Various Statistical Approaches to Assess and Predict Carcass and Meat Quality Traits
Abstract
:1. Introduction
2. What Are the Expectations Concerning Carcass and Meat Quality?
2.1. Carcass Quality Expectations
- determine what are the expectations of the operators in the sector (slaughterers, butchers, direct sales farmers, cooperatives, etc.) regarding carcasses, according to their customers and market requirements
- determine what constitutes an optimal quality carcass for different breeds and categories of animals according to the various stakeholders
- establish minimum quality thresholds to be reached for each of the specifications or each of the customer types
- highlight the criteria for assessing carcass quality
2.2. Meat Quality Expectations
3. Modulation and Prediction of Quality Traits
3.1. Regression Models
3.2. Interrelations between the Various Quality Traits
- (1)
- clarifying the interactions among different parameters of interest (for instance: animal performances, nutritional value, meat quality traits), and
- (2)
- assessing how to simultaneously control different parameters of interest that are not always positively correlated.
3.3. Trade-Off Management
3.4. Modelling Approaches Combining Different Quality Indicators including Their Interactions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2019–2028. Available online: http://www.fao.org/3/ca4076en/ca4076en.pdf (accessed on 25 March 2020).
- FranceAgriMer. Les Marchés des Produits Laitiers, Carnés et Avicoles. Bilan 2018, Perspectives 2019; FranceAgriMer: Lyon, France, 2019. [Google Scholar]
- Hocquette, J.-F.; Ellies-Oury, M.-P.; Lherm, M.; Pineau, C.; Deblitz, C.; Farmer, L. Current situation and future prospects for beef production in Europe—a review. Asian Australas. J. Anim. Sci. 2018, 31, 1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellies-Oury, M.-P.; Lee, A.; Jacob, H.; Hocquette, J.-F. Meat consumption–what French consumers feel about the quality of beef? Ital. J. Anim. Sci. 2019, 18, 646–656. [Google Scholar] [CrossRef] [Green Version]
- Henchion, M.; McCarthy, M.; Resconi, V.C.; Troy, D. Meat consumption: Trends and quality matters. Meat Sci. 2014, 98, 561–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piazza, J.; Ruby, M.B.; Loughnan, S.; Luong, M.; Kulik, J.; Watkins, H.M.; Seigerman, M. Rationalizing meat consumption. 4Ns. Appet. 2015, 91, 114–128. [Google Scholar] [CrossRef] [Green Version]
- Henchion, M.; De Backer, C.J.S.; Hudders, L. Ethical and sustainable aspects of meat production; consumer perceptions and system credibility. In New Aspects of Meat Quality; Elsevier: Amsterdam, The Netherlands, 2017; pp. 649–666. [Google Scholar]
- Dockès, A.-C.; Magdelaine, P.; Daridan, D.; Guillaumin, A.; Rémondet, M.; Selmi, A.; Gilbert, H.; Mignon-Grasteau, S.; Phocas, F. Attentes en matière d’élevage des acteurs de la sélection animale, des filières de l’agroalimentaire et des associations. Prod. Anim. 2011, 24, 285. [Google Scholar] [CrossRef]
- Polkinghorne, R.J.; Thompson, J.M. Meat standards and grading: A world view. Meat Sci. 2010, 86, 227–235. [Google Scholar] [CrossRef]
- Monteils, V.; Sibra, C.; Ellies-Oury, M.-P.; Botreau, R.; De la Torre, A.; Laurent, C. A set of indicators to better characterize beef carcasses at the slaughterhouse level in addition to the EUROP system. Livest. Sci. 2017, 202, 44–51. [Google Scholar] [CrossRef]
- Chaves, M.M.N.; dos Santos, A.P.R.; dos Santosa, N.P.; Larocca, L.M. Use of the software IRAMUTEQ in qualitative research: An experience report. In Computer Supported Qualitative Research; Springer: Berlin, Germany, 2017; pp. 39–48. [Google Scholar]
- Ellies-Oury, M.P.; Durand, Y.; Delamarche, F.; Jouanno, M.; Lambert, J.; Micol, D.; Dumont, R. Relationships between the assessment of “grain of meat” and meat tenderness of Charolais cattle. Meat Sci. 2013, 93, 397–404. [Google Scholar] [CrossRef]
