Consumer Acceptance and Quality Parameters of the Commercial Olive Oils Manufactured with Cultivars Grown in Galicia (NW Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oil Samples
2.2. Quality-Related Parameters and Fatty Acids Composition in Oil
2.3. Lipid Oxidation Parameters
2.4. Volatile Compounds
2.5. Sensory Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Quality-Related Indices in Olive Oils: Physicochemical and Fatty Acids Composition
3.2. Lipid Oxidation Parameters in Olive Oils
3.3. Volatile Compounds in Olive Oils
3.4. Sensory Attributes and Consumer Acceptance of Olive Oils
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J.; Trujillo, I. Genotypic and phenotypic identification of olive cultivars from north-western Spain and characterization of their extra virgin olive oils in terms of fatty acid composition and minor compounds. Sci. Hortic. 2018, 232, 269–279. [Google Scholar] [CrossRef]
- Žugčić, T.; Abdelkebir, R.; Alcantara, C.; Collado, M.C.; García-Pérez, J.V.; Meléndez-Martínez, A.J.; Režek Jambrak, A.; Lorenzo, J.M.; Barba, F.J. From extraction of valuable compounds to health promoting benefits of olive leaves through bioaccessibility, bioavailability and impact on gut microbiota. Trends Food Sci. Technol. 2019, 83, 63–77. [Google Scholar] [CrossRef]
- Şahin, S.; Elhussein, E.; Bilgin, M.; Lorenzo, J.M.; Barba, F.J.; Roohinejad, S. Effect of drying method on oleuropein, total phenolic content, flavonoid content, and antioxidant activity of olive (Olea europaea) leaf. J. Food Process. Preserv. 2018, 42, e13604. [Google Scholar] [CrossRef]
- Sahin, S.; Samli, R.; Birteks, Z.; Tan, A.S.; Barba, F.J.; Chemat, F.; Cravotto, G.; Lorenzo, J.M. Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: Antioxidant and antimicrobial properties. Molecules 2017, 22, 1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinosa-Sanchez, J. Mito y Realidad del Aceite de Quiroga, Lugo (Spain), 1st ed.; GDR Ribeira Sacra: Ourense, Spain, 2010. [Google Scholar]
- Gavahian, M.; Mousavi Khaneghah, A.; Lorenzo, J.M.; Munekata, P.E.S.; Garcia-Mantrana, I.; Collado, M.C.; Meléndez-Martínez, A.J.; Barba, F.J. Health benefits of olive oil and its components: Impacts on gut microbiota antioxidant activities, and prevention of noncommunicable diseases. Trends Food Sci. Technol. 2019, 88, 220–227. [Google Scholar] [CrossRef]
- Aparicio, R.; Harwood, J. Manual del Aceite de Oliva, 1st ed.; AMV Ediciones: Madrid, Spain, 2003; ISBN 978-84-89922-41-1. [Google Scholar]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Cancho-Grande, B.; Fregapane, G.; Salvador, M.D.; Simal-Gándara, J. Blending Local olive oils with Arbequina or Picual oils produces high quality, distinctive EVOOs. Eur. J. Lipid Sci. Technol. 2015, 117, 1238–1247. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Cancho-Grande, B.; Valli, E.; Bendini, A.; Gallina Toschi, T.; Simal-Gandara, J. Characterization of virgin olive oils produced with autochthonous Galician varieties. Food Chem. 2016, 212, 162–171. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Cancho-Grande, B.; Fregapane, G.; Salvador, M.D.; Simal-Gándara, J. Characterisation of extra virgin olive oils from Galician autochthonous varieties and their co-crushings with Arbequina and Picual cv. Food Chem. 2015, 176, 493–503. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Concentrations of aroma compounds and odor activity values of odorant series in different olive cultivars and their oils. J. Agric. Food Chem. 2013, 61, 5252–5259. [Google Scholar] [CrossRef]
- Delgado, C.; Guinard, J.X. Internal and external quality mapping as a new approach to the evaluation of sensory quality - a case study with olive oil. J. Sens. Stud. 2012, 27, 332–343. [Google Scholar] [CrossRef]
- IOC/T.20/Doc. No 15/Rev. 10-2018. Method for the Organoleptic Assessment of Virgin Olive Oil. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-T20-Doc.-15-REV-10-2018-Eng.pdf (accessed on 31 March 2020).
