Next Article in Journal
Rapid Methods for Assessing Food Safety and Quality
Previous Article in Journal
Food Environment Typology: Advancing an Expanded Definition, Framework, and Methodological Approach for Improved Characterization of Wild, Cultivated, and Built Food Environments toward Sustainable Diets
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Reply

Reply to Comment on Watanabe, A.; Kadota, Y.; Yokoyama, H.; Tsuruda, S.; Kamio, R.; Tochio, T.; Shimomura, Y.; Kitaura, Y. Experimental Determination of the Threshold Dose for Bifidogenic Activity of Dietary 1-Kestose in Rats. Foods 2020, 9, 4

1
Laboratory of Nutritional Biochemistry, Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
2
B Food Science Co., Ltd., Chita, Aichi 478-0046, Japan
3
Department of Food and Nutritional Sciences, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Foods 2020, 9(4), 527; https://doi.org/10.3390/foods9040527
Submission received: 25 March 2020 / Revised: 9 April 2020 / Accepted: 17 April 2020 / Published: 22 April 2020
The manuscript entitled “Comment on Experimental Determination of the Threshold Dose for Bifidogenic Activity of Dietary 1-Kestose in Rats” by Shen et al. gives comments on our published work [1], particularly regarding the primers used to detect Bifidobacterium. Although Shen et al. raise questions on primer specificity and the qPCR method we used, these primers have been used for qPCR (using SYBR green as the fluorescent dye) in many other papers [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23]. Gardnerella spp., Scardovia inopinata, and Parascardovia denticolens are closely related to Bifidobacterium spp., and could be theoretically amplified, but these former species have been found only in genitals, urethra, and caries of human, and have not been detected in cecum contents of rats by metagenomic analysis using the EzBioCloud database (our unpublished data). Furthermore, although microbes with more than one mismatch in the primers might be amplified, such data have not been shown.
qPCR was performed in our study as follows. Frozen cecum content samples were thawed on ice, and approximately 100 mg of each sample was suspended in 4 M guanidium thiocyanate, 100 mM Tris-HCl (pH 9.0), and 40 mM EDTA. Samples were then homogenized with zirconia beads using the FastPrep FP100A instrument (MP Biomedicals, Santa Ana, CA, USA). DNA was extracted from bead-treated suspensions using magLEAD 12gC and MagDEA Dx SV (Precision System Science, Matsudo, Japan). DNA concentrations were estimated by spectrophotometry using the ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA), and final DNA concentrations ranged from 26.2 to 74.9 ng/μL. We used a diluted genomic DNA solution (from 5 to 10 times) as a template and SYBR green as a fluorescent dye during qPCR. The data were shown as the copy number per 1 g of cecum content as calculated based on the weight of the cecum content used for genomic DNA extraction, dilution rate, and Ct values (between 18 and 24 in duplicate).
Shen et al. also show the bifidogenic activities of fructo-oligosaccharides fructo-oligosaccharides (FOSs) in humans as well as in vitro and suggest that the equivalence of 1-kestose in foodstuffs for humans should be calculated by the sensitivity index (6.25) between humans and rats used in toxicological studies. As we described in our paper, further studies are required to determine the minimum effective dose of 1-kestose in human patients with conditions such as obesity and type 2 diabetes.

