Comparison of the Potential Abilities of Three Spectroscopy Methods: Near-Infrared, Mid-Infrared, and Molecular Fluorescence, to Predict Carotenoid, Vitamin and Fatty Acid Contents in Cow Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiments and Cow Diets
2.2. Chemical and Spectroscopy Analyses
2.2.1. Reference Chemical Analyses
2.2.2. Spectroscopic Analyses
- Near-Infrared Spectroscopy Analysis
- 2.
- Mid-Infrared Spectroscopy Analysis
- 3.
- Molecular Fluorescence Spectroscopy Analysis
2.3. Calculations and Statistical Analyses
- NIR spectroscopy (Figure A1A): 400 to 2500 nm and 700 to 2500 nm;
- MIR-ATR spectroscopy (Figure A1B): 4000 to 700 cm−1 (i.e., 2500 to 14,286 nm);
- Front face fluorescence spectroscopy: 470 to 750 nm for carotene, 400 to 600 nm for chlorophyll, 370 to 600 nm for FOP, 490 to 750 nm for lycopene, 340 to 450 nm for tryptophan, 340 to 600 nm for vitamin A, and 400 to 730 nm for vitamin B2. The excitation wavelengths were carotene = 450 nm; chlorophyll = 365 nm; FOP = 350 nm; lycopene = 473 nm, tryptophan = 290 nm, vitamin A = 320 nm; and vitamin B2 = 380 nm;
- Synchronous fluorescence spectroscopy (Figure A1C): 330 to 630 nm. The wavelengths of excitation were between 250 and 550 nm.
3. Results
3.1. Prediction of Carotenoids in Milk
3.2. Prediction of Vitamins in Milk
3.3. Prediction of Fatty Acids in Milk
3.4. Correlations among Milk Compounds
4. Discussion
4.1. Prediction of Carotenoids and Vitamins
4.2. Prediction of Fatty Acids
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Description of the four Experimental Objectives
Appendix B
Appendix C
Components | Calibration Set | Validation Set | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | Min | Max | Mean | SD | n | Min | Max | Mean | SD | |
FA | ||||||||||
C4:0 | 166 | 0.44 | 1.62 | 0.99 | 0.19 | 52 | 0.41 | 1.56 | 0.99 | 0.21 |
C6:0 | 166 | 0.22 | 1.10 | 0.71 | 0.18 | 51 | 0.21 | 1.13 | 0.72 | 0.23 |
C8:0 | 166 | 0.11 | 0.70 | 0.44 | 0.14 | 47 | 0.07 | 0.74 | 0.45 | 0.16 |
C10:0 | 166 | 0.26 | 1.86 | 1.04 | 0.38 | 47 | 0.20 | 1.77 | 1.08 | 0.42 |
C12:0 | 166 | 0.39 | 2.35 | 1.27 | 0.46 | 47 | 0.29 | 2.23 | 1.30 | 0.51 |
C14:0 | 166 | 1.86 | 6.29 | 4.31 | 1.11 | 47 | 1.64 | 6.60 | 4.46 | 1.28 |
C16:0 | 166 | 4.54 | 18.39 | 10.54 | 3.00 | 47 | 5.06 | 17.15 | 10.86 | 3.08 |
C18:0 | 166 | 1.59 | 6.22 | 3.69 | 0.98 | 47 | 2.24 | 6.47 | 3.65 | 0.92 |
trans10-C18:1 | 166 | 0.01 | 0.46 | 0.14 | 0.08 | 47 | 0.04 | 0.42 | 0.14 | 0.08 |
trans11-C18:1 | 166 | 0.19 | 3.83 | 0.99 | 0.81 | 47 | 0.26 | 4.94 | 0.92 | 0.91 |
cis9-C18:1 | 166 | 3.92 | 11.31 | 7.09 | 1.54 | 47 | 4.83 | 11.27 | 7.10 | 1.48 |
trans11cis15-C18:2 | 166 | <0.01 | 1.20 | 0.10 | 0.15 | 46 | <0.01 | 0.97 | 0.08 | 0.14 |
C18:2 n-6 | 166 | 0.21 | 0.87 | 0.45 | 0.13 | 52 | 0.18 | 0.66 | 0.43 | 0.11 |
C18:3 n-3 | 166 | 0.04 | 0.50 | 0.17 | 0.08 | 47 | 0.04 | 0.23 | 0.14 | 0.05 |
cis9trans11-C18:2 | 166 | 0.09 | 1.94 | 0.44 | 0.38 | 47 | 0.09 | 1.78 | 0.40 | 0.37 |
Sum of SFA | 166 | 9.78 | 33.67 | 23.07 | 5.15 | 47 | 11.71 | 35.12 | 23.60 | 5.77 |
Sum of MUFA | 166 | 5.94 | 16.33 | 10.61 | 2.22 | 47 | 6.83 | 16.01 | 10.52 | 2.36 |
Sum of PUFA | 166 | 0.80 | 4.01 | 1.54 | 0.60 | 47 | 0.70 | 4.09 | 1.42 | 0.63 |
Sum of odd and/or branched FA | 166 | 0.66 | 2.22 | 1.36 | 0.39 | 47 | 0.68 | 2.29 | 1.38 | 0.37 |
Sum of trans FA | 166 | 0.60 | 8.57 | 2.74 | 1.84 | 52 | 0.86 | 10.72 | 2.60 | 1.98 |
n-3 FA | 166 | 0.07 | 0.60 | 0.22 | 0.10 | 47 | 0.08 | 0.42 | 0.19 | 0.07 |
n-6 FA | 166 | 0.30 | 0.97 | 0.54 | 0.13 | 51 | 0.31 | 0.80 | 0.52 | 0.11 |
FA | Calibration Set | Validation Set | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Spectral Processing | Spectroscopy Technique 1 | n | Number of Outliers | T | SEC | R2C | SECV | R2CV | n | SEP | R2V | |
C4:0 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 162 | 4 | 3 | 0.14 | 0.39 | 0.14 | 0.35 | 52 | 0.17 | 0.34 | |
SNV and Detrend 1,8,8 | MIR-ATR | 162 | 4 | 2 | 0.13 | 0.41 | 0.18 | 0.01 | 0.22 | 0.005 | ||
None 0,0,1 | Fluorescence (lycopene) | 160 | 6 | 1 | 0.17 | 0.01 | 0.17 | 0.01 | 0.21 | 0.01 | ||
C6:0 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 161 | 5 | 7 | 0.08 | 0.80 | 0.09 | 0.74 | 51 | 0.09 | 0.80 | |
SNV and Detrend 1,8,8 | MIR-ATR | 159 | 7 | 1 | 0.15 | 0.21 | 0.17 | 0.06 | 0.20 | 0.06 | ||
None 0,0,1 | Fluorescence (carotene) | 164 | 2 | 1 | 0.18 | 0.03 | 0.18 | 0.01 | 0.20 | 0.08 | ||
C8:0 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 156 | 10 | 7 | 0.05 | 0.87 | 0.06 | 0.82 | 47 | 0.06 | 0.86 | |
SNV and Detrend 1,8,8 | MIR-ATR | 163 | 3 | 3 | 0.07 | 0.70 | 0.13 | 0.14 | 0.15 | 0.18 | ||
None 2,8,8 | Synchronous fluorescence | 147 | 13 | 6 | 0.09 | 0.63 | 0.10 | 0.53 | 0.11 | 0.52 | ||
C10:0 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 160 | 6 | 6 | 0.15 | 0.84 | 0.17 | 0.79 | 47 | 0.17 | 0.85 | |
SNV and Detrend 1,8,8 | MIR-ATR | 163 | 3 | 4 | 0.18 | 0.76 | 0.34 | 0.19 | 0.44 | 0.11 | ||
Inverse MSC 2,8,8 | Synchronous fluorescence | 147 | 12 | 5 | 0.24 | 0.60 | 0.27 | 0.49 | 0.32 | 0.42 | ||