- Delgado, C.; Guinard, J.X. How do consumer hedonic ratings for extra virgin olive oil relate to quality ratings by experts and descriptive analysis ratings? Food Qual. Prefer. 2011, 22, 213–225. [Google Scholar] [CrossRef]
- Valli, E.; Bendini, A.; Popp, M.; Bongartz, A. Sensory analysis and consumer acceptance of 140 high-quality extra virgin olive oils. J. Sci. Food Agric. 2014, 94, 2124–2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EU Regulation. EU Regulation 2568/1991 Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods Analysis; European Commission: Brussels, Belgium, 1991. [Google Scholar]
- European Commission. EU Regulation 2019/1604 Amending Commission Regulation (EEC) No 2568/91 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods Analysis; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Barros, J.C.; Munekata, P.E.S.; de Carvalho, F.A.L.; Pateiro, M.; Barba, F.J.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Use of tiger nut (Cyperus esculentus L.) oil emulsion as animal fat replacement in beef burgers. Foods 2020, 9, 1–15. [Google Scholar]
- IUPAC. Standard Methods for the Analysis of Oils, Fats and Derivatives; Paquot, C., Hutfenne, A., Eds.; Blackwell Scientific: London, UK, 1987. [Google Scholar]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, D.; Pateiro, M.; Rodríguez Amado, I.; López Pedrouso, M.; Zapata, C.; Vázquez, J.A.; Lorenzo, J.M. Antioxidant ability of potato (Solanum tuberosum) peel extracts to inhibit soybean oil oxidation. Eur. J. Lipid Sci. Technol. 2016, 118, 1891–1902. [Google Scholar] [CrossRef]
- Domínguez, R.; Purriños, L.; Pérez-Santaescolástica, C.; Pateiro, M.; Barba, F.J.; Tomasevic, I.; Campagnol, P.C.B.; Lorenzo, J.M. Characterization of volatile compounds of dry-cured meat products using HS-SPME-GC/MS technique. Food Anal. Methods 2019, 12, 1263–1284. [Google Scholar] [CrossRef]
- AENOR. UNE-EN-ISO 8589:2010/A1:2014 Sensory Analysis. General Guidance for the Design of Test Rooms; AENOR: Madrid, Spain, 2014. [Google Scholar]
- Lago, A.M.T.T.; Vidal, A.C.C.C.; Schiassi, M.C.E.V.E.V.; Reis, T.; Pimenta, C.; Pimenta, M.E.S.G.S.G. Influence of the addition of minced fish on the preparation of fish sausage: Effects on sensory properties. J. Food Sci. 2017, 82, 492–499. [Google Scholar] [CrossRef]
- AENOR. UNE-EN ISO 8589:2010/Amd 1:2017 Sensory Analysis. Methodology. Ranking; AENOR: Madrid, Spain, 2017. [Google Scholar]
- Zamuz, S.; Purriños, L.; Galvez, F.; Zdolec, N.; Muchenje, V.; Barba, F.; Lorenzo, J. Influence of the addition of different origin sources of protein on meat products sensory acceptance. J. Food Process. Preserv. 2019, 43, e13940. [Google Scholar] [CrossRef]
- Laroussi-Mezghani, S.; Vanloot, P.; Molinet, J.; Dupuy, N.; Hammami, M.; Grati-Kamoun, N.; Artaud, J. Authentication of Tunisian virgin olive oils by chemometric analysis of fatty acid compositions and NIR spectra. Comparison with Maghrebian and French virgin olive oils. Food Chem. 2015, 173, 122–132. [Google Scholar] [CrossRef]
- Uceda, M.; Beltrán, G.; Jiménez, A. Las variedades de olivo cultivadas en España, libro II: Variabilidad y selección. In Composición del Aceite; Rallo, L., Barranco, D., Caballero, J., Martín, A., Del Río, C., Tous, J., Eds.; Mundi-Prensa: Madrid, Spain, 2005; pp. 365–372. [Google Scholar]
- Angerosa, F.; Campestre, C.; Giasente, L. Analysis and Authentication. In Olive Oil: Chemistry and Technology; Boskou, D., Ed.; American Oil Chemists’ Society: Urbana, IL, USA, 2006; pp. 113–172. [Google Scholar]
- Roselló-Soto, E.; Barba, F.J.; Lorenzo, J.M.; Dominguez, R.; Pateiro, M.; Mañes, J.; Moltó, J.C. Evaluating the impact of supercritical-CO 2 pressure on the recovery and quality of oil from “horchata” by-products: Fatty acid profile, α-tocopherol, phenolic compounds, and lipid oxidation parameters. Food Res. Int. 2019, 120, 888–894. [Google Scholar] [CrossRef]
- Miller, M. Oxidation of Food Grade Oils; Pant Food Research: Nelson, New Zealand, 2012; Volume 1, pp. 1–2. [Google Scholar]
- TGSC The Good Scents Company Search Page. Available online: http://www.thegoodscentscompany.com/search2.html (accessed on 3 March 2020).
