Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Management and Meat Sampling
2.2. Meat Physicochemical Analysis
2.2.1. Chemical Composition
2.2.2. Meat Colour Evaluation
2.2.3. Intramuscular Fatty Acids Analysis
2.2.4. Texture Analysis
2.3. Consumer Panel Evaluation
2.4. Mid-Infrared Spectra Measurements and Spectral Acquisition
2.5. Selection of Optimal Wavenumber Region and Spectral Pre-Treatment Method
2.6. Data processing and Calibration Models
2.6.1. Regression Model
2.6.2. Validation Model
2.7. Multivariate Analysis
2.7.1. Pearson’s (r) coefficients of correlation
2.7.2. Principal Component Analysis (PCA)
2.7.3. Canonical Discriminant Analysis
3. Results
3.1. Physicochemical and Sensory Description of Longissimus Thoracis Et Lumborum Muscle of Foal Meat
3.2. Calibration and Validation Models to Predict the Chemical Composition and Quality Parameters of Foal Meat
3.3. Principal Component and Discriminant Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karoui, R.; Downey, G.; Blecker, C. Mid-Infrared Spectroscopy Coupled with Chemometrics: A Tool for the Analysis of Intact Food Systems and the Exploration of Their Molecular Structure-Quality Relationships-A Review. Chem. Rev. 2010, 10, 6144–6168. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, G.A.; de Castilhos, F.; Renard, C.M.G.C.; Bureau, S. Comparison of NIR and MIR spectroscopic methods for determination of individual sugars, organic acids and carotenoids in passion fruit. Food Res. Int. 2014, 60, 154–162. [Google Scholar] [CrossRef]
- Lozano, M.; Rodríguez-Ulibarri, P.; Echeverría, J.C.; Beruete, M.; Sorolla, M.; Beriain, M.J. Mid-Infrared Spectroscopy (MIR) for Simultaneous Determination of Fat and Protein Content in Meat of Several Animal Species. Food Anal. Method. 2017, 10, 3462–3470. [Google Scholar] [CrossRef] [Green Version]
- Yancey, J.W.S.; Applea, J.K.; Meullenetb, F.F.; Sawyer, J.T. Consumer responses for tenderness and overall impression can be predicted by visible and near-infrared spectroscopy, Meullenet–Owens razor shear, and Warner–Bratzler shear force. Meat Sci. 2010, 85, 487–492. [Google Scholar] [CrossRef]
- Ripoll, G.; Albertí, P.; Panea, B.; Olleta, J.L.; Sañudo, C. Near-infrared reflectance spectroscopy for predicting chemical, instrumental and sensory quality of beef. Meat Sci. 2008, 80, 697–702. [Google Scholar] [CrossRef]
- Belaunzaran, X.; Bessa, R.J.; Lavín, P.; Mantecón, A.R.; Kramer, J.K.; Aldai, N. Horse-meat for human consumption—Current research and future opportunities. Meat Sci. 2015, 108, 74–81. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Crecente, S.; Franco, D.; Sarriés, M.V.; Gómez, M. The effect of livestock production system and concentrate level on carcass traits and meat quality of foals slaughtered at 18 months of age. Animal 2014, 8, 494–503. [Google Scholar] [CrossRef] [Green Version]
