Twelve-Month Studies on Perilla Oil Intake in Japanese Adults—Possible Supplement for Mental Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Blood Sampling and Cognitive Evaluations of Mental Health
2.3. Blood Biochemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics at Baseline
3.2. Nutritional Intake
3.3. Effect of PO-Administration on Mental Health
3.4. Effect of PO-Administration on Body Constitution and Serum Biochemical Parameters
3.5. Effect of PO-Administration on the Fatty Acid Profile of Erythrocyte Plasma Membrane
3.6. Effect of PO-Administration on Serum Monoamine Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cardoso, C.; Afonso, C.; Bandarra, N.M. Dietary DHA and health: Cognitive function ageing. Nutr. Res. Rev. 2016, 29, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Hossain, S.; Al Mamun, A.; Matsuzaki, K.; Arai, H. Docosahexaenoic acid: One molecule diverse functions. Crit. Rev. Biotechnol. 2017, 37, 579–597. [Google Scholar] [CrossRef] [PubMed]
- Canhada, S.; Castro, K.; Perry, I.S.; Luft, V.C. Omega-3 fatty acids’ supplementation in Alzheimer’s disease: A systematic review. Nutr. Neurosci. 2018, 21, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Haslam, D.W.; James, W.P.T. Obesity. Lancet 2005, 366, 1197–1209. [Google Scholar] [CrossRef]
- Pistell, P.J.; Morrison, C.D.; Gupta, S.; Knight, A.G.; Keller, J.N.; Ingram, D.K.; Bruce-Keller, A.J. Cognitive impairment following high fat diet consumption is associated with brain inflammation. J. Neuroimmunol. 2010, 219, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, M.F.; Mutch, D.M.; Leri, F. The Relationship between Fatty Acids and Different Depression-Related Brain Regions, and Their Potential Role as Biomarkers of Response to Antidepressants. Nutrients 2017, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Tsuboi, H.; Watanabe, M.; Kobayashi, F.; Kimura, K.; Kinae, N. Associations of depressive symptoms with serum proportions of palmitic and arachidonic acids, and alpha-tocopherol effects among male population—A preliminary study. Clin. Nutr. 2013, 32, 289–293. [Google Scholar] [CrossRef]
- Tang, M.; Dang, R.; Liu, S.; Zhang, M.; Zheng, Y.; Yang, R.; Yin, T. Omega-3 fatty acids-supplementary in gestation alleviates neuroinflammation and modulates neurochemistry in rats. Lipids Health Dis. 2018, 17, 247. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Ren, H.; Yao, X.; Shi, Z.; Liang, F.; Kang, J.X.; Wan, J.B.; Pei, Z.; Su, K.P.; Su, H. Enriched Brain Omega-3 Polyunsaturated Fatty Acids Confer Neuroprotection against Microinfarction. EBioMedicine 2018, 32, 50–61. [Google Scholar] [CrossRef]
- Gamoh, S.; Hashimoto, M.; Sugioka, K.; Shahdat Hossain, M.; Hata, N.; Misawa, Y.; Masumura, S. Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience 1999, 93, 237–241. [Google Scholar] [CrossRef]