- Bonny, S.P.F.; Pethick, D.W.; Legrand, I.; Wierzbicki, J.; Allen, P.; Farmer, L.J.; Polkinghorne, R.J.; Hocquette, J.-F.; Gardner, G.E. European conformation and fat scores have no relationship with eating quality. Animal 2016, 10, 996–1006. [Google Scholar] [CrossRef]
- Hocquette, J.-F.; Van Wezemael, L.; Chriki, S.; Legrand, I.; Verbeke, W.; Farmer, L.; Scollan, N.D.; Polkinghorne, R.; Rødbotten, R.; Allen, P.; et al. Modelling of beef sensory quality for a better prediction of palatability. Meat Sci. 2014, 97, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Hocquette, J.-F.; Botreau, R.; Picard, B.; Jacquet, A.; Pethick, D.W.; Scollan, N.D. Opportunities for predicting and manipulating beef quality. Meat Sci. 2012, 92, 197–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grunert, K.G.; Bredahl, L.; Brunsø, K. Consumer perception of meat quality and implications for product development in the meat sector—A review. Meat Sci. 2004, 66, 259–272. [Google Scholar] [CrossRef]
- Ellies-Oury, M.P.; Chavent, M.; Conanec, A.; Bonnet, M.; Picard, B.; Saracco, J. Statistical model choice including variable selection based on variable importance: A relevant way for biomarkers selection to predict meat tenderness. Sci. Rep. 2019, 9, 10014. [Google Scholar] [CrossRef] [PubMed]
- Ellies-Oury, M.-P.; Cantalapiedra-Hijar, G.; Durand, D.; Gruffat, D.; Listrat, A.; Micol, D.; Ortigues-Marty, I.; Hocquette, J.-F.; Chavent, M.; Saracco, J.; et al. An innovative approach combining Animal Performances, nutritional value and sensory quality of meat. Meat Sci. 2016, 122, 163–172. [Google Scholar] [CrossRef]
- Chriki, S.; Gardner, G.E.; Jurie, C.; Picard, B.; Micol, D.; Brun, J.-P.; Journaux, L.; Hocquette, J.-F. Cluster analysis application identifies muscle characteristics of importance for beef tenderness. BMC Biochem. 2012, 13, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagaoua, M.; Micol, D.; Picard, B.; Terlouw, C.E.; Moloney, A.P.; Juin, H.; Meteau, K.; Scollan, N.; Richardson, I.; Hocquette, J.-F. Inter-laboratory assessment by trained panelists from France and the United Kingdom of beef cooked at two different end-point temperatures. Meat Sci. 2016, 122, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Chavent, M.; Kuentz, V.; Liquet, B.; Saracco, L. Clustofvar: An r package for the clustering of variables. J. Stat. Softw. 2012, 50, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Simonet, V.K.; Lyser, S.; Candau, J.; Deuffic, P.; Chavent, M.; Saracco, J. Une approche par classification de variables pour la typologie d’observations: Le cas d’une enquête agriculture et environnement. J. Société Française Stat. 2013, 154. No. 2. [Google Scholar]
- Plasse, M.; Niang, N.; Saporta, G.; Villeminot, A.; Leblond, L. Combined use of association rules mining and clustering methods to find relevant links between binary rare attributes in a large data set. Comput. Stat. Data Anal. 2007, 52, 596–613. [Google Scholar] [CrossRef]
- Brida, J.G.; Scuderi, R.; Seijas, M.N. Segmenting cruise passengers visiting Uruguay: A factor–cluster analysis. Int. J. Tour. Res. 2014, 16, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Corbin, C.H.; O’Quinn, T.G.; Garmyn, A.J.; Legako, J.F.; Hunt, M.R.; Dinh, T.T.N.; Rathmann, R.J.; Brooks, J.C.; Miller, M.F. Sensory evaluation of tender beef strip loin steaks of varying marbling levels and quality treatments. Meat Sci. 2015, 100, 24–31. [Google Scholar] [CrossRef]
- Jaimes, A.L.; Martınez, S.Z.; Coello, C.A.C. An introduction to multiobjective optimization techniques. Optim. Polym. Process. 2009, 29–57. [Google Scholar]