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Martins, Z.E.; Pinho, O.; Ferreira, I.M.P.L.V.O. Fortification of wheat bread with agroindustry by-products: Statistical methods for sensory preference evaluation and correlation with color and crumb structure. J. Food Sci. 2017, 82, 2183–2191. [Google Scholar] [CrossRef] [PubMed]
- Reis, R.C.; Regazzi, A.J.A.; Carneiro, J.C.S.; Minim, V.P.R. Mapa de preferência. In Análise Sensorial: Estudos Com Consumidores; VPRMinim, Ed.; Editora UFV: Viçosa, Brazil, 2010; pp. 214–257. ISBN 9788572694711. [Google Scholar]
Local-MBPA | Local-MB | Man | Pic | Arb | EVOO Reference * | |
---|---|---|---|---|---|---|
C14:0 | 0.02 ± 0.00 | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.01 ± 0.00 | 0.02 ± 0.00 | ≤0.03 |
C16:0 | 12.72 ± 0.63 b | 11.74 ± 0.19 c | 13.02 ± 0.02 b | 11.29 ± 0.10 c | 13.53 ± 0.11 a | 7.50–20.00 |
C16:1n-7 | 0.89 ± 0.009 c | 0.74 ± 0.04 d | 0.98 ± 0.01 b | 0.76 ± 0.01 d | 1.03 ± 0.01 a | 0.30–3.50 |
C17:0 | 0.14 ± 0.00 a | 0.09 ± 0.00 b | 0.14 ± 0.00 a | 0.05 ± 0.00 c | 0.14 ± 0.00 a | ≤0.40 |
C17:1n-7 | 0.28 ± 0.00 b | 0.20 ± 0.01 d | 0.36 ± 0.00 a | 0.10 ± 0.00 e | 0.26 ± 0.00 c | ≤0.60 |
C18:0 | 2.15 ± 0.008 c | 2.66 ± 0.03 b | 1.94 ± 0.01 d | 2.77 ± 0.00 a | 1.95 ± 0.00 d | 0.50–5.00 |
C18:1n-9 | 71.79 ± 1.74 bc | 73.99 ± 1.89 b | 67.07 ± 0.05 d | 77.72 ± 0.06 a | 69.60 ± 0.09 c | 55.00–83.00 |
C18:2n-6 | 7.92 ± 0.83 c | 6.80 ± 1.37 c | 11.75 ±0.00 a | 3.74 ± 0.01 d | 9.21 ± 0.00 b | 2.50–21.00 |
C18:3n-3 | 0.60 ± 0.01 d | 0.74 ± 0.04 b | 1.03 ± 0.00 a | 0.68 ± 0.00 c | 0.56 ± 0.00 e | ≤1.00 |
C20:0 | 0.43 ± 0.01 a | 0.41 ± 0.03 a | 0.35 ± 0.01 b | 0.39 ± 0.02 a | 0.41 ± 0.00 a | ≤0.60 |
C20:1n-9 | 0.30 ± 0.01 a | 0.27 ± 0.01 b | 0.25 ± 0.00 c | 0.23 ± 0.00 d | 0.30 ± 0.00 a | ≤0.50 |
C22:0 | 0.14 ± 0.00 a | 0.12 ± 0.00 b | 0.10 ± 0.00 c | 0.11 ± 0.00 c | 0.13 ± 0.00 ab | ≤0.20 |
C24:0 | 0.08 ± 0.02 a | 0.06 ± 0.01 a | 0.04 ± 0.00 b | 0.06 ± 0.00 a | 0.07 ± 0.00 a | ≤0.20 |
t-oleic isomers | n.d. | n.d. | n.d. | n.d. | n.d. | ≤0.05 |
t-linoleic + t-linolenic | n.d. | n.d. | n.d. | n.d. | n.d. | ≤0.05 |
Volatile Compound | m/z | Sensory Descriptor | Odorant Series | Mouth Sensation | Reference |
---|---|---|---|---|---|
Ethyl formate | 74 | ethereal, green, rose | Floral | [32] | |
2-Methylpropanal | 72 | pungent, nutty | Spicy | Pungent | [22] |
2-Butanone | 72 | ethereal, fragrant, pleasant, fruity, mushroom | Fruity, Spicy | [33] | |
2-Methyl-3-Buten-2-ol | 71 | herbal, mushroom | Grass, Spicy | [32] | |
3-Methylbutanal | 58 | malty, fruit, acorn-like | Fruity | [33] | |
2-Methylbutanal | 58 | malty | Fruity | [33] | |
1-Penten-3-one | 55 | green, bitter, pungent, mustard | Grass | Pungent | [11] |
2-Pentanone | 86 | ethereal, butter, spiced | Spicy, Fatty | [32] | |
3-Pentanone | 86 | olive fruit, sweet | Fruity | Sweet | [11] |
Acetoin | 45 | buttery, sweet | Fatty | Sweet | [32] |
3-Methylbutanol | 70 | whiskey, woody, sweet | Wood | Sweet | [33] |