- Franco, D.; Lorenzo, J.M. Effect of muscle and intensity of finishing diet on meat quality of foals slaughtered at 15 months. Meat Sci. 2014, 96, 327–334. [Google Scholar] [CrossRef]
- Sarriés, M.V.; Beriain, M.J. Colour and texture characteristics in meat of male and female foals. Meat Sci. 2006, 74, 738–745. [Google Scholar] [CrossRef]
- Ruiz, M.; Sarriés, M.V.; Beriain, M.J.; Crecente, S.; Domínguez, R.; Lorenzo, J.M. Relationship between carcass traits, prime cuts and carcass grading from foals slaughtered at the age of 13 and 26 months and supplemented with standard and linseed-rich feed. Animal 2017, 12, 1084–1092. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Crecente, S.; Ruiz, M.; Sarriés, M.V.; Lorenzo, J.M. Effect of linseed supplementation and slaughter age on meat quality of grazing cross-bred Galician x Burguete foals. J. Sci. Food Agr. 2018, 98, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, M.; Kopp, J. Dosage du collagène dans les tissus conjonctifs, la viande et les produits carnés. Viandes Produits Carnés 1986, 7, 263–266. [Google Scholar]
- The American Meat Science Association (AMSA). Meat color measurement guidelines. In American Meat Science Association; The American Meat Science Association (AMSA): Champaign, IL, USA, 2012. [Google Scholar]
- Karamucki, T.; Jakubowska, M.; Rybarczyk, A.; Gardzielewska, J. The influence of myoglobin on the colour of minced pork loin. Meat Sci. 2013, 94, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Commission Internationale de l’Eclairage. Colorimetry—Part 4: CIE 1976 L*a*b* Colour Spaces; Publication CIE: Vienna, Austria, 2008. [Google Scholar]
- Mendizabal, J.; Purroy, A.; Indurain, G.; Insausti, K. Medida del grado de veteado de la carne mediante análisis de imagen. In Estandarización de las Metodologías para Evaluar la Calidad del Producto (Animal Vivo, Canal, Carne y Grasa) en los Ruminates; MEC-INIA Series Ganaderas: Madrid, Spain, 2005; Volume 3. [Google Scholar]
- Beriain, M.J.; Sánchez, M.; Carr, T.R.A. Comparison of consumer sensory acceptance, purchase intention, and willingness to pay for high quality United States and Spanish beef under different information scenarios. J. Anim. Sci. 2014, 87, 3392–3402. [Google Scholar] [CrossRef]
- The American Meat Science Association (AMSA). Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat. In Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat. American Meat Science Association, 2nd ed.; Version 1.0; The American Meat Science Association (AMSA): Champaign, IL, USA, 2015. [Google Scholar]