C12:0 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 161 | 5 | 5 | 0.19 | 0.83 | 0.22 | 0.79 | 47 | 0.22 | 0.82 | |
SNV and Detrend 1,8,8 | MIR-ATR | 162 | 4 | 4 | 0.22 | 0.75 | 0.4 | 0.21 | 0.54 | 0.09 | ||
Inverse MSC 2,8,8 | Synchronous fluorescence | 148 | 11 | 5 | 0.29 | 0.60 | 0.34 | 0.47 | 0.37 | 0.46 | ||
C14:0 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 159 | 7 | 6 | 0.41 | 0.87 | 0.44 | 0.84 | 47 | 0.50 | 0.85 | |
SNV and Detrend 1,8,8 | MIR-ATR | 166 | 0 | 3 | 0.62 | 0.68 | 1.07 | 0.06 | 1.20 | 0.20 | ||
Detrend 1,4,4 | Synchronous fluorescence | 149 | 10 | 7 | 0.64 | 0.69 | 0.79 | 0.53 | 0.91 | 0.49 | ||
C16:0 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 159 | 7 | 4 | 1.27 | 0.81 | 1.38 | 0.78 | 47 | 1.43 | 0.80 | |
SNV and Detrend 1,8,8 | MIR-ATR | 165 | 1 | 3 | 1.72 | 0.67 | 2.85 | 0.09 | 3.05 | 0.16 | ||
SNV 2,8,8 | Synchronous fluorescence | 149 | 11 | 6 | 1.79 | 0.66 | 2.16 | 0.51 | 2.34 | 0.49 | ||
C18:0 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 164 | 2 | 9 | 0.58 | 0.64 | 0.74 | 0.44 | 47 | 0.79 | 0.27 | |
SNV and Detrend 1,8,8 | MIR-ATR | 164 | 2 | 3 | 0.49 | 0.75 | 0.93 | 0.11 | 1.10 | 0.05 | ||
SNV and Detrend 2,8,8 | Synchronous fluorescence | 155 | 11 | 3 | 0.75 | 0.37 | 0.83 | 0.24 | 0.94 | 0.04 | ||
trans10-C18:1 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 157 | 9 | 3 | 0.04 | 0.37 | 0.04 | 0.32 | 47 | 0.06 | 0.38 | |
SNV and Detrend 1,8,8 | MIR-ATR | 154 | 12 | 3 | 0.02 | 0.71 | 0.05 | 0.01 | 0.09 | 0.02 | ||
SNV and Detrend 0,0,1 | Fluorescence (vitamin A) | 131 | 15 | 4 | 0.03 | 0.36 | 0.04 | 0.28 | 0.23 | 0.01 | ||
trans11-C18:1 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 155 | 11 | 10 | 0.20 | 0.92 | 0.24 | 0.88 | 47 | 0.50 | 0.73 | |
SNV and Detrend 1,8,8 | MIR-ATR | 156 | 10 | 3 | 0.27 | 0.70 | 0.54 | 0.17 | 0.87 | 0.17 | ||
Detrend 1,4,4 | Synchronous fluorescence | 141 | 13 | 8 | 0.34 | 0.66 | 0.48 | 0.47 | 1.36 | 0.16 | ||
cis9-C18:1 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 159 | 7 | 10 | 0.70 | 0.79 | 0.93 | 0.63 | 47 | 0.98 | 0.55 | |
SNV and Detrend 1,8,8 | MIR-ATR | 157 | 9 | 1 | 0.18 | 0.21 | 1.37 | 0.02 | 1.44 | 0.05 | ||
Weighted MSC 1,4,4 | Synchronous fluorescence | 150 | 13 | 3 | 1.03 | 0.50 | 1.17 | 0.35 | 1.70 | 0.06 | ||
trans11cis15-C18:2 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 157 | 9 | 3 | 0.05 | 0.43 | 0.05 | 0.41 | 46 | 0.14 | 0.19 | |
SNV and Detrend 1,8,8 | MIR-ATR | 152 | 14 | 2 | 0.04 | 0.48 | 0.06 | 0.13 | 0.14 | 0.13 | ||
Inverse MSC 0,0,1 | Fluorescence (fluorescent oxidation products) | 145 | 13 | 1 | 0.05 | 0.13 | 0.06 | 0.13 | 0.16 | 0.01 | ||
C18:2 n-6 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 159 | 7 | 9 | 0.06 | 0.72 | 0.08 | 0.53 | 52 | 0.09 | 0.45 | |
SNV and Detrend 1,8,8 | MIR-ATR | 162 | 4 | 3 | 0.07 | 0.70 | 0.10 | 0.37 | 0.09 | 0.36 | ||
None 0,0,1 | Fluorescence using carotene | 161 | 5 | 5 | 0.07 | 0.60 | 0.08 | 0.49 | 0.09 | 0.44 | ||
C18:3 n-3 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 164 | 2 | 7 | 0.06 | 0.43 | 0.07 | 0.25 | 47 | 0.05 | 0.26 | |
SNV and Detrend 1,8,8 | MIR-ATR | 162 | 4 | 1 | 0.06 | 0.23 | 0.07 | 0.06 | 0.05 | 0.23 | ||
Detrend 1,4,4 | Synchronous fluorescence | 143 | 14 | 8 | 0.03 | 0.74 | 0.04 | 0.61 | 0.11 | 0.10 | ||
cis9trans11-C18:2 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 149 | 17 | 8 | 0.10 | 0.85 | 0.13 | 0.76 | 47 | 0.21 | 0.71 | |
SNV and Detrend 1,8,8 | MIR-ATR | 155 | 11 | 3 | 0.12 | 0.73 | 0.22 | 0.18 | 0.35 | 0.21 | ||
Detrend 1,4,4 | Synchronous fluorescence | 137 | 15 | 8 | 0.14 | 0.68 | 0.19 | 0.50 | 0.32 | 0.33 | ||
Sum of SFA | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 161 | 5 | 5 | 2.08 | 0.83 | 2.25 | 0.80 | 47 | 2.79 | 0.78 | |
SNV and Detrend 1,8,8 | MIR-ATR | 165 | 1 | 3 | 2.86 | 0.69 | 4.96 | 0.06 | 5.39 | 0.15 | ||
None 0,0,1 | Synchronous fluorescence | 148 | 12 | 8 | 3.38 | 0.58 | 3.84 | 0.48 | 4.15 | 0.50 | ||
Sum of MUFA | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 158 | 8 | 8 | 0.95 | 0.80 | 1.20 | 0.67 | 47 | 1.18 | 0.74 | |
SNV and Detrend 1,8,8 | MIR-ATR | 164 | 2 | 3 | 1.2 | 0.69 | 1.97 | 0.18 | 2.4 | 0.10 | ||
Weighted MSC 2,8,8 | Synchronous fluorescence | 149 | 10 | 5 | 1.42 | 0.56 | 1.60 | 0.45 | 2.50 | 0.11 | ||
Sum of PUFA | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 156 | 10 | 8 | 0.21 | 0.78 | 0.26 | 0.66 | 47 | 0.33 | 0.75 | |
SNV and Detrend 1,8,8 | MIR-ATR | 156 | 10 | 4 | 0.21 | 0.76 | 0.36 | 0.22 | 0.66 | 0.07 | ||
Detrend 1,4,4 | Synchronous fluorescence | 141 | 11 | 8 | 0.24 | 0.63 | 0.34 | 0.33 | 0.60 | 0.21 | ||
Sum of odd and/or branched FA | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 163 | 3 | 9 | 0.16 | 0.82 | 0.19 | 0.75 | 47 | 0.25 | 0.54 | |
SNV and Detrend 1,8,8 | MIR-ATR | 165 | 1 | 2 | 0.28 | 0.48 | 0.34 | 0.23 | 0.29 | 0.29 | ||
Inverse MSC 2,8,8 | Synchronous fluorescence | 149 | 13 | 6 | 0.19 | 0.72 | 0.21 | 0.65 | 0.71 | 0.06 | ||
Sum of trans FA | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 155 | 11 | 10 | 0.38 | 0.95 | 0.49 | 0.92 | 52 | 0.9 | 0.82 | |