2-Methylbutanol | 56 | pungent | Pungent | [33] | |
Octane | 85 | Green, minty, herbaceous (rosemary), lime, lemon, woody | Grass, Wood, Spicy | [32] | |
cis-2-Penten-1-ol | 57 | olive fruit, sweet, banana | Fruity | Sweet | [11] |
Hexanal | 56 | grass, green apple | Grass | [11] | |
1-Methoxyhexane | 45 | herbal, floral, lavender | Floral | [32] | |
Ethyl 2-methylbutirate | 102 | fruity | Fruity | [33] | |
trans-2-Hexenal | 98 | grass, apple-like, bitter, bitter almond, green | Grass, Fruity | Bitter | [11] |
cis-3-Hexen-1-ol | 67 | leaf, apple, bitter, green grass, herbal | Grass, Fruity | Bitter | [11] |
1-Hexanol | 56 | olive fruit, banana, green grass | Grass, Fruity | [11] | |
Dimethyl sulfide | 62 | cabbage, garlic, onion | Spicy | [32] | |
Heptanal | 70 | wood, oily, green plant | Wood, Fatty, Grass | [33] | |
trans, trans-2,4-Hexadienal | 81 | green, sweet, fruit, citrus, waxy | Grass, Fruity | [32] | |
Methoxymethylbenzene | 122 | ethereal, green, hyacinth, floral | Floral | [32] | |
cis-3-Hexenyl acetate | 82 | green, fruity, banana | Grass, Fruity | [11] | |
Hexyl acetate | 61 | grass, olive fruit, sweet | Grass, Fruity | Sweet | [11] |
b-Ocimene | 93 | sweet, green | Grass | Sweet | [32] |
3-Carene | 56 | pungent odor, fir needles, mushroom | Grass | Pungent | [32] |
Benzeneacetaldehyde | 91 | acorn, pungent | Grass | Pungent | [22] |
Nonanal | 98 | citrus-like, waxy, pungent | Fatty, Floral, Grass | Pungent | [22] |
Phenylethyl Alcohol | 91 | floral, sweet | Floral | Sweet | [32] |
a-Copaene | 161 | woody, spicy, honey | Wood, Spicy | [32] |
Sample Most Favorite | Sample Least Favorite | |||
---|---|---|---|---|
Pic (246) | Local-MBPA (220) | Local-MB (216) | ||
Local-MBPA (220) | Local-MB (216) | Man (190) | ||
Man (190) | Arb (178) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamuz, S.; Purriños, L.; Tomasevic, I.; Domínguez, R.; Brnčić, M.; J. Barba, F.; Lorenzo, J.M. Consumer Acceptance and Quality Parameters of the Commercial Olive Oils Manufactured with Cultivars Grown in Galicia (NW Spain). Foods 2020, 9, 427. https://doi.org/10.3390/foods9040427
Zamuz S, Purriños L, Tomasevic I, Domínguez R, Brnčić M, J. Barba F, Lorenzo JM. Consumer Acceptance and Quality Parameters of the Commercial Olive Oils Manufactured with Cultivars Grown in Galicia (NW Spain). Foods. 2020; 9(4):427. https://doi.org/10.3390/foods9040427
Chicago/Turabian StyleZamuz, Sol, Laura Purriños, Igor Tomasevic, Rubén Domínguez, Mladen Brnčić, Francisco J. Barba, and José M. Lorenzo. 2020. "Consumer Acceptance and Quality Parameters of the Commercial Olive Oils Manufactured with Cultivars Grown in Galicia (NW Spain)" Foods 9, no. 4: 427. https://doi.org/10.3390/foods9040427
APA StyleZamuz, S., Purriños, L., Tomasevic, I., Domínguez, R., Brnčić, M., J. Barba, F., & Lorenzo, J. M. (2020). Consumer Acceptance and Quality Parameters of the Commercial Olive Oils Manufactured with Cultivars Grown in Galicia (NW Spain). Foods, 9(4), 427. https://doi.org/10.3390/foods9040427