- Macfie, H.J.; Bratchell, N.; Greenhoff, K.; Vallis, L.V. Designs to Balance the Effect of Order of Presentation and First-Order Carry-Over Effects in Hall Tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- Martens, H.; Naes, T. Multivariate Calibration; Wiley: Chichester, UK, 1989. [Google Scholar]
- Jović, O.; Smolić, T.; Jurišić, Z.; Meić, Z.; Hrenara, T. Chemometric Analysis of Croatian Extra Virgin Olive Oils from Central Dalmatia Region. Croat. Chem. Acta 2013, 86, 335–344. [Google Scholar] [CrossRef]
- Lucarini, M.; Durazzo, A.; Sánchez del Pulgar, J.; Gabrielli, P.; Lombardi-Boccia, G. Determination of Fatty Acid Content in Meat and Meat products: The FTIR-ATR approach. Food Chem. 2018, 223–230. [Google Scholar] [CrossRef]
- Vlachos, N.; Skopelitis, Y.; Psaroudaki, M.; Konstantinidou, K.; Chatzilazarou, A.; Tegou, E. Applications of Fourier transform-infrared spectroscopy to edible oils. Anal. Chim. Acta 2006, 573, 459–465. [Google Scholar] [CrossRef]
- Rohman, A.; Sismindari, E.Y.; Che Man, Y.B. Analysis of pork adulteration in beef meatball using Fourier transform infrared (FTIR) spectroscopy. Meat Sci. 2011, 88, 91–95. [Google Scholar] [CrossRef]
- Oliván, M.; de La Roza, B.; Mocha, M.; Martínez, M.J. Prediction of physico-chemical and texture characteristics of beef by near infrared transmittance spectroscopy. In Proceedings of the 10th International Conference on Near Infrared Spectroscopy, Kyongju, Korea, 10–15 June 2001; pp. 197–202. [Google Scholar]
- Lanza, E. Determination of moisture, protein, fat and calories in raw pork and beef by near infrared spectroscopy. J. Food Sci. 1983, 48, pp–471. [Google Scholar] [CrossRef]
- Shi, H.T.; Lei, Y.G.; Prates, L.L.; Yu, P.Q. Evaluation of near-infrared (NIR) and Fourier transform mid-infrared (ATRFT/MIR) spectroscopy techniques combined with chemometrics for the determination of crude protein and intestinal protein digestibility of wheat. Food Chem. 2019, 272, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Murray, I.; Scaife, J.R.; Paterson, R. Study of dissected lamb muscles by visible and near infrared reflectance spectroscopy for composition assessment. Anim. Sci. 2000, 70, 417–423. [Google Scholar] [CrossRef]
- Weeranantanaphan, J.; Downey, G.; Allen, P.; Sun, D.-W. A review of near infrared spectroscopy in muscle food analysis: 2005–2010. J. Near Infrared Spectrosc. 2011, 19, 61–104. [Google Scholar] [CrossRef]
- Dilzer, A.; Park, Y. Implication of Conjugated Linoleic Acid (CLA) in Human Health. Crit. Rev. Food Sci. Nutr. 2012, 52, 488–513. [Google Scholar] [CrossRef] [PubMed]