SNV and Detrend 1,8,8 | MIR-ATR | 155 | 11 | 1 | 1.19 | 0.23 | 1.30 | 0.09 | 1.89 | 0.09 | ||
None 0,0,1 | Fluorescence (carotene) | 153 | 13 | 2 | 1.13 | 0.23 | 1.21 | 0.22 | 1.89 | 0.07 | ||
n-3 FA | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 161 | 5 | 1 | 0.08 | 0.18 | 0.08 | 0.15 | 47 | 0.07 | 0.01 | |
SNV and Detrend 1,8,8 | MIR-ATR | 162 | 4 | 1 | 0.08 | 0.26 | 0.09 | 0.04 | 0.12 | 0.15 | ||
Standard MSC 1,4,4 | Synchronous fluorescence | 143 | 11 | 4 | 0.05 | 0.63 | 0.06 | 0.48 | 0.06 | 0.31 | ||
n-6 FA | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 160 | 6 | 1 | 0.09 | 0.49 | 0.10 | 0.42 | 51 | 0.09 | 0.44 | |
SNV and Detrend 1,8,8 | MIR-ATR | 160 | 6 | 2 | 0.09 | 0.48 | 0.11 | 0.31 | 0.07 | 0.10 | ||
None 0,0,1 | Fluorescence (carotene) | 162 | 4 | 6 | 0.08 | 0.61 | 0.10 | 0.34 | 0.10 | 0.33 |
Components | Bias | SPEc | ||||
---|---|---|---|---|---|---|
MIR-ATR | NIR | Fluorescence | MIR-ATR | NIR | Fluorescence | |
FA | ||||||
C4:0 | 0.0005 | −0.003 | 0.03 | 0.22 a | 0.17 b | 0.21 a |
C6:0 | 0.004 | −0.003 | 0.04 | 0.20 a | 0.09 b | 0.20 a |
C8:0 | 0.0003 | −0.005 | 0.04 * | 0.15 a | 0.06 b | 0.11 c |
C10:0 | 0.01 | −0.01 | 0.07 | 0.44 a | 0.17 b | 0.32 c |
C12:0 | 0.004 | −0.04 | 0.08 | 0.54 a | 0.22 b | 0.37 c |
C14:0 | 0.03 | 0.02 | 0.55 * | 1.20 a | 0.50 b | 0.91 a |
C16:0 | −0.07 | 0.04 | 0.54 | 3.05 a | 1.43 b | 2.34 a |
C18:0 | −0.12 | −0.23 | 0.07 | 1.10 a | 0.79 b | 0.94 ab |
trans10-C18:1 | 0.02 | 0.02 * | 0.03 | 0.09 a | 0.06 b | 0.23 c |
trans11-C18:1 | 0.11 | −0.008 | 0.42 * | 0.87 a | 0.50 b | 1.36 c |
cis9-C18:1 | −0.002 | −0.04 | 0.02 | 1.44 a | 0.98 b | 1.70 a |
trans11cis15-C18:2 | 0.01 | 0.01 | 0.02 | 0.14 | 0.14 | 0.16 |
C18:2 n-6 | −0.02 | −0.01 | −0.05 | 0.09 | 0.09 | 0.09 |
C18:3 n-3 | −0.02 * | −0.02 * | 0.003 | 0.05 a | 0.05 a | 0.11 b |
cis9trans11-C18:2 | 0.04 | 0.01 | 0.11 * | 0.35 a | 0.21 b | 0.32 a |
Sum of SFA | 0.10 | −0.26 | 0.58 | 5.39 a | 2.79 b | 4.15 a |
Sum of MUFA | −0.09 | −0.08 | −0.11 | 2.40 a | 1.18 b | 2.50 a |
Sum of PUFA | −0.01 | −0.005 | 0.06 | 0.66 a | 0.33 b | 0.60 a |
Sum of odd and/or branched FA | −0.01 | 0.01 | 0.04 | 0.29 a | 0.25 a | 0.71 b |
Sum of trans FA | 0.27 | −0.01 | 0.12 | 1.89 a | 0.90 b | 1.89 a |
n-3 FA | −0.02 * | −0.03 * | −0.002 | 0.07 | 0.07 | 0.06 |
n-6 FA | −0.02 | −0.01 | −0.02 | 0.12 | 0.09 | 0.10 |
C6:0 | C8:0 | C10:0 | C12:0 | C14:0 | C16:0 | trans11-C18:1 | cis9-C18:1 | C18:2 n-6 | C18:3 n-3 | cis9trans11-C18:2 | Sum of SFA | cis13-ßcarotene | cis9-ß-carotene | ß-cryptoxanthin | Lutein | α-tocopherol | γ-tocopherol | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C8:0 | 0.95 | |||||||||||||||||
C10:0 | 0.90 | 0.97 | ||||||||||||||||
C12:0 | 0.86 | 0.94 | 0.99 | |||||||||||||||
C14:0 | 0.86 | 0.93 | 0.95 | 0.96 | ||||||||||||||
C16:0 | 0.80 | 0.81 | 0.83 | 0.86 | ||||||||||||||
cis9-C18:1 | −0.83 | −0.84 | −0.83 | −0.81 | ||||||||||||||
cis9trans11-C18:2 | 0.97 | |||||||||||||||||
Sum of SFA | 0.88 | 0.90 | 0.92 | 0.91 | 0.93 | 0.94 | −0.84 | −0.80 | −0.83 | |||||||||
Sum of MUFA | −0.88 | −0.91 | −0.93 | −0.92 | −0.94 | −0.94 | 0.87 | −0.98 | ||||||||||
Sum of PUFA | 0.91 | 0.90 | −0.85 | |||||||||||||||
n-3 FA | 0.95 | |||||||||||||||||
n-6 FA | 0.90 | |||||||||||||||||
ß-cryptoxanthin | 0.89 | |||||||||||||||||
Lutein | 0.84 | 0.79 | ||||||||||||||||
Zeaxanthin | 0.95 | 0.87 | 0.87 | |||||||||||||||
Sum of carotenoids | 0.81 | 0.84 | 0.85 | |||||||||||||||
Sum of tocopherols | 0.97 | 0.91 |
References
- Graulet, B.; Girard, C.L. B vitamins in cow milk: Their relevance to human health. In Dairy in Human Health and Disease across the Lifespan; Watson, R., Collier, R.J., Preedy, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 211–224. [Google Scholar]
- Haug, A.; Høstmark, A.T.; Harstad, O.M. Bovine milk in human nutrition–a review. Lipids Health Dis. 2007, 6, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauveau-Duriot, B.; Doreau, M.; Nozière, P.; Graulet, B. Simultaneous quantification of carotenoids, retinol, and tocopherols in forages, bovine plasma, and milk: Validation of a novel UPLC method. Anal. Bioanal. Chem. 2010, 397, 777–790. [Google Scholar] [CrossRef] [PubMed]
- Graulet, B. Analysing and improving the level of vitamins in milk. In Improving the Safety and Quality of Milk: Improving Quality in Milk Products; Griffiths, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 229–251. [Google Scholar]
- Ferlay, A.; Bernard, L.; Meynadier, A.; Malpuech-Brugère, C. Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: A review. Biochimie 2017, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.; Fedele, V.; Ferlay, A.; Grolier, P.; Rock, E.; Gruffat, D.; Chilliard, Y. Effects of grass-based diets on the content of micronutrients and fatty acids in bovine and caprine dairy products. In Proceedings of the 20th General Meeting of the European Grassland Federation, Luzern, Switzerland, 21–24 June 2004; pp. 876–886. [Google Scholar]