Author Contributions

Conceptualization, Y.S. and Y.K. (Yasuyuki Kitaura); Writing—original draft preparation, A.W.; writing—review and editing, Y.K. (Yoshihiro Kadota), T.T. and Y.S. and Y.K. (Yasuyuki Kitaura). All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Watanabe, A.; Kadota, Y.; Yokoyama, H.; Tsuruda, S.; Kamio, R.; Tochio, T.; Shimomura, Y.; Kitaura, Y. Experimental Determination of the Threshold Dose for Bifidogenic Activity of Dietary 1-Kestose in Rats. Foods 2019, 9, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. Xu, C.C.; Yang, S.F.; Zhu, L.H.; Cai, X.; Sheng, Y.S.; Zhu, S.W.; Xu, J.X. Regulation of N-acetyl cysteine on gut redox status and major microbiota in weaned piglets. J. Anim. Sci. 2014, 92, 1504–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. García-Alonso, F.J.; González-Barrio, R.; Martín-Pozuelo, G.; Hidalgo, N.; Navarro-González, I.; Masuero, D.; Soini, E.; Vrhovsek, U.; Periago, M.J. A study of the prebiotic-like effects of tomato juice consumption in rats with diet-induced non-alcoholic fatty liver disease (NAFLD). Food Funct. 2017, 8, 3542–3552. [Google Scholar] [CrossRef] [PubMed]
  4. Echarri, P.P.; Graciá, C.M.; Berruezo, G.R.; Vives, I.; Ballesta, M.; Solís, G.; Morillas, I.V.; Reyes-Gavilán, C.G.; Margolles, A.; Gueimonde, M. Assessment of intestinal microbiota of full-term breast-fed infants from two different geographical locations. Early Hum. Dev. 2011, 87, 511–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Tian, Z.; Liu, J.; Liao, M.; Li, W.; Zou, J.; Han, X.; Kuang, M.; Shen, W.; Li, H. Beneficial Effects of Fecal Microbiota Transplantation on Ulcerative Colitis in Mice. Dig. Dis. Sci. 2016, 61, 2262–2271. [Google Scholar] [CrossRef]
  6. Liu, D.; Zhang, Y.; Liu, Y.; Hou, L.; Li, S.; Tian, H.; Zhao, T. Berberine Modulates Gut Microbiota and Reduces Insulin Resistance via the TLR4 Signaling Pathway. Exp. Clin. Endocrinol. Diabetes 2018, 126, 513–520. [Google Scholar] [CrossRef]
  7. Fernández-Navarro, T.; Salazar, N.; Gutiérrez-Díaz, I.; de Los Reyes-Gavilán, C.G.; Gueimonde, M.; González, S. Different Intestinal Microbial Profile in Over-Weight and Obese Subjects Consuming a Diet with Low Content of Fiber and Antioxidants. Nutrients 2017, 9, 551. [Google Scholar] [CrossRef] [Green Version]
  8. Bao, C.H.; Wang, C.Y.; Li, G.N.; Yan, Y.L.; Wang, D.; Jin, X.M.; Wu, L.Y.; Liu, H.R.; Wang, X.M.; Shi, Z.; et al. Effect of mild moxibustion on intestinal microbiota and NLRP6 inflammasome signaling in rats with post-inflammatory irritable bowel syndrome. World J. Gastroenterol. 2019, 25, 4696–4714. [Google Scholar] [CrossRef]
  9. Pourabedin, M.; Xu, Z.; Baurhoo, B.; Chevaux, E.; Zhao, X. Effects of mannan oligosaccharide and virginiamycin on the cecal microbial community and intestinal morphology of chickens raised under suboptimal conditions. Can J. Microbiol. 2014, 60, 255–266. [Google Scholar] [CrossRef]
  10. Yang, X.D.; Wang, L.K.; Wu, H.Y.; Jiao, L. Effects of prebiotic galacto-oligosaccharide on postoperative cognitive dysfunction and neuroinflammation through targeting of the gut-brain axis. BMC Anesthesiol. 2018, 18, 177. [Google Scholar] [CrossRef] [Green Version]
  11. Fernández-Navarro, T.; Díaz, I.; Gutiérrez-Díaz, I.; Rodríguez-Carrio, J.; Suárez, A.; de Los Reyes-Gavilán, C.G.; Gueimonde, M.; Salazar, N.; González, S. Exploring the interactions between serum free fatty acids and fecal microbiota in obesity through a machine learning algorithm. Food Res. Int. 2019, 121, 533–541. [Google Scholar] [CrossRef] [PubMed]
  12. Pozuelo, M.J.; Agis-Torres, A.; Hervert-Hernández, D.; Elvira López-Oliva, M.; Muñoz-Martínez, E.; Rotger, R.; Goñi, I. Grape antioxidant dietary fiber stimulates Lactobacillus growth in rat cecum. J. Food Sci. 2012, 77, H59–H62. [Google Scholar] [CrossRef]
  13. Farhana, L.; Antaki, F.; Murshed, F.; Mahmud, H.; Judd, S.L.; Nangia-Makker, P.; Levi, E.; Yu, Y.; Majumdar, A.P. Gut microbiome profiling and colorectal cancer in African Americans and Caucasian Americans. World J. Gastrointest. Pathophysiol. 2018, 9, 47–58. [Google Scholar] [CrossRef]
  14. Monteagudo-Mera, A.; Arthur, J.C.; Jobin, C.; Keku, T.; Bruno-Barcena, J.M.; Azcarate-Peril, M.A. High purity galacto-oligosaccharides enhance specific Bifidobacterium species and their metabolic activity in the mouse gut microbiome. Benef. Microbes 2016, 7, 247–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Sánchez-Moya, T.; López-Nicolás, R.; Planes, D.; González-Bermúdez, C.A.; Ros-Berruezo, G.; Frontela-Saseta, C. In vitro modulation of gut microbiota by whey protein to preserve intestinal health. Food Funct. 2017, 8, 3053–3063. [Google Scholar] [CrossRef] [PubMed]
  16. Yeom, M.; Sur, B.J.; Park, J.; Cho, S.G.; Lee, B.; Kim, S.T.; Kim, K.S.; Lee, H.; Hahm, D.H. Oral administration of Lactobacillus casei variety rhamnosus partially alleviates TMA-induced atopic dermatitis in mice through improving intestinal microbiota. J. Appl. Microbiol. 2015, 119, 560–570. [Google Scholar] [CrossRef] [Green Version]
  17. Tanaka, K.; Nakamura, Y.; Terahara, M.; Yanagi, T.; Nakahara, S.; Furukawa, O.; Tsutsui, H.; Inoue, R.; Tsukahara, T.; Koshida, S. Poor Bifidobacterial Colonization is Associated with Late Provision of Colostrum and Improved with Probiotic Supplementation in Low Birth Weight Infants. Nutrients 2019, 11, 839. [Google Scholar] [CrossRef] [Green Version]
  18. Xu, J.; Xu, C.; Chen, X.; Cai, X.; Yang, S.; Sheng, Y.; Wang, T. Regulation of an antioxidant blend on intestinal redox status and major microbiota in early weaned piglets. Nutrition. 2014, 30, 584–589. [Google Scholar] [CrossRef]
  19. Elvira-Torales, L.I.; Periago, M.J.; González-Barrio, R.; Hidalgo, N.; Navarro-González, I.; Gómez-Gallego, C.; Masuero, D.; Soini, E.; Vrhovsek, U.; García-Alonso, F.J. Spinach consumption ameliorates the gut microbiota and dislipaemia in rats with diet-induced non-alcoholic fatty liver disease (NAFLD). Food Funct. 2019, 10, 2148–2160. [Google Scholar] [CrossRef]
  20. Gil-Sánchez, I.; Cueva, C.; Sanz-Buenhombre, M.; Guadarrama, A.; Moreno-Arribas, M.V.; Bartolomé, B. Dynamic gastrointestinal digestion of grape pomace extracts: Bioaccessible phenolic metabolites and impact on human gut microbiota. J. Food Compos. Anal. 2018, 68, 41–52. [Google Scholar] [CrossRef]
  21. Valdés, L.; Salazar, N.; González, S.; Arboleya, S.; Ríos-Covián, D.; Genovés, S.; Ramón, D.; de Los Reyes-Gavilán, C.G.; Ruas-Madiedo, P.; Gueimonde, M. Selection of potential probiotic bifidobacteria and prebiotics for elderly by using in vitro faecal batch cultures. Eur. Food Res. Technol. 2017, 243, 157–165. [Google Scholar] [CrossRef]
  22. Gil-Sánchez, I.; Esteban-Fernández, A.; de Llano, D.G.; Sanz-Buenhombre, M.; Guadarrana, A.; Salazar, N.; Gueimonde, M.; de Los Reyes-Gavilán, C.G.; Martín-Gómez, L.; García-Bermejo, M.L.; et al. Supplementation with grape pomace in healthy women: Changes in biochemical parameters, gut microbiota and related metabolic biomarkers. J. Funct. Foods 2018, 45, 34–46. [Google Scholar] [CrossRef]
  23. Watanabe, H.; Isono, Y. Survival of Bifidobacterium animalis subsp. lactis OPB-1 in the Gastrointestinal Tract after its Administration in a Milk-free Soybean Product and the Effect on Fecal Microbiota in Healthy Adults. Food Sci. Technol. Res. 2012, 18, 243–250. [Google Scholar] [CrossRef] [Green Version]