- Geesink, G.H.; Schreutelkamp, F.H.; Frankhuizen, R.; Vedder, H.W.; Faber, N.M.; Kranen, R.W.; Gerritzen, M.A. Prediction of pork quality attributes from near infrared reflectance spectra. Meat Sci. 2003, 65, 661–668. [Google Scholar] [CrossRef]
- Andrés, S.; Murray, I.; Navajas, E.A.; Fisher, A.V.; Lambe, N.R.; Bünger, L. Prediction of sensory characteristics of lamb meat samples by near infrared reflectance spectroscopy. Meat Sci. 2007, 76, 509–516. [Google Scholar] [CrossRef]
- Hell, J.; Prückler, M.; Danner, L.; Henniges, U.; Apprich, S.; Rosenau, T.; Kneifel, W.; Bohmdorfer, S. A comparison between near-infrared (NIR) and mid-infrared (ATR-FTIR) spectroscopy for the multivariate determination of compositional properties in wheat bran samples. Food Control 2016, 60, 365–369. [Google Scholar] [CrossRef]
- Xing, J.; Ngadi, M.; Gunenc, A.; Prasher, S.; Gariepy, C. Use of visible spectroscopy for quality classification of intact pork meat. J. Food Eng. 2007, 82, 135–141. [Google Scholar] [CrossRef]
- Juárez, M.; Alcalde, M.J.; Horcada, A.; Molina, A. Southern Spain lamb types discrimination by using visible spectroscopy and basic physicochemical traits. Meat Sci. 2008, 80, 1249–1253. [Google Scholar] [CrossRef]
Slaughter Age | Finishing Diet | |||||||
---|---|---|---|---|---|---|---|---|
13M | CV% | 26M | CV% | SC | CV% | LC | CV% | |
Chemical composition | ||||||||
Moisture (%) | 74.5 ± 0.15 | 0.2 | 72.6 ± 0.28 | 0.4 | 73.9 ± 0.27 | 0.4 | 72.1 ± 0.33 | 0.5 |
Protein (%) | 22.5 ± 0.19 | 0.8 | 22.7 ± 0.19 | 0.8 | 22.6 ± 0.18 | 0.8 | 23.2 ± 0.21 | 0.9 |
Ash (%) | 1.26 ± 0.02 | 0.0 | 1.38 ± 0.03 | 2.4 | 1.30 ± 0.03 | 2.3 | 1.17 ± 0.03 | 2.4 |
Total lipids content (%) | 0.37 ± 0.08 | 14.0 | 1.82 ± 0.16 | 9.3 | 0.74 ± 0.22 | 18.3 | 1.61 ± 0.14 | 12.1 |
Total collagen (g/100 g meat) | 0.36 ± 0.04 | 11.1 | 0.44 ± 0.05 | 11.4 | 0.40 ± 0.01 | 2.5 | 0.40 ± 0.11 | 27.5 |
Soluble collagen (%TCa) | 4.11 ± 0.58 | 14.1 | 2.39 ± 0.63 | 26.4 | 3.40 ± 0.87 | 25.6 | 3.11 ± 0.87 | 28.0 |
pH | 5.61 ± 0.02 | 0.4 | 5.66 ± 0.02 | 0.4 | 5.56 ± 0.02 | 0.4 | 5.58 ± 0.02 | 0.4 |
Water Holding Capacity | 23.3 ± 0.61 | 2.8 | 22.7 ± 0.44 | 1.9 | 20.2 ± 0.41 | 1.8 | 22.7 ± 0.60 | 2.8 |
Deoxymyoglobin (DMb) (%) | 25.1 ± 5.11 | 20.4 | 22.4 ± 13.44 | 60.0 | 23.2 ± 8.64 | 37.2 | 24.3 ± 7.84 | 32.3 |
Metmyoglobin (MMb) (%) | 16.9 ± 9.63 | 57 | 22.0 ± 5.91 | 26.9 | 18.9 ± 3.23 | 17.1 | 20.0 ± 5.62 | 28.1 |
Oxymyoglobin (OMb) (%) | 58.0 ± 8.14 | 14.0 | 55.7 ± 11.21 | 20.1 | 57.9 ± 7.84 | 13.5 | 55.8 ± 9.69 | 17.4 |
Fatty acids (g/100 g) | ||||||||
Stearic acid | 7.21 ± 0.20 | 2.8 | 5.10 ± 0.19 | 3.7 | 6.12 ± 0.30 | 4.9 | 6.09 ± 0.29 | 4.8 |
Oleic acid | 23.0 ± 1.03 | 4.5 | 30.8 ± 0.88 | 2.9 | 25.5 ± 1.39 | 5.5 | 28.6 ± 1.03 | 3.6 |