- Givens, D.I. Milk and meat in our diet: Good or bad for health? Animal 2010, 4, 1941–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlay, A.; Agabriel, C.; Sibra, C.; Martin, B.; Chilliard, Y. Tanker milk variability in fatty acids according to farm feeding and husbandry practices in a French semi-mountain area. Dairy Sci. Technol. 2008, 88, 193–215. [Google Scholar] [CrossRef] [Green Version]
- Graulet, B. Ruminant milk: A source of vitamins in human nutrition. Anim. Front. 2014, 4, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Agabriel, C.; Cornu, A.; Journal, C.; Sibra, C.; Grolier, P.; Martin, B. Tanker milk variability according to farm feeding practices: Vitamins A and E, carotenoids, color, and terpenoids. J. Dairy Sci. 2007, 90, 4884–4896. [Google Scholar] [CrossRef]
- Andueza, D.; Rouel, J.; Chilliard, Y.; Leroux, C.; Ferlay, A. Prediction of the goat milk fatty acids by near infrared reflectance spectroscopy. Eur. J. Lipid Sci. Technol. 2013, 115, 612–620. [Google Scholar] [CrossRef]
- Coppa, M.; Revello-Chion, A.; Giaccone, D.; Ferlay, A.; Tabacco, E.; Borreani, G. Comparison of near and medium infrared spectroscopy to predict fatty acid composition on fresh and thawed milk. Food Chem. 2014, 150, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Fleming, A.; Schenkel, F.S.; Chen, J.; Malchiodi, F.; Bonfatti, V.; Ali, R.A.; Mallard, B.; Corredig, M.; Miglior, F. Prediction of milk fatty acid content with mid-infrared spectroscopy in Canadian dairy cattle using differently distributed model development sets. J. Dairy Sci. 2017, 100, 5073–5081. [Google Scholar] [CrossRef] [Green Version]
- Soyeurt, H.; Dehareng, F.; Gengler, N.; McParland, S.; Wall, E.; Berry, D.P.; Coffey, M.; Dardenne, P. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. J. Dairy Sci. 2011, 94, 1657–1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, A.; Andueza, D.; Rock, E.; Martin, B. Prediction of dry matter, fat, pH, vitamins, minerals, carotenoids, total antioxidant capacity, and color in fresh and freeze-dried cheeses by visible-near-infrared reflectance spectroscopy. J. Agric. Food Chem. 2008, 56, 6801–6808. [Google Scholar] [CrossRef] [PubMed]
- Revilla, I.; Escuredo, O.; Gonzalez-Martin, M.I.; Palacios, C. Fatty acids and fat-soluble vitamins in ewe’s milk predicted by near infrared reflectance spectroscopy. Determination of seasonality. Food Chem. 2017, 214, 468–477. [Google Scholar] [CrossRef]
- Karoui, R.; Mazerolles, G.; Bosset, J.-O.; de Baerdemaeker, J.; Dufour, E. Utilisation of mid-infrared spectroscopy for determination of the geographic origin of Gruyère PDO and L’Etivaz PDO Swiss cheeses. Food Chem. 2007, 105, 847–854. [Google Scholar] [CrossRef]
- Etzion, Y.; Linker, R.; Cogan, U.; Shmulevich, I. Determination of protein concentration in raw milk by mid-infrared Fourier transform infrared/attenuated total reflectance spectroscopy. J. Dairy Sci. 2004, 87, 2779–2788. [Google Scholar] [CrossRef] [Green Version]
- Aernouts, B.; Polshin, E.; Saeys, W.; Lammertyn, J. Mid-infrared spectrometry of milk for dairy metabolomics: A comparison of two sampling techniques and effect of homogenization. Anal. Chim. Acta 2011, 705, 88–97. [Google Scholar] [CrossRef]
- Karoui, R.; Hammami, M.; Rouissi, H.; Blecker, C. Mid infrared and fluorescence spectroscopies coupled with factorial discriminant analysis technique to identify sheep milk from different feeding systems. Food Chem. 2011, 127, 743–748. [Google Scholar] [CrossRef]
- Becker, E.M.; Christensen, J.; Frederiksen, C.S.; Haugaard, V.K. Front-face fluorescence spectroscopy and chemometrics in analysis of yogurt: Rapid analysis of riboflavin. J. Dairy Sci. 2003, 86, 2508–2515. [Google Scholar] [CrossRef] [Green Version]
- Dufour, E.; Lopez, C.; Riaublanc, A.; Mouhous Riou, N. La spectroscopie de fluorescence frontale: Une approche non invasive de la structure et des interactions entre les constituants des aliments. Agoral 1998, 10, 209–215. [Google Scholar]
- Kulmyrzaev, A.; Dufour, E. Determination of lactulose and furosine in milk using front-face fluorescence spectroscopy. Lait 2002, 82, 725–735. [Google Scholar] [CrossRef] [Green Version]
- Sádecká, J.; Tóthová, J. Fluorescence spectroscopy and chemometrics in the food classification-a review. Czech J. Food Sci. 2007, 25, 159–173. [Google Scholar]
- Coppa, M.; Ferlay, A.; Leroux, C.; Jestin, M.; Chilliard, Y.; Martin, B.; Andueza, D. Prediction of milk fatty acid composition by near infrared reflectance spectroscopy. Int. Dairy J. 2010, 20, 182–189. [Google Scholar] [CrossRef]
- Duplessis, M.; Mann, S.; Nydam, D.V.; Girard, C.L.; Pellerin, D.; Overton, T.R. Short communication: Folates and vitamin B12 in colostrum and milk from dairy cows fed different energy levels during the dry period. J. Dairy Sci. 2015, 98, 5454–5459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlay, A.; Doreau, M.; Martin, C.; Chilliard, Y. Effects of incremental amounts of extruded linseed on the milk fatty acid composition of dairy cows receiving hay or corn silage. J. Dairy Sci. 2013, 96, 6577–6595. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). AOAC: Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists, Inc.: Arlington, VA, USA, 1990; Volume 1. [Google Scholar]