- Hussain, G.; Schmitt, F.; Loeffler, J.P.; Gonzalez de Aguilar, J.L. Fatting the brain: A brief of recent research. Front. Cell. Neurosci. 2013, 7, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deacon, G.; Kettle, C.; Hayes, D.; Dennis, C.; Tucci, J. Omega 3 polyunsaturated fatty acids and the treatment of depression. Crit. Rev. Food. Sci. Nutr. 2017, 57, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Maekawa, M.; Katakura, M.; Hamasaki, K.; Matsuoka, Y. Possibility of polyunsaturated fatty acids for the prevention and treatment of neuropsychiatric illnesses. J. Pharmacol. Sci. 2014, 124, 294–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sechi, S.; Di Cerbo, A.; Canello, S.; Guidetti, G.; Chiavolelli, F.; Fiore, F.; Cocco, R. Effects in dogs with behavioral disorders of a commercial nutraceutical diet on stress and neuroendocrine parameters. Vet. Rec. 2017, 180, 18–24. [Google Scholar] [CrossRef]
- Rao, S.; Abdel-Reheem, M.; Bhella, R.; McCracken, C.; Hildebrand, D. Characteristics of high alpha-linolenic acid accumulation in seed oils. Lipids 2008, 43, 749–755. [Google Scholar] [CrossRef]
- Campos, H.; Baylin, A.; Willett, W.C. α-Linolenic acid and risk of nonfatal acute myocardial infarction: Campos: α-Linolenic acid myocardial infarction. Circulation 2008, 118, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Albert, C.M.; Oh, K.; Whang, W.; Manson, J.E.; Chae, C.U.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Dietary α-linolenic acid intake and risk of sudden cardiac death and coronary heart disease. Circulation 2005, 112, 3232–3238. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Etherton, T.D.; Martin, K.R.; Gillies, P.J.; West, S.G.; Kris-Etherton, P.M. Dietary alpha-linolenic acid inhibits proinflammatory cytokine production by peripheral blood mononuclear cells in hypercholesterolemic subjects. Am. J. Clin. Nutr. 2007, 85, 385–391. [Google Scholar] [CrossRef] [Green Version]
- Stark, A.H.; Crawford, M.A.; Reifen, R. Update on alpha-linolenic acid. Nutr. Rev. 2008, 66, 326–332. [Google Scholar] [CrossRef]
- Nguemeni, C.; Delplanque, B.; Rovere, C.; Simon-Rousseau, N.; Gandin, C.; Agnani, G.; Nahon, J.L.; Heurteaux, C.; Blondeau, N. Dietary supplementation of alpha-linolenic acid in an enriched rapeseed oil diet protects from stroke. Pharmacol. Res. 2010, 61, 226–233. [Google Scholar] [CrossRef]
- Baylin, A.; Kabagambe, E.K.; Ascherio, A.; Spiegelman, D.; Campos, H. Adipose tissue α-linolenic acid and nonfatal acute myocardial infarction in Costa Rica. Circulation 2003, 107, 1586–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djousse, L.; Folsom, A.R.; Province, M.A.; Hunt, S.C.; Ellison, R.C. Dietary linolenic acid and carotid atherosclerosis: The National Heart, Lung, and Blood Institute Family Heart Study. Am. J. Clin. Nutr. 2003, 77, 819–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djousse, L.; Pankow, J.S.; Eckfeldt, J.H.; Folsom, A.R.; Hopkins, P.N.; Province, M.A.; Hong, Y.; Ellison, R.C. Relation between dietary linolenic acid and coronary artery disease in the National Heart, Lung, and Blood Institute Family Heart Study. Am. J. Clin. Nutr. 2001, 74, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Gamoh, S.; Hashimoto, M.; Hossain, S.; Masumura, S. Chronic administration of docosahexaenoic acid improves the performance of radial arm maze task in aged rats. Clin. Exp. Pharmacol. Physiol. 2001, 28, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Hossain, S.; Shimada, T.; Sugioka, K.; Yamasaki, H.; Fujii, Y.; Ishibashi, Y.; Oka, J.I.; Shido, O. Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. J. Neurochem. 2002, 81, 1084–1091. [Google Scholar] [CrossRef]