Linoleic acid | 18.4 ± 0.85 | 4.6 | 11.9 ± 0.74 | 6.2 | 15.9 ± 1.16 | 7.3 | 14.1 ± 0.88 | 6.2 |
Linolenic acid | 11.1 ± 0.37 | 3.3 | 11.9 ± 0.59 | 5.0 | 11.1 ± 0.53 | 4.8 | 11.8 ± 0.48 | 4.1 |
Arachidonic acid | 1.73 ± 0.12 | 6.9 | 0.99 ± 0.08 | 8.1 | 1.48 ± 0.14 | 9.5 | 1.20 ± 0.11 | 9.2 |
Vaccenic acid | 0.05 ± 0.01 | 20.0 | 0.03 ± 0.00 | 0.00 | 0.04 ± 0.01 | 25.0 | 0.04 ± 0.00 | 0.0 |
Eicosapentaenoic acid (EPA) | 0.97 ± 0.08 | 8.3 | 0.37 ± 0.03 | 8.1 | 0.73 ± 0.09 | 12.3 | 0.58 ± 0.07 | 12.1 |
Docosapentaenoic acid (DPA) | 1.81 ± 0.10 | 5.5 | 0.92 ± 0.07 | 7.6 | 1.48 ± 0.14 | 9.5 | 1.21 ± 0.12 | 9.9 |
Docosahexaenoic acid (DHA) | 0.48 ± 0.03 | 6.3 | 0.21 ± 0.02 | 9.5 | 0.38 ± 0.04 | 10.5 | 0.29 ± 0.03 | 10.3 |
Total n-3 Polyunsaturated fatty acids (PUFAs) | 14.9 ± 0.35 | 2.4 | 13.8 ± 0.60 | 4.3 | 14.2 ± 0.58 | 4.1 | 14.4 ± 0.45 | 3.1 |
Total n-6 Polyunsaturated fatty acids (PUFAs) | 21.1 ± 1.00 | 4.7 | 13.6 ± 0.84 | 6.2 | 18.3 ± 1.35 | 7.4 | 16.1 ± 1.03 | 6.4 |
Quality parameters | ||||||||
Red | 141.6 ± 6.93 | 5.0 | 161.9 ± 9.63 | 6.0 | 150.6 ± 17.89 | 11.9 | 152.9 ± 7.42 | 4.9 |
Green | 85.9 ± 6.73 | 7.8 | 98.7 ± 5.54 | 5.6 | 90.3 ± 9.71 | 10.8 | 94.3 ± 4.15 | 4.4 |
Blue | 99.0 ± 8.88 | 8.8 | 112.9 ± 7.39 | 6.5 | 103.2 ± 11.81 | 11.4 | 108.6 ± 5.43 | 5.0 |
L* (Lightness) | 32.49 ± 2.31 | 7.1 | 28.90 ± 3.25 | 11.3 | 31.82 ± 2.99 | 9.4 | 29.57 ± 3.36 | 11.4 |
a* (Redness) | 17.59 ± 1.32 | 7.5 | 20.35 ± 3.15 | 15.5 | 17.89 ± 1.85 | 10.3 | 20.05 ± 3.17 | 15.8 |
b* (Blue) | 10.01 ± 1.67 | 16.7 | 11.49 ± 3.81 | 33.2 | 9.92 ± 1.83 | 18.5 | 11.58 ± 3.74 | 32.3 |
C (Chroma) | 20.29 ± 1.55 | 7.6 | 23.46 ± 3.51 | 15.0 | 20.52 ± 2.03 | 9.9 | 23.23 ± 4.53 | 19.5 |
h (Hue angle) | 29.56 ± 4.25 | 14.4 | 28.79 ± 4.98 | 17.3 | 28.94 ± 4.72 | 16.3 | 29.41 ± 4.58 | 15.6 |
Warner–Bratzler shear force (WBSF) (Newtons) | 45.88 ± 5.73 | 12.5 | 53.27 ± 5.71 | 10.7 | 52.71 ± 4.99 | 9.5 | 46.44 ± 6.73 | 14.5 |
Tenderness | 5.76 ± 0.64 | 11.1 | 5.03 ± 0.88 | 17.5 | 5.44 ± 0.60 | 11.0 | 5.35 ± 0.55 | 10.3 |
Juiciness | 5.61 ± 0.63 | 11.2 | 5.14 ± 0.85 | 16.5 | 5.45 ± 0.63 | 11.6 | 5.31 ± 0.74 | 13.9 |
Overall appraisal | 5.65 ± 0.45 | 8.0 | 5.36 ± 0.61 | 11.4 | 5.60 ± 0.53 | 9.5 | 5.41 ± 0.69 | 12.8 |
Calibration | Validation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
na | pb | Rc2 (%) c | RMSEC d | RPD | Rv2 (%) e | RMSECV f | RPD g | Treatment | Selected Regions (cm−1) | |
Chemical Composition | ||||||||||
Moisture | 41 | 9 | 93.67 | 0.34 | 3.97 | 81.57 | 0.53 | 2.33 | Max. and min. normalisation | 3278–2918; 1839–1478; 1119–759 |
Protein | 42 | 1 | 30.36 | 0.75 | 1.20 | 22.71 | 0.78 | 1.14 | Max. and min. normalisation | 3998–3637; 1839–1478; 1119–399 |