- Thyholt, K.; Isaksson, T. Near infrared spectroscopy of dry extracts from high moisture food products on solid support—a review. J. Near Infrared Spectrosc. 1997, 5, 179–193. [Google Scholar] [CrossRef]
- Hammami, M.; Rouissi, H.; Salah, N.; Selmi, H.; Al-Otaibi, M.; Blecker, C.; Karoui, R. Fluorescence spectroscopy coupled with factorial discriminant analysis technique to identify sheep milk from different feeding systems. Food Chem. 2010, 122, 1344–1350. [Google Scholar] [CrossRef]
- Kosumi, D.; Yanagi, K.; Fujii, R.; Hashimoto, H.; Yoshizawa, M. Conjugation length dependence of relaxation kinetics in β-carotene homologs probed by femtosecond Kerr-gate fluorescence spectroscopy. Chem. Phys. Lett. 2006, 425, 66–70. [Google Scholar] [CrossRef]
- Shenk, J.S.; Westerhaus, M. The Application of Near Infrared Reflectance Spectroscopy (NIRS) to Forage Analysis. In Forage Quality, Evaluation and Utilization; Fahey, G.C., Colins, M., Mertens, D.R., Moser, L.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1994; pp. 406–449. ISBN 978-0-89118-119-4. [Google Scholar]
- Andueza, D.; Picard, F.; Martin-Rosset, W.; Aufrère, J. Near-infrared spectroscopy calibrations performed on oven-dried green forages for the prediction of chemical composition and nutritive value of preserved forage for ruminants. Appl. Spectrosc. 2016, 70, 1321–1327. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Guidelines for Quality Management in Soil and Plant Laboratories; FAO soils bulletin; Food and Agricultural Org.: Rome, Italy, 1998. [Google Scholar]
- Fearn, T. Comparing standard deviations. NIR News 1996, 7, 5–6. [Google Scholar] [CrossRef]
- Chen, X.; Wu, J.; Zhou, S.; Yang, Y.; Ni, X.; Yang, J.; Zhu, Z.; Shi, C. Application of near-infrared reflectance spectroscopy to evaluate the lutein and β-carotene in Chinese kale. J. Food Compos. Anal. 2009, 22, 148–153. [Google Scholar] [CrossRef]
- Brenna, O.V.; Berardo, N. Application of Near-Infrared Reflectance Spectroscopy (NIRS) to the Evaluation of Carotenoids Content in Maize. J. Agric. Food Chem. 2004, 52, 5577–5582. [Google Scholar] [CrossRef] [PubMed]
- Márquez, A.J. Monitoring carotenoid and chlorophyll pigments in virgin olive oil by visible-near infrared transmittance spectroscopy. On-line application. J. Near Infrared Spectrosc. 2003, 11, 219–226. [Google Scholar]
- Ncama, K.; Tesfay, S.Z.; Fawole, O.A.; Opara, U.L.; Magwaza, L.S. Non-destructive prediction of “Marsh” grapefruit susceptibility to postharvest rind pitting disorder using reflectance Vis/NIR spectroscopy. Sci. Hortic. 2018, 231, 265–271. [Google Scholar] [CrossRef]
- Steidle Neto, A.J.; de O Moura, L.; de C Lopes, D.; de A Carlos, L.; Martins, L.M.; de C Louback Ferraz, L. Non-destructive prediction of pigment content in lettuce based on visible-NIR spectroscopy. J. Sci. Food Agric. 2017, 97, 2015–2022. [Google Scholar] [CrossRef] [PubMed]
- Pires, F.F.; Lemos, M.C.; Petersen, J.C.; Kessler, A.M. Use of Near-Infrared Reflectance Spectroscopy to Analyze Vitamin Content. J. Appl. Poult. Res. 2001, 10, 412–418. [Google Scholar] [CrossRef]
- Andueza, D.; Valenti, B.; Labonne, C.; Ferlay, A. Effect of the use of bronopol as milk preservative on the prediction of milk fatty acid composition by near-infrared reflectance spectroscopy. In Proceedings of the 16th International Conference on Near Infrared Spectroscopy, La Grande-Motte, France, 2–7 June 2013; pp. 57–63. [Google Scholar]
- de la Roza Delgado, M.B.; Lozano, S.M.; Mainar, F.V.; Fernández, A.M.; Cabezuelo, A.B.S. Suitability of faecal near-infrared reflectance spectroscopy (NIRS) predictions for estimating gross calorific value. Span. J. Agric. Res. 2015, 13, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Nozière, P.; Graulet, B.; Lucas, A.; Martin, B.; Grolier, P.; Doreau, M. Carotenoids for ruminants: From forages to dairy products. Anim. Feed Sci. Technol. 2006, 131, 418–450. [Google Scholar]
- Ferrand, M.; Huquet, B.; Barbey, S.; Barillet, F.; Faucon, F.; Larroque, H.; Leray, O.; Trommenschlager, J.M.; Brochard, M. Determination of fatty acid profile in cow’s milk using mid-infrared spectrometry: Interest of applying a variable selection by genetic algorithms before a PLS regression. Chemom. Intell. Lab. Syst. 2011, 106, 183–189. [Google Scholar] [CrossRef]
- Maurice-Van Eijndhoven, M.H.T.; Soyeurt, H.; Dehareng, F.; Calus, M.P.L. Validation of fatty acid predictions in milk using mid-infrared spectrometry across cattle breeds. Animal 2013, 7, 348–354. [Google Scholar] [CrossRef] [Green Version]
- Aggoun, M.; Duriot, B.; Arhab, A.; Cornu, A.; Barkat, M.; Graulet, B. Composition des margines issues de la production d’huile d’olive en vue d’une valorisation par la vache laitière. In Proceedings of the 20th Rencontres Recherches Ruminants, Paris, France, 4–5 December 2013; p. 111. [Google Scholar]