- Hashimoto, M.; Tanabe, Y.; Fujii, Y.; Kikuta, T.; Shibata, H.; Shido, O. Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid beta-infused rats. J. Nutr. 2005, 135, 549–555. [Google Scholar] [CrossRef]
- Lee, A.Y.; Choi, J.M.; Lee, M.H.; Lee, J.; Lee, S.; Cho, E.J. Protective effects of perilla oil and alpha linolenic acid on SH-SY5Y neuronal cell death induced by hydrogen peroxide. Nutr. Res. Pract. 2018, 12, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.; Lee, M.H.; Lee, S.; Cho, E.J. Neuroprotective Effect of Alpha-Linolenic Acid against Abeta-Mediated Inflammatory Responses in C6 Glial Cell. J. Agric. Food. Chem. 2018, 66, 4853–4861. [Google Scholar] [CrossRef]
- Okada, K.; Kobayashi, S.; Aoki, K.; Suyama, N.; Yamaguchi, S. Assessment of motivational loss in poststroke patients using the Japanese version of Starkstein’s Apathy Scale. Jpn. J. Stroke 1998, 20, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Zung, W.W. A self-rating depression scale. Arch. Gen. Psychiatry 1965, 12, 63–70. [Google Scholar] [CrossRef]
- Hashimoto, M.; Shinozuka, K.; Gamoh, S.; Tanabe, Y.; Hossain, M.S.; Kwon, Y.M.; Hata, N.; Misawa, Y.; Kunitomo, M.; Masumura, S. The hypotensive effect of docosahexaenoic acid is associated with the enhanced release of ATP from the caudal artery of aged rats. J. Nutr. 1999, 129, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, I.; Takagi, T.; Oikawa, D.; Koutoku, T.; Koga, Y.; Tomonaga, S.; Tachibana, T.; Denbow, M.D.; Furuse, M. Changes in catecholamines and dopaminergic metabolites in pigeon brain during development from the late embryonic stage toward hatch. Zoolog. Sci. 2003, 20, 551–555. [Google Scholar] [CrossRef] [Green Version]
- Mantzioris, E.; James, M.J.; Gibson, R.A.; Cleland, L.G. Dietary substitution with an alpha-linolenic acid-rich vegetable oil increases eicosapentaenoic acid concentrations in tissues. Am. J. Clin. Nutr. 1994, 59, 1304–1309. [Google Scholar] [CrossRef] [PubMed]
- Hamazaki, K.; Itomura, M.; Hamazaki, T.; Sawazaki, S. Effects of cooking plant oils on recurrent aphthous stomatitis: A randomized, placebo-controlled, double-blind trial. Nutrition 2006, 22, 534–538. [Google Scholar] [CrossRef]
- Mantzioris, E.; James, M.J.; Gibson, R.A.; Cleland, L.G. Differences exist in the relationships between dietary linoleic and alpha-linolenic acids and their respective long-chain metabolites. Am. J. Clin. Nutr. 1995, 61, 320–324. [Google Scholar] [CrossRef] [Green Version]
- Francois, C.A.; Connor, S.L.; Bolewicz, L.C.; Connor, W.E. Supplementing lactating women with flaxseed oil does not increase docosahexaenoic acid in their milk. Am. J. Clin. Nutr. 2003, 77, 226–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leng, S.; Aukema, H.M. Dietary α-Linolenic Acid (ALA) is Sufficiently Converted to Docosahexaenoic Acid (DHA) to Increase Bioactive Lipids Derived from DHA. FASEB J. 2016, 30. [Google Scholar] [CrossRef]
- Finnegan, Y.E.; Minihane, A.M.; Leigh-Firbank, E.C.; Kew, S.; Meijer, G.W.; Muggli, R.; Calder, P.C.; Williams, C.M. Plant- and marine-derived n-3 polyunsaturated fatty acids have differential effects on fasting and postprandial blood lipid concentrations and on the susceptibility of LDL to oxidative modification in moderately hyperlipidemic subjects. Am. J. Clin. Nutr. 2003, 77, 783–795. [Google Scholar] [CrossRef] [Green Version]