Share and Cite

MDPI and ACS Style

Watanabe, A.; Kadota, Y.; Tochio, T.; Shimomura, Y.; Kitaura, Y. Reply to Comment on Watanabe, A.; Kadota, Y.; Yokoyama, H.; Tsuruda, S.; Kamio, R.; Tochio, T.; Shimomura, Y.; Kitaura, Y. Experimental Determination of the Threshold Dose for Bifidogenic Activity of Dietary 1-Kestose in Rats. Foods 2020, 9, 4. Foods 2020, 9, 527. https://doi.org/10.3390/foods9040527

AMA Style

Watanabe A, Kadota Y, Tochio T, Shimomura Y, Kitaura Y. Reply to Comment on Watanabe, A.; Kadota, Y.; Yokoyama, H.; Tsuruda, S.; Kamio, R.; Tochio, T.; Shimomura, Y.; Kitaura, Y. Experimental Determination of the Threshold Dose for Bifidogenic Activity of Dietary 1-Kestose in Rats. Foods 2020, 9, 4. Foods. 2020; 9(4):527. https://doi.org/10.3390/foods9040527

Chicago/Turabian Style

Watanabe, Ayako, Yoshihiro Kadota, Takumi Tochio, Yoshiharu Shimomura, and Yasuyuki Kitaura. 2020. "Reply to Comment on Watanabe, A.; Kadota, Y.; Yokoyama, H.; Tsuruda, S.; Kamio, R.; Tochio, T.; Shimomura, Y.; Kitaura, Y. Experimental Determination of the Threshold Dose for Bifidogenic Activity of Dietary 1-Kestose in Rats. Foods 2020, 9, 4" Foods 9, no. 4: 527. https://doi.org/10.3390/foods9040527

APA Style

Watanabe, A., Kadota, Y., Tochio, T., Shimomura, Y., & Kitaura, Y. (2020). Reply to Comment on Watanabe, A.; Kadota, Y.; Yokoyama, H.; Tsuruda, S.; Kamio, R.; Tochio, T.; Shimomura, Y.; Kitaura, Y. Experimental Determination of the Threshold Dose for Bifidogenic Activity of Dietary 1-Kestose in Rats. Foods 2020, 9, 4. Foods, 9(4), 527. https://doi.org/10.3390/foods9040527

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop