacity and drip loss of Atlantic salmon (Salmo salar) muscle during superchilled storage. LWT Food Sci. Technol. 2014, 55, 528–535. [Google Scholar] [CrossRef] [Green Version]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [Green Version]
- Sow, L.C.; Peh, Y.R.; Pekerti, B.N.; Fu, C.L.; Bansal, N.; Yang, H.S. Nanostructural analysis and textural modification of tilapia fish gelatin affected by gellan and calcium chloride addition. LWT Food Sci. Technol. 2017, 85, 137–145. [Google Scholar] [CrossRef]
- Kaddour, A.A.; Mondet, M.; Cuq, B. Description of chemical changes implied during bread dough mixing by FT-ATR mid-infrared spectroscopy. Cereal Chem. 2008, 85, 673–678. [Google Scholar] [CrossRef]
- Jia, C.L.; Huang, W.N.; Rayas-Duarte, P.; Zou, Q.B.; Zhang, L.; Li, Y.Y. Hydration, polymerization and rheological properties of frozen gluten-water dough as influenced by thermostable ice structuring protein extract from Chinese privet (Ligustrum vulgare) leaves. J. Cereal Sci. 2014, 59, 132–136. [Google Scholar] [CrossRef]
- Carbonaro, M.; Nucara, A. Secondary structure of food proteins by Fourier transform spectroscopy in the mid-infrared region. Amino Acids 2010, 38, 679–690. [Google Scholar] [CrossRef]
- Schmidt, V.; Giacomelli, C.; Soldi, V. Thermal stability of films formed by soy protein isolate-sodium dodecyl sulfate. Polym. Degrad. Stab. 2005, 87, 25–31. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Mayer, S.G.; Park, J.W. FT-IR and Raman spectroscopies determine structural changes of tilapia fish protein isolate and surimi under different comminution conditions. Food Chem. 2017, 226, 156–164. [Google Scholar] [CrossRef]
- Meziani, S.; Jasniewski, J.; Gaiani, C.; Ioannou, I.; Muller, J.M.; Ghoul, M.; Desobry, S. Effects of freezing treatments on viscoelastic and structural behavior of frozen sweet dough. J. Food Eng. 2011, 107, 358–365. [Google Scholar] [CrossRef]
- Cai, L.Y.; Feng, J.H.; Cao, A.L.; Tian, H.Y.; Wang, J.; Liu, Y.G.; Gong, L.X.; Li, J.R. Effect of Partial Substitutes of NaCl on the Cold-Set Gelation of Grass Carp Myofibrillar Protein Mediated by Microbial Transglutaminase. Food Bioprocess Technol. 2018, 11, 1876–1886. [Google Scholar] [CrossRef]
- Tironi, V.A.; Tomas, M.C.; Anon, M.C. Quality loss during the frozen storage of sea salmon (Pseudopercis semifasciata). Effect of rosemary (Rosmarinus officinalis L.) extract. LWT Food Sci. Technol. 2010, 43, 263–272. [Google Scholar] [CrossRef]
- Wu, M.C.; Hamann, D.D.; Lanier, T. Rheological and calormetric Investigations of starch-fish protein systems during thermal processing. J. Texture Stud. 1985, 16, 53–74. [Google Scholar] [CrossRef]
- Saeed, S.; Howell, N.K. Rheological and differential scanning calorimetry studies on structural and textural changes in frozen Atlantic mackerel (Scomber scombrus). J. Sci. Food Agric. 2004, 84, 1216–1222. [Google Scholar] [CrossRef]
- Yarnpakdee, S.; Benjakul, S.; Visessanguan, W.; Kijroongrojana, K. Thermal properties and heat-induced aggregation of natural actomyosin extracted from goatfish (Mulloidichthys martinicus) muscle as influenced by iced storage. Food Hydrocoll. 2009, 23, 1779–1784. [Google Scholar] [CrossRef]