- Domenichiello, A.F.; Kitson, A.P.; Bazinet, R.P. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain? Prog. Lipid Res. 2015, 59, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhao, S.; Li, W.; Ma, L.; Ding, M.; Li, R.; Liu, Y. High-fat diet from perilla oil induces insulin resistance despite lower serum lipids and increases hepatic fatty acid oxidation in rats. Lipids Health Dis. 2014, 13, 15. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Gupta, G.; Anilkumar, K.; Fatima, N.; Karnati, R.; Reddy, G.V.; Giri, P.V.; Reddanna, P. 15-Lipoxygenase metabolites of α-linolenic acid, [13-(S)-HPOTrE and 13-(S)-HOTrE], mediate anti-inflammatory effects by inactivating NLRP3 inflammasome. Sci. Rep. 2016, 6, 31649. [Google Scholar] [CrossRef] [PubMed]
- Fukumitsu, S.; Villareal, M.O.; Onaga, S.; Aida, K.; Han, J.; Isoda, H. alpha-Linolenic acid suppresses cholesterol and triacylglycerol biosynthesis pathway by suppressing SREBP-2, SREBP-1a and -1c expression. Cytotechnology 2013, 65, 899–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, M.K.; Gibson, R.A.; Cook-Johnson, R.J.; Cleland, L.G.; James, M.J. Elongase reactions as control points in long-chain polyunsaturated fatty acid synthesis. PLoS ONE 2011, 6, e29662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosell, M.S.; Lloyd-Wright, Z.; Appleby, P.N.; Sanders, T.A.B.; Allen, N.E.; Key, T.J. Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men. Am. J. Clin. Nutr. 2005, 82, 327–334. [Google Scholar] [CrossRef]
- Mann, N.; Pirotta, Y.; O’Connell, S.; Li, D.; Kelly, F.; Sinclair, A. Fatty acid composition of habitual omnivore and vegetarian diets. Lipids 2006, 41, 637–646. [Google Scholar] [CrossRef]
- Welch, A.A.; Shakya-Shrestha, S.; Lentjes, M.A.H.; Wareham, N.J.; Khaw, K.T. Dietary intake and status of n-3 polyunsaturated fatty acids in a population of fish-eating and non-fish-eating meat-eaters, vegetarians, and vegans and the product-precursor ratio [corrected] of alpha-linolenic acid to long-chain n-3 polyunsaturated fatty acids: Results from the EPIC-Norfolk cohort. Am. J. Clin. Nutr. 2010, 92, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.P.; Nakamura, M.T.; Clarke, S.D. Cloning, expression, and nutritional regulation of the mammalian Δ-6 desaturase. J. Biol. Chem. 1999, 274, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Leonard, A.E.; Kelder, B.; Bobik, E.G.; Chuang, L.T.; Lewis, C.J.; Kopchick, J.J.; Mukerji, P.; Huang, Y.S. Identification and expression of mammalian long-chain PUFA elongation enzymes. Lipids 2002, 37, 733–740. [Google Scholar] [CrossRef]
- Igarashi, M.; DeMar, J.C.J.; Ma, K.; Chang, L.; Bell, J.M.; Rapoport, S.I. Docosahexaenoic acid synthesis from alpha-linolenic acid by rat brain is unaffected by dietary n-3 PUFA deprivation. J. Lipid Res. 2007, 48, 1150–1158. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.A.; Yoder, E.; Murphy, S.; Dutton, G.R.; Spector, A.A. Astrocytes, not neurons, produce docosahexaenoic acid (22:6 omega-3) and arachidonic acid (20:4 omega-6). J. Neurochem. 1991, 56, 518–524. [Google Scholar] [CrossRef]