Ash | 42 | 5 | 97.92 | 0.02 | 6.36 | 40.55 | 0.09 | 1.30 | 2nd derivate | 3278–2918; 2198–1838 |
Total lipids content | 38 | 5 | 26.30 | 0.85 | 1.16 | 65.99 | 0.46 | 1.72 | 2nd derivate | 2559–1838; 1479–1118 |
Total collagen | 40 | 8 | 98.12 | 0.01 | 7.39 | 70.65 | 0.04 | 1.85 | 1st derivate + MSCh | 3638–3277; 1479–1118 |
Soluble collagen | 45 | 1 | 9.78 | 2.67 | 1.05 | 0.615 | 2.72 | 1.00 | MSC | 2198–1838 |
pH | 40 | 1 | 31.19 | 0.07 | 1.21 | 22.39 | 0.07 | 1.14 | Removal of constant slope | 1479–1118 |
Water Holding Capacity (WHC) | 37 | 1 | 29.88 | 1.56 | 1.19 | 20.03 | 1.60 | 1.13 | Removal of constant slope | 759–399 |
Deoxymyoglobin DMb | 46 | 10 | 97.88 | 6.88 | 1.55 | 25.78 | 8.02 | 1.16 | 2nd derivate | 3278–2918; 1839–1118 |
Metmyoglobin (MMb) | 45 | 3 | 35.31 | 5.21 | 1.24 | 21.63 | 5.48 | 1.13 | 1st derivate + MSC | 1839–1478 |
Oxymyoglobin (OMb) | 46 | 3 | 29.23 | 8.27 | 1.19 | 16.25 | 8.58 | 1.09 | MSC | 1839–1118; 759–399 |
Fatty acids | ||||||||||
Stearic acid | 42 | 10 | 97.73 | 0.23 | 6.63 | 61.77 | 0.79 | 1.62 | 1st derivate + SNV | 3638–3277; 2559–2198; 1839–1118 |
Oleic acid | 43 | 10 | 96.70 | 0.28 | 5.51 | 60.07 | 0.83 | 1.59 | 1st derivate + SNV | 3638–3277; 2559–2198; 1839–1118 |
Linoleic acid | 38 | 8 | 88.13 | 1.83 | 2.90 | 55.49 | 3.15 | 1.50 | 1st derivate + SNV | 3638–3277; 1839–1118 |
Linolenic acid | 43 | 7 | 98.47 | 0.32 | 8.07 | 38.36 | 1.82 | 1.27 | 2nd derivate | 3278–2918; 2559–2198; 1119–759 |
Arachidonic acid | 40 | 9 | 97.03 | 0.12 | 5.80 | 77.67 | 0.29 | 2.12 | MSC | 2919–2558; 1119–759 |
Vaccenic acid | 43 | 5 | 93.70 | 0.01 | 3.98 | 67.11 | 0.01 | 1.74 | 1st derivate + SNVi | 2559–2199 |
Docosapentaenoic acid (DPA) | 43 | 10 | 97.03 | 0.12 | 5.80 | 76.39 | 0.29 | 2.06 | 1st derivate + SNV | 3638–3277; 2919–2558; 1839–1118 |
Eicosapentaenoic acid (EPA) | 42 | 10 | 87.47 | 0.13 | 2.83 | 54.64 | 0.22 | 1.50 | None | 3104–2501; 2130–893 |
Docosahexaenoic acid (DHA) | 43 | 3 | 97.03 | 0.12 | 5.80 | 76.39 | 0.03 | 2.06 | 1st derivate + SNV | 3638–3277; 2919–2558; 1839–1118 |
Total n-3 Polyunsaturated fatty acids (PUFAs) | 39 | 4 | 90.73 | 0.58 | 3.29 | 41.19 | 1.37 | 1.30 | 2nd derivate | 3278–2918; 2559–2198 |
Total n-6 Polyunsaturated fatty acids (PUFAs) | 40 | 8 | 94.87 | 1.46 | 4.42 | 73.89 | 2.90 | 1.96 | MSC | 2919–2558; 1119–759 |
Quality parameters | ||||||||||
Red | 42 | 7 | 98.06 | 2.53 | 7.18 | 58.47 | 10.5 | 1.55 | 1st derivate + MSC | 3998–3637; 1119–759 |
Green | 43 | 7 | 91.65 | 3.24 | 3.46 | 70.32 | 5.55 | 1.84 | 1st derivate + MSC | 3998–3637; 2198–1118 |
Blue | 39 | 8 | 96.03 | 2.77 | 5.02 | 73.63 | 6.26 | 1.95 | 1st derivate + MSC | 3998–3637; 2198–1118 |