Experiment | Breeds | Mean Parity | Mean DIM (Days) | n | Type of Samples | Analysed Compounds |
---|---|---|---|---|---|---|
Exp. 1 | Holstein (18.7%) Montbéliarde (80.3%) | 2.6 | 182.0 | 62 | Bulk milk | Carotenes |
Vitamins A and E | ||||||
Vitamins B9 and B12 | ||||||
Fatty acids | ||||||
Exp. 2 | Holstein (100 %) | 2.6 | 84.6 | 48 | Individual milk | Carotenes |
Vitamins A and E | ||||||
Fatty acids | ||||||
Exp. 3 | Holstein (100 %) | 2.7 | 130.2 | 108 | Individual milk | Carotenes |
Vitamins A and E | ||||||
Fatty acids | ||||||
Exp. 4 | Holstein (100 %) | 3.0 | 100.7 | 24 | Individual milk | Carotenes |
Vitamins A and E |
Components | Calibration Set | SEL | Validation Set | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | Min | Max | Mean | SD | n | Min | Max | Mean | SD | ||
Carotenoids | |||||||||||
cis13-β-carotene (µg/mL) | 182 | 0.01 | 0.07 | 0.04 | 0.01 | 0.002 | 54 | 0.03 | 0.06 | 0.04 | 0.01 |
cis9-β-carotene (µg/mL) | 182 | <0.01 | 0.04 | 0.02 | 0.01 | 0.002 | 54 | <0.01 | 0.04 | 0.02 | 0.01 |
All-trans-β-carotene (µg/mL) | 182 | 0.05 | 0.58 | 0.23 | 0.11 | 0.030 | 54 | 0.07 | 0.58 | 0.24 | 0.10 |
Sum of β-carotenes (µg/mL) | 182 | 0.10 | 0.62 | 0.29 | 0.11 | - | 54 | 0.11 | 0.63 | 0.30 | 0.11 |
β-cryptoxanthin (µg/mL) | 182 | <0.01 | 0.07 | 0.03 | 0.02 | 0.001 | 49 | <0.01 | 0.06 | 0.03 | 0.02 |
Lutein (µg/mL) | 177 | 0.03 | 0.37 | 0.17 | 0.07 | 0.010 | 51 | 0.03 | 0.28 | 0.17 | 0.07 |
Zeaxanthin (µg/mL) | 181 | <0.01 | 0.29 | 0.1 | 0.07 | 0.002 | 54 | <0.01 | 0.22 | 0.10 | 0.07 |
Sum of Carotenoids (µg/mL) | 182 | 0.11 | 1.04 | 0.58 | 0.21 | - | 54 | 0.20 | 0.97 | 0.60 | 0.22 |
Vitamins | |||||||||||
α-tocopherol (µg/mL) | 184 | <0.01 | 2.81 | 1.18 | 0.49 | 0.040 | 54 | <0.01 | 2.79 | 1.32 | 0.59 |
γ-tocopherol (µg/mL) | 165 | 0.39 | 1.28 | 0.67 | 0.18 | - | 52 | 0.39 | 1.11 | 0.70 | 0.18 |
Sum of tocopherols (µg/mL) | 166 | 1.03 | 4.09 | 1.95 | 0.51 | - | 52 | 1.14 | 3.65 | 2.15 | 0.60 |
Vitamin A (µg retinol/mL) | 184 | 0.03 | 1.33 | 0.52 | 0.24 | 0.040 | 49 | 0.03 | 0.97 | 0.48 | 0.20 |
Vitamin B12 (pg/mL) | 48 | 1034.14 | 4826.39 | 2949.41 | 742.35 | 104.700 | 14 | 1923.32 | 4310.28 | 2903.59 | 666.13 |
Vitamin B9 (ng/mL) | 48 | 82.86 | 137.78 | 108.13 | 12.16 | 3.130 | 14 | 94.38 | 152.66 | 110.75 | 14.47 |
FA (g/100g of the total FA) | |||||||||||
C4:0 | 166 | 1.59 | 3.74 | 2.68 | 0.40 | 0.110 | 52 | 1.48 | 3.76 | 2.66 | 0.41 |
C6:0 | 166 | 0.85 | 2.84 | 1.91 | 0.38 | 0.080 | 51 | 0.77 | 2.71 | 1.93 | 0.43 |
C8:0 | 166 | 0.29 | 1.85 | 1.17 | 0.31 | 0.060 | 47 | 0.21 | 1.69 | 1.18 | 0.35 |
C10:0 | 166 | 0.83 | 4.42 | 2.78 | 0.88 | 0.130 | 47 | 0.65 | 4.24 | 2.83 | 0.93 |
C12:0 | 166 | 1.08 | 5.81 | 3.38 | 1.06 | 0.130 | 47 | 0.93 | 4.98 | 3.41 | 1.11 |
C14:0 | 166 | 6.41 | 15.18 | 11.55 | 2.26 | 0.250 | 47 | 5.23 | 15.89 | 11.83 | 2.61 |
C16:0 | 166 | 14.15 | 40.36 | 28.07 | 5.96 | 0.190 | 47 | 16.72 | 38.28 | 28.77 | 5.79 |
C18:0 | 166 | 4.76 | 16.55 | 10.01 | 2.53 | 0.180 | 47 | 6.43 | 15.42 | 9.82 | 2.15 |
trans10-C18:1 | 166 | 0.03 | 1.50 | 0.39 | 0.26 | - | 47 | 0.09 | 1.46 | 0.39 | 0.27 |
trans11-C18:1 | 166 | 0.45 | 14.76 | 2.91 | 2.87 | - | 47 | 0.58 | 12.52 | 2.63 | 2.8 |
cis9-C18:1 | 166 | 11.32 | 31.1 | 19.36 | 4.24 | 0.030 | 47 | 12.58 | 29.55 | 19.30 | 4.48 |
trans11cis15-C18:2 | 166 | 0.01 | 4.17 | 0.30 | 0.50 | - | 46 | <0.01 | 2.45 | 0.23 | 0.39 |
C18:2 n-6 | 166 | 0.68 | 2.17 | 1.21 | 0.29 | 0.030 | 52 | 0.6 | 1.51 | 1.15 | 0.22 |
C18:3 n-3 | 166 | 0.11 | 7.61 | 0.83 | 0.30 | 0.030 | 47 | 0.12 | 6.41 | 0.69 | 1.05 |
cis9trans11-C18:2 | 166 | 0.22 | 3.71 | 0.94 | 0.76 | 0.010 | 47 | 0.26 | 5.40 | 0.84 | 0.86 |
Sum of SFA | 166 | 36.74 | 78.06 | 62.79 | 9.14 | 0.400 | 47 | 41.92 | 76.37 | 63.80 | 9.81 |
Sum of MUFA | 166 | 17.73 | 50.65 | 30.80 | 8.48 | 0.460 | 47 | 18.44 | 49.15 | 30.26 | 9.03 |
Sum of PUFA | 166 | 2.02 | 14.08 | 4.32 | 2.14 | 0.100 | 47 | 2.07 | 10.69 | 3.92 | 2.03 |
Sum of odd and/or branched FA | 166 | 2.01 | 5.66 | 3.65 | 0.82 | - | 47 | 2.28 | 4.77 | 3.69 | 0.75 |
Sum of trans FA | 166 | 0.35 | 29.05 | 6.85 | 6.92 | 0.200 | 52 | 0.33 | 27.17 | 6.55 | 6.93 |
n-3 FA | 166 | 0.19 | 1.62 | 0.60 | 0.25 | - | 47 | 0.19 | 1.34 | 0.53 | 0.20 |
n-6 FA | 166 | 0.84 | 2.42 | 1.45 | 0.29 | - | 51 | 0.93 | 1.74 | 1.40 | 0.21 |
Carotenoids | Calibration Set | Validation Set | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Spectral Processing | Spectroscopy Technique 1 | n | Number of Outliers | T | SEC | R2C | SECV | R2CV | n | SEP | R2V | |
cis13-β-carotene (µg/mL) | ||||||||||||
None 1,4,4 | NIR | 179 | 3 | 3 | 0.01 | 0.34 | 0.01 | 0.27 | 54 | 0.01 | 0.14 | |
None 2,4,4 | MIR-ATR | 173 | 9 | 1 | 0.01 | 0.37 | 0.01 | 0.08 | 0.01 | 0.01 | ||
SNV and Detrend 0,0,1 | Fluorescence (lycopene) | 162 | 12 | 2 | 0.01 | 0.38 | 0.01 | 0.33 | 0.01 | 0.09 | ||
cis9-β-carotene (µg/mL) | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 174 | 8 | 4 | 0.01 | 0.74 | 0.01 | 0.72 | 54 | 0.01 | 0.61 | |
None 1,20,20 | MIR-ATR | 177 | 5 | 3 | 0.01 | 0.65 | 0.01 | 0.54 | 0.01 | 0.50 | ||