- Igarashi, M.; Ma, K.; Chang, L.; Bell, J.M.; Rapoport, S.I. Dietary n-3 PUFA deprivation for 15 weeks upregulates elongase and desaturase expression in rat liver but not brain. J. Lipid. Res. 2007, 48, 2463–2470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirsch, I.; Deacon, B.J.; Huedo-Medina, T.B.; Scoboria, A.; Moore, T.J.; Johnson, B.T. Initial severity and antidepressant benefits: A meta-analysis of data submitted to the Food and Drug Administration. PLoS Med. 2008, 5, e45. [Google Scholar] [CrossRef] [PubMed]
- Marazziti, D. Understanding the role of serotonin in psychiatric diseases. F1000Research 2017, 6, 180. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Leventhal, R.M.; Khan, S.R.; Brown, W.A. Severity of depression and response to antidepressants and placebo: An analysis of the Food and Drug Administration database. J. Clin. Psychopharmacol. 2002, 22, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Levant, B.; Ozias, M.K.; Davis, P.F.; Winter, M.; Russell, K.L.; Carlson, S.E.; Reed, G.A.; McCarson, K.E. Decreased brain docosahexaenoic acid content produces neurobiological effects associated with depression: Interactions with reproductive status in female rats. Psychoneuroendocrinology 2008, 33, 1279–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papakostas, G.I.; Fan, H.; Tedeschini, E. Severe and anxious depression: Combining definitions of clini-cal sub-types to identify patients differentiallyresponsive to selective serotonin reuptake inhibitors. Eur. Neuropsychopharmacol. 2011, 22, 347–355. [Google Scholar] [CrossRef]
- Vancassel, S.; Leman, S.; Hanonick, L.; Denis, S.; Roger, J.; Nollet, M.; Bodard, S.; Kousignian, I.; Belzung, C.; Chalon, S. n-3 polyunsaturated fatty acid supplementation reverses stress-induced modifications on brain monoamine levels in mice. J. Lipid. Res. 2008, 49, 340–348. [Google Scholar] [CrossRef] [Green Version]
- Vines, A.; Delattre, A.M.; Lima, M.M.S.; Rodrigues, L.S.; Suchecki, D.; Machado, R.B.; Tufik, S.; Pereira, S.I.R.; Zanata, S.M.; Ferraz, A.C. The role of 5-HT(1)A receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: A possible antidepressant mechanism. Neuropharmacology 2012, 62, 184–191. [Google Scholar] [CrossRef]
- Freeman, M.P.; Hibbeln, J.R.; Wisner, K.L.; Davis, J.M.; Mischoulon, D.; Peet, M.; Keck, P.E.J.; Marangell, L.B.; Richardson, A.J.; Lake, J.; et al. Omega-3 fatty acids: Evidence basis for treatment and future research in psychiatry. J. Clin. Psychiatry 2006, 67, 1954–1967. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.Y.; Su, K.P. A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids. J. Clin. Psychiatry 2007, 68, 1056–1061. [Google Scholar] [CrossRef]
- Delion, S.; Chalon, S.; Guilloteau, D.; Besnard, J.C.; Durand, G. alpha-Linolenic acid dietary deficiency alters age-related changes of dopaminergic and serotoninergic neurotransmission in the rat frontal cortex. J. Neurochem. 1996, 66, 1582–1591. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Fukumoto, Y.; Harada, E. Influence of a dietary n-3 fatty acid deficiency on the cerebral catecholamine contents, EEG and learning ability in rat. Behav. Brain Res. 2002, 131, 193–203. [Google Scholar] [CrossRef]