- Mardani, A.; Jusoh, A.; Nor, K.; Khalifah, Z.; Zakwan, N.; Valipour, A. Multiple criteria decision-making techniques and their applications–a review of the literature from 2000 to 2014. Econ. Res. Ekon. Istraživanja 2015, 28, 516–571. [Google Scholar] [CrossRef]
- Conanec, A.; Picard, B.; Durand, D.; Cantalapiedra-Hijar, G.; Chavent, M.; Denoyelle, C.; Gruffat, D.; Normand, J.; Saracco, J.; Ellies-Oury, M.-P. New approach studying interactions regarding trade-off between beef performances and meat qualities. Foods 2019, 8, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, J.L.; Lu, L.; Anderson-Cook, C.M. Incorporating response variability and estimation uncertainty into Pareto front optimization. Comput. Ind. Eng. 2014, 76, 253–267. [Google Scholar] [CrossRef]
- Lee, K.-H.; Park, G.-J. Robust optimization considering tolerances of design variables. Comput. Struct. 2001, 79, 77–86. [Google Scholar] [CrossRef]
- Mattson, C.A.; Messac, A. Pareto frontier based concept selection under uncertainty, with visualization. Optim. Eng. 2005, 6, 85–115. [Google Scholar] [CrossRef]
- Farmer, L.; Bowe, R.; Troy, D.; Bonny, S.; Birnie, J.; Dell’Orto, V.; Polkinghorne, R.; Wierzbicki, J.; De Roest, K.; Scollan, N.; et al. Compte-rendu du congrès intitulé “Qualité durable de la viande bovine en Europe”. Rev. Française Rech. Viandes Prod. Carnés AB CORP Int. 2016, 32, 1–10. [Google Scholar]
- Polkinghorne, R.; Thompson, J.M.; Watson, R.; Gee, A.; Porter, M. Evolution of the Meat Standards Australia (MSA) beef grading system. Aust. J. Exp. Agric. 2008, 48, 1351–1359. [Google Scholar] [CrossRef] [Green Version]
- Watson, R.; Gee, A.; Polkinghorne, R.; Porter, M. Consumer assessment of eating quality–development of protocols for Meat Standards Australia (MSA) testing. Aust. J. Exp. Agric. 2008, 48, 1360–1367. [Google Scholar] [CrossRef] [Green Version]
- Bonny, S.P.F.; Hocquette, J.-F.; Pethick, D.W.; Legrand, I.; Wierzbicki, J.; Allen, P.; Farmer, L.J.; Polkinghorne, R.J.; Gardner, G.E. The variability of the eating quality of beef can be reduced by predicting consumer satisfaction. Animal 2018, 12, 2434–2442. [Google Scholar] [CrossRef] [Green Version]
- Hocquette, J.F.; Legrand, I.; Jurie, C.; Pethick, D.W.; Micol, D. Perception in France of the Australian system for the prediction of beef quality (Meat Standards Australia) with perspectives for the European beef sector. Anim. Prod. Sci. 2011, 51, 30–36. [Google Scholar] [CrossRef]
- Legrand, I.; Hocquette, J.F.; Polkinghorne, R.J.; Wierzbicki, J. Comment prédire la qualité de la viande bovine en Europe en s’inspirant du système australien MSA. Innov. Agron. 2017, 55, 171–182. [Google Scholar]
- Legrand, I.; Hocquette, J.-F.; Polkinghorne, R.J.; Pethick, D.W. Prediction of beef eating quality in France using the Meat Standards Australia system. Animal 2013, 7, 524–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.M.; Polkinghorne, R.; Hwang, I.H.; Gee, A.M.; Cho, S.H.; Park, B.Y.; Lee, J.M. Beef quality grades as determined by Korean and Australian consumers. Aust. J. Exp. Agric. 2008, 48, 1380–1386. [Google Scholar] [CrossRef] [Green Version]
- Chong, F.S.; Farmer, L.J.; Hagan, T.D.J.; Speers, J.S.; Sanderson, D.W.; Devlin, D.J.; Tollerton, I.J.; Gordon, A.W.; Methven, L.; Moloney, A.P. Regional, socioeconomic and behavioural-impacts on consumer acceptability of beef in Northern Ireland, Republic of Ireland and Great Britain. Meat Sci. 2019, 154, 86–95. [Google Scholar] [CrossRef]
- Farmer, L.J.; Devlin, D.J.; Gault, N.F.S.; Gordon, A.W.; Moss, B.W.; Polkinghorne, R.J.; Thompson, J.M.; Tolland, E.L.C.; Tollerton, I.J.; Watson, R. Adaptation of Meat Standards Australia quality system for Northern Irish beef. Adv. Anim. Biosci. 2010, 1, 127. [Google Scholar] [CrossRef] [Green Version]
- Farmer, L.J.; Devlin, D.J.; Gault, N.F.S.; Gee, A.; Gordon, A.W.; Moss, B.W.; Polkinghorne, R.; Thompson, J.; Tolland, E.L.C.; Tollerton, I.J. Effect of type and extent of cooking on the eating quality of Northern Ireland beef. In Proceedings of the 55th International Congress of Meat Science and Technology, Copenhagen, Denmark, 16–21 August 2009; pp. 7–33. [Google Scholar]
- Farmer, L.J.; Devlin, D.J.; Gault, N.F.S.; Gordon, A.W.; Moss, B.W.; Polkinghorne, R.J.; Thompson, J.M.; Tolland, E.L.C.; Tollerton, I.J. Prediction of eating quality using the Meat Standards Australia system for Northern Ireland beef and consumers. In Proceedings of the International Congress on Meat Science and Technology, Copenhagen, Denmark, 16–21 August 2009; pp. 16–21. [Google Scholar]
- O’Quinn, T.G.; Legako, J.F.; Brooks, J.C.; Miller, M.F. Evaluation of the contribution of tenderness, juiciness, and flavor to the overall consumer beef eating experience. Transl. Anim. Sci. 2018, 2, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Polkinghorne, R. Targeting the consumer demand for beef in Australia, Japan, Korea, Ireland, and the United States. In Proceedings of the 60th Annual Reciprocal Meat Conference, Brookings, SD; American Meat Science Association: Champaign, IL, USA, 2007; pp. 27–33. [Google Scholar]
- Polkinghorne, R.J.; Nishimura, T.; Neath, K.E.; Watson, R. Japanese consumer categorisation of beef into quality grades, based on Meat Standards Australia methodology. Anim. Sci. J. 2011, 82, 325–333. [Google Scholar] [CrossRef]
- McCarthy, S.N.; Henchion, M.; White, A.; Brandon, K.; Allen, P. Evaluation of beef eating quality by Irish consumers. Meat Sci. 2007, 132, 118–124. [Google Scholar] [CrossRef]
- Strydom, P.; Burrow, H.; Polkinghorne, R.; Thompson, J. Do demographic and beef eating preferences impact on South African consumers’ willingness to pay (WTP) for graded beef? Meat Sci. 2019, 150, 122–130. [Google Scholar] [CrossRef]
- Garmyn, A.J.; Polkinghorne, R.J.; Brooks, J.C.; Miller, M.F. Consumer assessment of New Zealand forage finished beef compared to US grain fed beef. Meat Muscle Biol. 2019, 3, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Guzek, D.; Gląbska, D.; Gutkowska, K.; Wierzbicki, J.; Woźniak, A.; Wierzbicka, A. Analysis of the factors creating consumer attributes of roasted beef steaks. Anim. Sci. J. 2015, 86, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Pogorzelski, G.; Woźniak, K.; Polkinghorne, R.; Póltorak, A.; Wierzbicka, A. Polish consumer categorisation of grilled beef at 6 mm and 25 mm thickness into quality grades, based on Meat Standards Australia methodology. Meat Sci. 2020, 161, 107953. [Google Scholar] [CrossRef] [PubMed]
- Pethick, D.; Crowley, M.; Polkinghorne, R.; Webster, J.; Hocquette, J.-F.; McGilchrist, P.; Osborne, T.; McCamley, I.; Maguire, T.; Inglis, M. Comment les professionnels de la viande en Australie ont valorisé les résultats de R&D. Viandes Prod. Carnés 2019, 35, 1–2. [Google Scholar]
- Pethick, D.W.; Mcgilchrist, P.; Polkinghorne, R.; Warner, R.; Tarr, G.; Garmyn, A.; Thompson, J.; Hocquette, J.-F. Travaux de recherche internationaux sur la qualité sensorielle de la viande ovine et bovine. Rev. Française Rech. Viandes Prod. Carnés AB CORP Int. 2018, 32, 1–2. [Google Scholar]
Country | Europe | S. Africa | Canada | Japan | S. Korea | USA | Australia |
Scheme | EUROP | S. Africa | Canada | JMGA | Korea | USDA | MSA |
Grading unit | Carcass | Cut | |||||
Pre slaughter factors | HGP implants & Bos Indicus | ||||||
Slaughter-floor | Carcass weight and sex | ||||||
Conformation | Dentition | Conformation | Electrical stimulation | ||||
Fat cover | ribfat | Hang | |||||
Chiller | Marbling score | ||||||
Meat color | |||||||
Fat color and fat thickness | Ossification score | ||||||