Sample | Pre-Cooling Stage (s) (4 to 0 °C) | Phase Change Stage (s) (0 to −5 °C) | Sub-Cooling Stage (s) (−5 to −18 °C) | Total Freezing Time (s) | Rate v/(cm·h−1) |
---|---|---|---|---|---|
AF | 960 ± 82 a | 3412 ± 108 a | 2350 ± 114 a | 6722 ± 260 a | 0.38 ± 0.02 d |
−20 °C IF | 102 ± 11 b | 310 ± 16 b | 266 ± 22 b | 678 ± 34 b | 3.42 ± 0.42 c |
−30 °C IF | 58 ± 7 c | 226 ± 18 c | 108 ± 12 c | 392 ± 20 c | 5.63 ± 0.81 b |
−40 °C IF | 51 ± 8 c | 125 ± 4 d | 90 ± 4 c | 266 ± 14 d | 8.65 ± 0.65 a |
Sample | Cross-Sectional Area (μm2) | Equivalent Diameter (μm) | Roundness |
---|---|---|---|
−20 °C AF | 939.6 ± 134.2 a | 35.0 ± 3.3 a | 0.58 ± 0.03 c |
−20 °C IF | 408.8 ± 76.8 b | 22.8 ± 2.0 b | 0.71 ± 0.02 b |
−30 °C IF | 242.4 ± 47.0 c | 17.6 ± 1.2 c | 0.76 ± 0.03 b |
−40 °C IF | 76.5 ± 6.4 d | 9.9 ± 0.4 d | 0.84 ± 0.05 a |
Sample | Peak Area of Amide I Band’s Component Peaks (%) | |||
---|---|---|---|---|
β-Sheet | Random Coil | α-Helix | β-Turn | |
Fresh | 38.7 ± 2.97 a | 6.1 ± 0.56 b | 44.7 ± 2.69 a | 10.5 ± 0.42 b |
AF (−20 °C) | 30.3 ± 1.56 b | 18.5 ± 1.56 a | 35.9 ± 1.27 d | 15.3 ± 0.71 a |
−20 °C IF | 31.4 ± 2.55 b | 14.9 ± 1.27 c | 39.4 ± 1.13 bc | 14.3 ± 0.85 ac |
−30 °C IF | 31.2 ± 2.69 b | 14.6 ± 0.57 c | 40.1 ± 1.26 b | 14.1 ± 0.42 ac |
−40 °C IF | 32.6 ± 3.11 ab | 11.5 ± 0.99 d | 42.7 ± 0.99 a | 13.2 ± 0.99 c |
Sample | Myosin | Actin | ||
---|---|---|---|---|
Tmax (°C) | ∆H (J/g) | Tmax (°C) | ∆H (J/g) | |
Fresh | 52.67 ± 0.23 a | 1.75 ± 0.04 a | 75.63 ± 0.32 a | 0.53 ± 0.01 a |
AF (−20 °C) | 51.05 ± 0.27 b | 1.43 ± 0.02 c | 74.06 ± 0.22 b | 0.51 ± 0.02 a |
−20 °C IF | 51.52 ± 0.49 ab | 1.55 ± 0.04 b | 74.59 ± 0.24 ab | 0.52 ± 0.01 a |
−30 °C IF | 51.70 ± 0.37 ab | 1.58 ± 0.03 b | 74.94 ± 0.44 ab | 0.53 ± 0.02 a |
−40 °C IF | 52.25 ± 0.62 ab | 1.61 ± 0.04 b | 75.44 ± 0.28 ab | 0.52 ± 0.01 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zeng, X.; Zhang, Z.; Long, G.; Lyu, F.; Cai, Y.; Liu, J.; Ding, Y. Effects of Immersion Freezing on Ice Crystal Formation and the Protein Properties of Snakehead (Channa argus). Foods 2020, 9, 411. https://doi.org/10.3390/foods9040411
Liu S, Zeng X, Zhang Z, Long G, Lyu F, Cai Y, Liu J, Ding Y. Effects of Immersion Freezing on Ice Crystal Formation and the Protein Properties of Snakehead (Channa argus). Foods. 2020; 9(4):411. https://doi.org/10.3390/foods9040411
Chicago/Turabian StyleLiu, Shulai, Xiaohong Zeng, Zhenyu Zhang, Guanyu Long, Fei Lyu, Yanping Cai, Jianhua Liu, and Yuting Ding. 2020. "Effects of Immersion Freezing on Ice Crystal Formation and the Protein Properties of Snakehead (Channa argus)" Foods 9, no. 4: 411. https://doi.org/10.3390/foods9040411
APA StyleLiu, S., Zeng, X., Zhang, Z., Long, G., Lyu, F., Cai, Y., Liu, J., & Ding, Y. (2020). Effects of Immersion Freezing on Ice Crystal Formation and the Protein Properties of Snakehead (Channa argus). Foods, 9(4), 411. https://doi.org/10.3390/foods9040411