- Mathieu, G.; Denis, S.; Langelier, B.; Denis, I.; Lavialle, M.; Vancassel, S. DHA enhances the noradrenaline release by SH-SY5Y cells. Neurochem. Int. 2010, 56, 94–100. [Google Scholar] [PubMed]
- Bowen, R.A.R.; Clandinin, M.T. Dietary low linolenic acid compared with docosahexaenoic acid alter synaptic plasma membrane phospholipid fatty acid composition and sodium--potassium ATPase kinetics in developing rats. J. Neurochem. 2002, 83, 764–774. [Google Scholar] [CrossRef] [Green Version]
- Storey, J.D.; Robertson-Beattie, J.E.; Reid, I.C.; Mitchell, S.N.; Balfour, D.J.K. Behavioural and neurochemical responses evoked by repeated exposure to an elevated open platform. Behav. Brain Res. 2006, 166, 220–229. [Google Scholar] [CrossRef]
- Harauma, A.; Moriguchi, T. Dietary n-3 fatty acid deficiency in mice enhances anxiety induced by chronic mild stress. Lipids 2011, 46, 409–416. [Google Scholar] [CrossRef]
- DeMar, J.C.J.; Ma, K.; Bell, J.M.; Igarashi, M.; Greenstein, D.; Rapoport, S.I. One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. J. Lipid Res. 2006, 47, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Leonard, B.E.; Horrobin, D.F. Dietary ethyl-eicosapentaenoic acid but not soybean oil reverses central interleukin-1-induced changes in behavior, corticosterone and immune response in rats. Stress 2004, 7, 43–54. [Google Scholar] [CrossRef]
- Farooqui, A.A.; Horrocks, L.A.; Farooqui, T. Modulation of inflammation in brain: A matter of fat. J. Neurochem. 2007, 101, 577–599. [Google Scholar] [CrossRef] [PubMed]
- Bazan, N.G. Neuroprotectin D1 (NPD1): A DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 2005, 15, 159–166. [Google Scholar] [CrossRef]
- Lee, J.Y.; Plakidas, A.; Lee, W.H.; Heikkinen, A.; Chanmugam, P.; Bray, G.; Hwang, D.H. Differential modulation of Toll-like receptors by fatty acids: Preferential inhibition by n-3 polyunsaturated fatty acids. J. Lipid Res. 2003, 44, 479–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brites, D.; Fernandes, A. Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation. Front. Cell. Neurosci. 2015, 9, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, L.J.; Girgis, C.; Gupta, R. Depression and related disorders during the female reproductive cycle. Womens Health (Lond.) 2009, 5, 577–587. [Google Scholar] [CrossRef]
- Maki, P.M.; Freeman, E.W.; Greendale, G.A.; Henderson, V.W.; Newhouse, P.A.; Schmidt, P.J.; Scott, N.F.; Shively, C.A.; Soares, C.N. Summary of the National Institute on Aging-sponsored conference on depressive symptoms and cognitive complaints in the menopausal transition. Menopause 2010, 17, 815–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciappolino, V.; Mazzocchi, A.; Enrico, P.; Syrén, M.L.; Delvecchio, G.; Agostoni, C.; Brambilla, P. N-3 Polyunsatured Fatty Acids in Menopausal Transition: A Systematic Review of Depressive and Cognitive Disorders with Accompanying Vasomotor Symptoms. Int. J. Mol. Sci. 2018, 19, 1849. [Google Scholar] [CrossRef] [Green Version]
Fatty Acids (g/100 mL) | Placebo | Perilla Oil |
---|---|---|
PLA (C16:0) | 9.45 ± 0.05 | 6.55 ± 0.05 |
PAL (C16:1, ω-9) | 0.20 ± 0.0 | 0.20 ± 0.00 |
STA (C18:0) | 2.95 ± 0.07 | 1.60 ± 0.10 |
OLA (C16:0, ω-9) | 39.6 ± 0.07 | 27.15 ± 0.25 |
LLA (C18:2, ω-6) | 42.0 ± 0.05 | 14.0 ± 0.75 |
LNA (C18:3, ω-3) | 5.45 ± 0.05 | 50.4 ± 0.55 |