L* (Lightness) | 46 | 1 | 6.80 | 2.59 | 1.04 | 5.28 | 2.69 | 1.00 | Max. and min. normalisation | 3090–2497; 2300–980 |
a* (Redness) | 46 | 1 | 25.70 | 1.76 | 1.16 | 15.85 | 1.83 | 1.09 | Max. and min. normalisation | 3200–2500; 2300–980 |
b* (Blue) | 46 | 1 | 31.01 | 2.16 | 1.20 | 21.55 | 2.25 | 1.13 | Max. and min. normalisation | 3200–2500; 2300–980 |
C (Chroma) | 46 | 1 | 36.74 | 1.78 | 1.26 | 22.60 | 1.93 | 1.14 | Max. and min. normalisation | 3200–2500; 2300–980 |
h (Hue angle) | 46 | 1 | 11.71 | 4.06 | 1.06 | 4.49 | 4.13 | 1.02 | Max. and min. normalisation | 3200–2500; 2300–980 |
Warner–Bratzler shear force (WBSF) | 40 | 3 | 44.62 | 10.3 | 1.34 | 25.7 | 11.6 | 1.60 | 1st derivate + SNV | 1119–759 |
Tenderness | 46 | 1 | 36.17 | 0.49 | 1.24 | 27.41 | 0.50 | 1.17 | Max. and min. normalisation | 3200–2500 |
Juiciness | 46 | 1 | 18.91 | 0.56 | 1.12 | 8.04 | 0.58 | 1.04 | Max. and min. normalisation | 3200–2500 |
Overall appraisal | 46 | 1 | 29.49 | 0.39 | 1.19 | 23.89 | 0.39 | 1.05 | 1st derivate | 3200–2500 |
Spectral Wavelength | Classify Into | ||
Range 3278–2918 cm−1 | |||
13M | 26M | ||
13-month-old (%) | 63.6 | 36.4 | |
26-month-old (%) | 29.2 | 70.8 | |
SC | LC | ||
Standard Concentrate (%) | 56.5 | 43.5 | |
Linseed Concentrate (%) | 34.8 | 65.2 | |
Range 2919–2558 cm−1 | |||
13M | 26M | ||
13-month-old (%) | 86.4 | 13.6 | |
26-month-old (%) | 37.5 | 62.5 | |
SC | LC | ||
Standard Concentrate (%) | -- | -- | |
Linseed Concentrate (%) | -- | -- | |
Range 2198–1118 cm−1 | |||
13M | 26M | ||
13-month-old (%) | 77.3 | 22.7 | |
26-month-old (%) | 20.8 | 79.2 | |
SC | LC | ||
Standard Concentrate (%) | 78.3 | 21.7 | |
Linseed Concentrate (%) | 34.8 | 65.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz, M.; Beriain, M.J.; Beruete, M.; Insausti, K.; Lorenzo, J.M.; Sarriés, M.V. Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study. Foods 2020, 9, 583. https://doi.org/10.3390/foods9050583
Ruiz M, Beriain MJ, Beruete M, Insausti K, Lorenzo JM, Sarriés MV. Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study. Foods. 2020; 9(5):583. https://doi.org/10.3390/foods9050583
Chicago/Turabian StyleRuiz, Marta, María José Beriain, Miguel Beruete, Kizkitza Insausti, José Manuel Lorenzo, and María Victoria Sarriés. 2020. "Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study" Foods 9, no. 5: 583. https://doi.org/10.3390/foods9050583
APA StyleRuiz, M., Beriain, M. J., Beruete, M., Insausti, K., Lorenzo, J. M., & Sarriés, M. V. (2020). Application of MIR Spectroscopy to the Evaluation of Chemical Composition and Quality Parameters of Foal Meat: A Preliminary Study. Foods, 9(5), 583. https://doi.org/10.3390/foods9050583