None 0,0,1 | Fluorescence (carotene) | 167 | 12 | 8 | 0.01 | 0.86 | 0.01 | 0.47 | 0.01 | 0.24 | ||
All-trans-β-carotene (µg/mL) | ||||||||||||
None 0,0,1 | NIR | 177 | 5 | 9 | 0.05 | 0.70 | 0.06 | 0.61 | 54 | 0.08 | 0.32 | |
SNV and Detrend 1,30,30 | MIR | 175 | 7 | 2 | 0.07 | 0.40 | 0.08 | 0.31 | 0.10 | 0.11 | ||
Weighted MSC 0,0,1 | Fluorescence (carotene) | 160 | 10 | 5 | 0.05 | 0.74 | 0.06 | 0.60 | 0.07 | 0.54 | ||
Sum of β-carotenes (µg/mL) | ||||||||||||
None 2,10,10 | NIR | 177 | 5 | 3 | 0.07 | 0.56 | 0.07 | 0.51 | 54 | 0.09 | 0.20 | |
Detrend 0,0,1 | MIR-ATR | 176 | 6 | 2 | 0.09 | 0.25 | 0.09 | 0.19 | 0.10 | 0.13 | ||
SNV and Detrend 2,8,8 | Fluorescence (carotene) | 158 | 11 | 3 | 0.05 | 0.75 | 0.06 | 0.62 | 0.08 | 0.36 | ||
β-cryptoxanthin (µg/mL) | ||||||||||||
MSC 1,4,4 | NIR | 177 | 5 | 4 | 0.01 | 0.75 | 0.01 | 0.72 | 49 | 0.01 | 0.63 | |
Detrend 1,8,8 | MIR-ATR | 177 | 5 | 3 | 0.01 | 0.72 | 0.01 | 0.56 | 0.01 | 0.41 | ||
Weighted MSC 0,0,1 | Synchronous fluorescence | 158 | 11 | 10 | 0.01 | 0.73 | 0.01 | 0.59 | 0.02 | 0.01 | ||
Lutein (µg/mL) | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 172 | 5 | 3 | 0.04 | 0.67 | 0.04 | 0.64 | 51 | 0.06 | 0.09 | |
None 2,20,20 | MIR-ATR | 166 | 11 | 2 | 0.03 | 0.74 | 0.04 | 0.65 | 0.04 | 0.41 | ||
SNV and Detrend 0,0,1 | Fluorescence (carotene) | 158 | 10 | 4 | 0.04 | 0.54 | 0.05 | 0.39 | 0.05 | 0.27 | ||
Zeaxanthin (µg/mL) | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 174 | 7 | 4 | 0.03 | 0.80 | 0.03 | 0.77 | 54 | 0.04 | 0.67 | |
None 1,8,8 | MIR-ATR | 178 | 3 | 2 | 0.04 | 0.71 | 0.04 | 0.64 | 0.05 | 0.50 | ||
None 0,0,1 | Fluorescence (carotene) | 168 | 10 | 5 | 0.05 | 0.52 | 0.05 | 0.45 | 0.05 | 0.42 | ||
Sum of Carotenoids (µg/mL) | ||||||||||||
MSC 1,4,4 | NIR | 181 | 1 | 4 | 0.12 | 0.66 | 0.13 | 0.60 | 54 | 0.15 | 0.50 | |
SNV and Detrend 1,30,30 | MIR-ATR | 171 | 11 | 2 | 0.13 | 0.53 | 0.14 | 0.48 | 0.19 | 0.20 | ||
Standard MSC 0,0,1 | Fluorescence (carotene) | 165 | 11 | 4 | 0.13 | 0.50 | 0.15 | 0.38 | 0.17 | 0.30 |
Vitamins | Calibration Set | Validation Set | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Spectral Processing | Spectroscopy Technique 1 | n | Number of Outliers | T | SEC | R2C | SECV | R2CV | n | SEP | R2V | |
α-tocopherol (µg/mL) | ||||||||||||
SNV and Detrend 0,0,1 | NIR | 176 | 8 | 3 | 0.30 | 0.54 | 0.30 | 0.52 | 54 | 0.52 | 0.01 | |
None 1,8,8 | MIR-ATR | 178 | 6 | 3 | 0.26 | 0.70 | 0.31 | 0.56 | 0.41 | 0.40 | ||
Standard MSC 0,0,1 | Fluorescence (carotene) | 165 | 12 | 4 | 0.28 | 0.44 | 0.31 | 0.35 | 0.47 | 0.17 | ||
γ-tocopherol (µg/mL) | ||||||||||||
Detrend 1,4,4 | NIR | 161 | 4 | 1 | 0.16 | 0.09 | 0.16 | 0.07 | 52 | 0.17 | 0.06 | |
None 2,8,8 | MIR-ATR | 159 | 6 | 1 | 0.14 | 0.32 | 0.15 | 0.19 | 0.15 | 0.26 | ||
SNV and Detrend 0,0,1 | Fluorescence (lycopene) | 158 | 7 | 2 | 0.14 | 0.23 | 0.15 | 0.16 | 0.18 | 0.05 | ||
Sum of tocopherols (µg/mL) | ||||||||||||
SNV and Detrend 2,10,10 | NIR | 162 | 4 | 1 | 0.46 | 0.10 | 0.47 | 0.05 | 52 | 0.57 | 0.08 | |
None 2,10,10 | MIR-ATR | 162 | 4 | 1 | 0.41 | 0.27 | 0.44 | 0.16 | 0.55 | 0.16 | ||
Inverse MSC 0,0,1 | Fluorescence (carotene) | 159 | 7 | 3 | 0.38 | 0.32 | 0.44 | 0.15 | 0.60 | 0.03 | ||
Vitamin A (µg retinol/mL) | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 174 | 10 | 3 | 0.12 | 0.69 | 0.13 | 0.65 | 49 | 0.15 | 0.34 | |
Detrend 0,0,1 | MIR-ATR | 178 | 6 | 5 | 0.15 | 0.58 | 0.17 | 0.46 | 0.16 | 0.27 | ||
Standard MSC 0,0,1 | Synchronous fluorescence | 156 | 14 | 10 | 0.11 | 0.67 | 0.14 | 0.52 | 0.17 | 0.05 | ||
Vitamin B12 (pg/mL) | ||||||||||||
Detrend 0,0,1 | NIR | 48 | 0 | 1 | 724.1 | 0.05 | 772.98 | 0.01 | 14 | 611.82 | 0.16 | |
SNV and Detrend 1,20,20 | MIR-ATR | 43 | 5 | 1 | 604.27 | 0.15 | 673.92 | 0.01 | 907.3 | 0.18 | ||
None 0,0,1 | Synchronous fluorescence | 38 | 2 | 1 | 707.26 | 0.19 | 776.66 | 0.05 | 918.32 | 0.05 | ||
Vitamin B9 (ng/mL) | ||||||||||||
MSC 0,0,1 | NIR | 48 | 0 | 3 | 10.58 | 0.24 | 12.05 | 0.03 | 14 | 37.95 | 0.69 | |
Weighted MSC 0,0,1 | MIR-ATR | 46 | 2 | 1 | 10.22 | 0.22 | 10.61 | 0.16 | 22.95 | 0.02 | ||
Standard MSC 1,4,4 | Fluorescence (carotene) | 48 | 0 | 3 | 5.71 | 0.77 | 10.91 | 0.23 | 14.29 | 0.08 |
FA | Calibration Set | Validation Set | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Spectral Processing | Spectroscopy Technique 1 | n | Number of Outliers | T | SEC | R2C | SECV | R2CV | n | SEP | R2V | |
C4:0 | ||||||||||||
None 1,4,4 | NIR | 163 | 3 | 3 | 0.34 | 0.23 | 0.35 | 0.17 | 52 | 0.38 | 0.17 | |
None 0,0,1 | MIR-ATR | 161 | 5 | 5 | 0.32 | 0.30 | 0.35 | 0.15 | 0.42 | 0.04 | ||
None 0,0,1 | Fluorescence (lycopene) | 163 | 3 | 1 | 0.39 | 0.01 | 0.40 | 0.01 | 0.41 | 0.01 | ||
C6:0 | ||||||||||||
SNV and Detrend 2,10,10 | NIR | 161 | 5 | 5 | 0.18 | 0.76 | 0.20 | 0.72 | 51 | 0.17 | 0.85 | |
Detrend 1,4,4 | MIR-ATR | 164 | 2 | 1 | 0.32 | 0.22 | 0.39 | 0.01 | 0.44 | 0.01 | ||
None 0,0,1 | Fluorescence (carotene) | 164 | 2 | 1 | 0.36 | 0.02 | 0.36 | 0.01 | 0.42 | 0.02 | ||