Placebo (n = 37) | Perilla Oil (n = 38) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Median | Min | Max | Mean | Median | Min | Max | p Value | |
Sex (male/female) | 16/21 | 16/22 | |||||||
Age (years) | 47.8 | 48.0 | 30 | 65 | 48.9 | 49.0 | 31 | 78 | 0.963 |
Height (cm) | 161.3 | 162.5 | 146.6 | 175.5 | 161.0 | 159.6 | 137.0 | 174.3 | 0.727 |
Body Weight (kg) | 61.7 | 63.3 | 42.3 | 91.2 | 61.3 | 59.3 | 40.2 | 96.0 | 0.875 |
BMI (kg/m2) | 23.6 | 23.1 | 16.1 | 33.4 | 23.5 | 23.1 | 16.2 | 33.4 | 0.940 |
BC (cm) | 82.1 | 83.5 | 63.0 | 104.0 | 83.7 | 83.3 | 60.0 | 108.0 | 0.526 |
Body fat (%) | 28.4 | 26.9 | 11.0 | 48.2 | 29.8 | 30.7 | 11.4 | 46.4 | 0.347 |
SW (kg) | 57.3 | 57.9 | 47.3 | 67.8 | 57.2 | 56.1 | 41.3 | 66.8 | 0.754 |
Blood Pressure | |||||||||
SBP (mmHg) | 123.8 | 127.0 | 90.0 | 159.0 | 124.2 | 125.0 | 98.0 | 160.0 | 0.790 |
DBP (mmHg) | 76.2 | 78.0 | 55.0 | 98.0 | 76.1 | 77.5 | 58.0 | 94.0 | 0.583 |
Emotional index | |||||||||
SDS score | 35.1 | 34.0 | 23.0 | 56.0 | 36.4 | 36.5 | 22.0 | 54.0 | 0.373 |
Apathy score | 12.4 | 12.0 | 0.0 | 25.0 | 14.6 | 15.0 | 3.0 | 26.0 | 0.205 |
Blood biochemistry | |||||||||
GOT (U/L) | 21.8 | 21.0 | 14.0 | 69.0 | 22.0 | 19.0 | 15.0 | 48.0 | 0.821 |
GPT (U/L) | 21.9 | 19.5 | 10.0 | 101.0 | 22.3 | 16.0 | 9.0 | 83.0 | 0.820 |
γ-GT (IU/L) | 33.0 | 25.0 | 11.0 | 331.0 | 39.7 | 25.0 | 13.0 | 189.0 | 0.808 |
ALB (g/dL) | 4.6 | 4.6 | 4.0 | 5.3 | 4.6 | 4.5 | 4.2 | 5.3 | 0.995 |
TC (mg/dL) | 210.7 | 210.5 | 90.0 | 397.0 | 217.9 | 216.0 | 163.0 | 285.0 | 0.700 |
TG (mg/dL) | 96.4 | 85.0 | 35.0 | 277.0 | 101.1 | 88.0 | 38 | 268.0 | 0.312 |
BUN (mg/dL) | 12.7 | 12.8 | 6.8 | 19.7 | 12.8 | 12.7 | 7.0 | 24.9 | 0.740 |
CRE (mg/dL) | 0.8 | 0.7 | 0.5 | 1.1 | 0.7 | 0.7 | 0.6 | 1.3 | 0.905 |
BS (mg/dL) | 94.5 | 94.5 | 76.0 | 145.0 | 95.7 | 92.0 | 79.0 | 161.0 | 0.667 |
HDL-C (mg/dL) | 65.7 | 64.0 | 27.2 | 108.4 | 68.4 | 63.2 | 44.4 | 112.8 | 0.261 |
LDL-C (mg/dL) | 130.4 | 127.9 | 19.9 | 213.0 | 134.2 | 130.0 | 84.0 | 194.0 | 0.305 |
HbA1c (NGSP) (%) | 5.7 | 5.7 | 5.0 | 9.1 | 5.8 | 5.7 | 5.1 | 8.0 | 0.612 |
NE (pg/100 μL) | 60.9 | 57.0 | 24.6 | 120.0 | 63.2 | 55.2 | 30.8 | 139.0 | 0.713 |
Epi (pg/100 μL) | 4.7 | 3.7 | 1.5 | 11.8 | 5.4 | 4.3 | 0.8 | 20.2 | 0.596 |
5-HT (pg/100 μL) | 28,839 | 24,559 | 8355 | 75,752 | 29,652 | 25,242 | 10,524 | 99,019 | 0.949 |
Placebo (n = 34) | Perilla Oil (n = 31) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Median | Min | Max | Mean | Median | Min | Max | p Value | |
Sex (male/female) | 14/20 | 12/19 | |||||||
Age (years) | 49.0 | 49.2 | 31 | 66 | 50.6 | 50.0 | 32 | 79 | 0.534 |
Height (cm) | 161.8 | 162.9 | 146.7 | 175.5 | 160.0 | 160.0 | 136.9 | 174.5 | 0.308 |
Body Weight (kg) | 62.5 | 62.1 | 43.2 | 93.4 | 61.1 | 59.1 | 40.9 | 96.5 | 0.657 |
BMI (kg/m2) | 23.8 | 22.9 | 17.1 | 34.1 | 23.8 | 23.8 | 17.3 | 32.8 | 0.993 |
BC (cm) | 83.6 | 83.9 | 66.0 | 102.0 | 84.5 | 83.6 | 66.3 | 109.7 | 0.741 |
Body fat (%) | 28.4 | 28.5 | 17.1 | 48.1 | 29.3 | 30.7 | 9.5 | 42.9 | 0.659 |
SW (kg) | 57.8 | 58.5 | 47.2 | 67.5 | 56.6 | 56.0 | 41.3 | 66.8 | 0.334 |
Blood Pressure | |||||||||
SBP (mmHg) | 121.5 | 126.0 | 93.0 | 146.0 | 120.0 | 123.0 | 92.0 | 151.0 | 0.673 |
DBP (mmHg) | 74.6 | 75.5 | 54.0 | 90.0 | 73.7 | 76.0 | 54.0 | 88.0 | 0.729 |