Texture | Eye muscle area | Fat thickness | |||||
Meat brightness | Texture | Meat texture | Hump height | ||||
Fat luster | Firmness | Rib fat | Ultimate pH | ||||
Fat texture | Lean maturity | Kidney fat | |||||
Fat firmness | Perirenal fat | ||||||
Rib thickness | |||||||
Post chiller | Ageing time | ||||||
Cooking method |
Objective | Advantages | Disadvantages | |
---|---|---|---|
Regression model | Estimation of model to explain a single parameter by many covariates. | Easy model interpretability thanks to a parametric modeling. Easy prediction method. | Linear model. Single parameter modeling. Single block of covariates. Need of a sample size greater than the number of covariates. |
modvarsel R-package | Regression model benchmark and variable selection | Wide choice between several parametric, semi-parametric or non-parametric regression models. Ranking of variables according to their importance allowing simple selection of variables. Easy prediction method. Easy to use. | Computational burden. Single parameter modeling. Single block of covariates. |
ddsPLS R-package | Modeling and selection of variables to predict and of traits to be predicted | Prediction of several parameters by the same pool of factors. Multi-block approach: various blocks of covariates and one block of parameters to explain. Adapted for a small sample size much lower than the number of covariates. | Linear model. Only numerical covariates and response blocks. Interpretation of the outputs slightly more technical. |
ClustOfVar R-package | Approach providing a clustering of variables based on their correlations | Identification of interactions/links allowing dimensional reduction of variables-via the scores (synthetic variables) associated with each cluster. Easy interpretability of the scores. Method adapted to quantitative and qualitative variables. Hierarchical clustering or not. Easy to use. | Possible correlation between the cluster scores. Only linear correlations (or correlation ratios) taken into account. |
Trade-off management | Decision-making methodology for a compromise between different quality objectives. | Integration of priority preference of the decision maker. Easy to use. | Need of a big amount of data to be accurate. Discard of unsatisfactory but also relevant samples |
Meat Standards Australia (MSA) | Decision-making methodology based on the combination of different sensory quality traits | Inclusion in the model of different variables and of their interactions. Easy interpretability of the scores. Continuous improvement of the model. Method already implemented in the Australian beef industry with success. | Need of a big amount of data to be accurate. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellies-Oury, M.-P.; Hocquette, J.-F.; Chriki, S.; Conanec, A.; Farmer, L.; Chavent, M.; Saracco, J. Various Statistical Approaches to Assess and Predict Carcass and Meat Quality Traits. Foods 2020, 9, 525. https://doi.org/10.3390/foods9040525
Ellies-Oury M-P, Hocquette J-F, Chriki S, Conanec A, Farmer L, Chavent M, Saracco J. Various Statistical Approaches to Assess and Predict Carcass and Meat Quality Traits. Foods. 2020; 9(4):525. https://doi.org/10.3390/foods9040525
Chicago/Turabian StyleEllies-Oury, Marie-Pierre, Jean-François Hocquette, Sghaier Chriki, Alexandre Conanec, Linda Farmer, Marie Chavent, and Jérôme Saracco. 2020. "Various Statistical Approaches to Assess and Predict Carcass and Meat Quality Traits" Foods 9, no. 4: 525. https://doi.org/10.3390/foods9040525
APA StyleEllies-Oury, M. -P., Hocquette, J. -F., Chriki, S., Conanec, A., Farmer, L., Chavent, M., & Saracco, J. (2020). Various Statistical Approaches to Assess and Predict Carcass and Meat Quality Traits. Foods, 9(4), 525. https://doi.org/10.3390/foods9040525