Emotional index | |||||||||
SDS score | 37.9 | 36.0 | 29.0 | 55.0 | 37.4 | 36.0 | 20.0 | 61.0 | 0.805 |
Apathy score | 13.9 | 13.5 | 0.0 | 26.0 | 12.8 | 16.0 | 0.0 | 21.0 | 0.496 |
Blood biochemistry | |||||||||
GOT (U/L) | 22.3 | 21.0 | 14.0 | 55.0 | 23.5 | 21.0 | 14.0 | 52.0 | 0.529 |
GPT (U/L) | 20.7 | 17.5 | 10.0 | 62.0 | 20.0 | 16.0 | 7.0 | 66.0 | 0.814 |
γ-GT (IU/L) | 32.8 | 23.0 | 8.0 | 250.0 | 40.6 | 23.0 | 13.0 | 314.0 | 0.531 |
ALB (g/dL) | 4.5 | 4.6 | 3.2 | 5.3 | 4.6 | 4.6 | 4.2 | 5.0 | 0.746 |
TC (mg/dL) | 204.0 | 201.0 | 143.0 | 282.0 | 209.5 | 206.0 | 163.0 | 305.0 | 0.496 |
TG (mg/dL) | 117.8 | 79.5 | 41.0 | 713.0 | 99.4 | 89.0 | 38.0 | 307.0 | 0.435 |
BUN (mg/dL) | 12.6 | 13.0 | 5.5 | 17.6 | 13.7 | 13.4 | 8.2 | 26.5 | 0.195 |
CRE (mg/dL) | 0.7 | 0.7 | 0.4 | 1.1 | 0.7 | 0.7 | 0.5 | 1.4 | 0.821 |
BS (mg/dL) | 93.3 | 93.5 | 71.0 | 123.0 | 93.6 | 92.0 | 82.0 | 119.0 | 0.900 |
HDL-C (mg/dL) | 63.5 | 59.2 | 41.6 | 110.9 | 66.4 | 64.5 | 34.7 | 111.2 | 0.515 |
LDL-C (mg/dL) | 123.2 | 125.5 | 73.0 | 177.0 | 128.8 | 127.0 | 87.0 | 204.0 | 0.387 |
HbA1c (NGSP) (%) | 5.6 | 5.5 | 4.2 | 6.6 | 5.7 | 5.7 | 4.9 | 6.6 | 0.436 |
NE (pg/100 μL) | 42.4 | 39.3 | 12.1 | 100.1 | 49.3 | 47.3 | 20.1 | 98.9 | 0.142 |
Epi (pg/100 μL) | 4.7 | 4.8 | 1.3 | 9.8 | 5.2 | 4.1 | 1.5 | 18.0 | 0.494 |
5-HT (pg/100 μL) | 22,363 | 18,460 | 4697 | 58,833 | 21620 | 20,071 | 4066 | 62,820 | 0.812 |
Baseline | 12-Months | |||
---|---|---|---|---|
(μg/mg Protein) | Placebo n = 37 | Perilla Oiln = 38 | Placebo n = 34 | Perilla Oil n = 31 |
PLA | 47.8 ± 0.7 | 49.0 ± 0.8 | 33.0 ± 0.5 | 32.9 ± 0.7 |
STA | 41.2 ± 0.7 | 41.5 ± 0.7 | 27.8 ± 0.5 | 28.0 ± 0.8 |
OLA | 32.0 ± 0.5 | 32.9 ± 0.6 | 25.8 ± 0.6 | 25.6 ± 0.5 |
LLA | 26.4 ± 0.5 | 26.5 ± 0.7 | 24.0 ± 0.6 | 23.4 ± 0.6 |
LNA | 0.39 ± 0.02 | 0.41 ± 0.03 | 0.42 ± 0.03 | 0.67 ± 0.05* |
AA | 30.3 ± 0.6 | 30.8 ± 0.5 | 23.9 ± 0.7 | 23.2 ± 0.6 |
EPA | 2.8 ± 0.2 | 2.9 ± 0.2 | 2.2 ± 0.2 | 2.4 ± 0.1 |
DPA | 4.9 ± 0.1 | 4.8 ± 0.1 | 3.1 ± 0.1 | 3.2 ± 0.1 |
C24:0 | 7.4 ± 0.3 | 7.6 ± 0.2 | 9.7 ± 0.2 | 9.6 ± 0.2 |
DHA | 16.1 ± 0.4 | 16.3 ± 0.4 | 15.2 ± 0.6 | 15.0 ± 0.5 |
C24:1 | 7.3 ± 0.2 | 7.7 ± 0.2 | 7.4 ± 0.2 | 7.1 ± 0.2 |
Total | 217.1 ± 3.4 | 220.9 ± 3.4 | 173.4 ± 3.1 | 172.0 ± 3.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashimoto, M.; Matsuzaki, K.; Kato, S.; Hossain, S.; Ohno, M.; Shido, O. Twelve-Month Studies on Perilla Oil Intake in Japanese Adults—Possible Supplement for Mental Health. Foods 2020, 9, 530. https://doi.org/10.3390/foods9040530
Hashimoto M, Matsuzaki K, Kato S, Hossain S, Ohno M, Shido O. Twelve-Month Studies on Perilla Oil Intake in Japanese Adults—Possible Supplement for Mental Health. Foods. 2020; 9(4):530. https://doi.org/10.3390/foods9040530
Chicago/Turabian StyleHashimoto, Michio, Kentaro Matsuzaki, Setsushi Kato, Shahdat Hossain, Miho Ohno, and Osamu Shido. 2020. "Twelve-Month Studies on Perilla Oil Intake in Japanese Adults—Possible Supplement for Mental Health" Foods 9, no. 4: 530. https://doi.org/10.3390/foods9040530
APA StyleHashimoto, M., Matsuzaki, K., Kato, S., Hossain, S., Ohno, M., & Shido, O. (2020). Twelve-Month Studies on Perilla Oil Intake in Japanese Adults—Possible Supplement for Mental Health. Foods, 9(4), 530. https://doi.org/10.3390/foods9040530