C8:0 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 158 | 8 | 5 | 0.13 | 0.83 | 0.14 | 0.80 | 47 | 0.12 | 0.89 | |
SNV and Detrend 1,8,8 | MIR-ATR | 163 | 3 | 3 | 0.16 | 0.70 | 0.28 | 0.14 | 0.35 | 0.16 | ||
Inverse MSC 2,8,8 | Synchronous fluorescence | 158 | 8 | 2 | 0.26 | 0.35 | 0.28 | 0.26 | 0.37 | 0.01 | ||
C10:0 | ||||||||||||
SNV and Detrend 2,8,8 | NIR | 159 | 7 | 5 | 0.35 | 0.84 | 0.39 | 0.81 | 47 | 0.33 | 0.89 | |
None 1,8,8 | MIR-ATR | 163 | 3 | 3 | 0.46 | 0.72 | 0.81 | 0.15 | 0.91 | 0.18 | ||
Inverse MSC 2,8,8 | Synchronous fluorescence | 158 | 8 | 2 | 0.71 | 0.40 | 0.78 | 0.28 | 0.97 | 0.01 | ||
C12:0 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 160 | 6 | 6 | 0.43 | 0.84 | 0.49 | 0.79 | 47 | 0.37 | 0.90 | |
SNV 2,10,10 | MIR-ATR | 162 | 4 | 3 | 0.56 | 0.72 | 0.94 | 0.21 | 1.26 | 0.06 | ||
Inverse MSC 2,8,8 | Synchronous fluorescence | 154 | 12 | 9 | 0.60 | 0.71 | 0.83 | 0.44 | 1.60 | 0.05 | ||
C14:0 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 158 | 8 | 5 | 0.87 | 0.85 | 0.95 | 0.82 | 47 | 0.91 | 0.89 | |
SNV 1,8,8 | MIR-ATR | 165 | 1 | 4 | 1.07 | 0.78 | 2.14 | 0.12 | 2.61 | 0.19 | ||
Detrend 1,4,4 | Synchronous fluorescence | 156 | 10 | 9 | 1.17 | 0.75 | 1.58 | 0.55 | 3.49 | 0.06 | ||
C16:0 | ||||||||||||
SNV 1,4,4 | NIR | 157 | 9 | 7 | 2.08 | 0.87 | 2.55 | 0.81 | 47 | 2.38 | 0.85 | |
SNV and Detrend 1,8,8 | MIR-ATR | 166 | 0 | 3 | 3.42 | 0.66 | 5.73 | 0.06 | 6.25 | 0.14 | ||
None 2,8,8 | Synchronous fluorescence | 155 | 11 | 4 | 3.95 | 0.56 | 4.24 | 0.49 | 7.29 | 0.03 | ||
C18:0 | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 164 | 2 | 10 | 1.40 | 0.69 | 1.70 | 0.55 | 47 | 1.48 | 0.60 | |
SNV and Detrend 1,8,8 | MIR-ATR | 160 | 6 | 3 | 1.24 | 0.71 | 2.12 | 0.17 | 2.64 | 0.08 | ||
SNV and Detrend 2,8,8 | Synchronous fluorescence | 148 | 12 | 2 | 0.78 | 0.27 | 0.84 | 0.17 | 1.01 | 0.01 | ||
trans10-C18:1 | ||||||||||||
SNV 1,4,4 | NIR | 154 | 10 | 4 | 0.10 | 0.46 | 0.11 | 0.38 | 47 | 0.22 | 0.35 | |
None 0,0,1 | MIR-ATR | 154 | 10 | 1 | 0.14 | 0.08 | 0.14 | 0.06 | 0.40 | 0.02 | ||
SNV and Detrend 0,0,1 | Fluorescence (vitamin A) | 145 | 11 | 1 | 0.11 | 0.28 | 0.12 | 0.26 | 0.26 | 0.04 | ||
trans11-C18:1 | ||||||||||||
SNV 1,4,4 | NIR | 154 | 10 | 10 | 0.68 | 0.91 | 0.83 | 0.87 | 47 | 1.39 | 0.79 | |
SNV and Detrend 2,30,30 | MIR-ATR | 153 | 11 | 1 | 1.49 | 0.17 | 1.59 | 0.06 | 2.81 | 0.09 | ||
Detrend 1,4,4 | Synchronous fluorescence | 147 | 10 | 8 | 0.88 | 0.67 | 1.27 | 0.42 | 3.10 | 0.01 | ||
cis9-C18:1 | ||||||||||||
MSC 1,4,4 | NIR | 161 | 5 | 9 | 1.69 | 0.83 | 2.26 | 0.70 | 47 | 2.08 | 0.79 | |
SNV 1,8,8 | MIR-ATR | 162 | 4 | 2 | 2.04 | 0.75 | 3.67 | 0.19 | 5.22 | 0.02 | ||
Weighted MSC 1,4,4 | Synchronous fluorescence | 154 | 10 | 10 | 1.78 | 0.83 | 3.01 | 0.51 | 6.74 | 0.12 | ||
trans11cis15-C18:2 | ||||||||||||
None 2,10,10 | NIR | 158 | 8 | 4 | 0.12 | 0.55 | 0.13 | 0.50 | 46 | 0.35 | 0.34 | |
SNV and Detrend 1,8,8 | MIR-ATR | 156 | 10 | 3 | 0.10 | 0.68 | 0.17 | 0.18 | 0.39 | 0.10 | ||
Inverse MSC 0,0,1 | Fluorescence (fluorescent oxidation products) | 144 | 12 | 4 | 0.13 | 0.31 | 0.14 | 0.20 | 0.69 | 0.01 | ||
C18:2 n-6 | ||||||||||||
SNV and Detrend 2,10,10 | NIR | 159 | 7 | 2 | 0.18 | 0.53 | 0.19 | 0.47 | 52 | 0.18 | 0.49 | |
None 2,30,30 | MIR-ATR | 163 | 3 | 2 | 0.21 | 0.42 | 0.23 | 0.32 | 0.19 | 0.34 | ||
None 0,0,1 | Fluorescence (carotene) | 156 | 10 | 4 | 0.17 | 0.56 | 0.18 | 0.50 | 0.16 | 0.50 | ||
C18:3 n-3 | ||||||||||||
Detrend 1,4,4 | NIR | 156 | 10 | 4 | 0.24 | 0.39 | 0.28 | 0.16 | 47 | 1.07 | 0.07 | |
SNV and Detend 1,8,8 | MIR | 163 | 3 | 1 | 0.17 | 0.23 | 0.19 | 0.01 | 0.13 | 0.28 | ||
Detrend 1,1,4 | Synchronous fluorescence | 150 | 10 | 8 | 0.09 | 0.76 | 0.12 | 0.56 | 0.19 | 0.09 | ||
cis9trans11-C18:2 | ||||||||||||
None 2,10,10 | NIR | 159 | 7 | 3 | 0.46 | 0.46 | 0.48 | 0.39 | 47 | 0.67 | 0.47 | |
SNV 2,30,30 | MIR | 155 | 11 | 1 | 0.64 | 0.19 | 0.69 | 0.09 | 1.23 | 0.10 | ||
Detrend 1,1,4 | Synchronous fluorescence | 146 | 12 | 9 | 0.33 | 0.76 | 0.55 | 0.41 | 1.40 | 0.02 | ||
Sum of SFA | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 160 | 6 | 8 | 2.37 | 0.69 | 2.53 | 0.65 | 47 | 2.03 | 0.96 | |
Standard MSC 1,4,4 | MIR-ATR | 161 | 5 | 2 | 3.79 | 0.80 | 7.85 | 0.16 | 12.63 | 0.03 | ||
None 0,0,1 | Synchronous fluorescence | 161 | 5 | 1 | 8.89 | 0.07 | 8.89 | 0.07 | 13.76 | 0.01 | ||
Sum of MUFA | ||||||||||||
MSC 1,4,4 | NIR | 161 | 5 | 7 | 3.31 | 0.85 | 4.01 | 0.78 | 47 | 4.13 | 0.81 | |
SNV and Detrend 1,8,8 | MIR-ATR | 163 | 3 | 3 | 3.80 | 0.71 | 6.49 | 0.16 | 7.94 | 0.15 | ||
Weighted MSC 2,8,8 | Synchronous fluorescence | 153 | 13 | 9 | 3.49 | 0.78 | 4.89 | 0.57 | 11.3 | 0.08 | ||
Sum of PUFA | ||||||||||||
MSC 2,10,10 | NIR | 157 | 9 | 9 | 0.62 | 0.85 | 0.76 | 0.78 | 47 | 0.95 | 0.80 | |
SNV 2,30,30 | MIR-ATR | 155 | 11 | 1 | 1.11 | 0.21 | 1.23 | 0.05 | 2.01 | 0.13 | ||
Detrend 1,4,4 | Synchronous fluorescence | 149 | 12 | 2 | 1.08 | 0.19 | 1.25 | 0.20 | 2.39 | 0.01 | ||
Sum of odd and/or branched FA | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 163 | 3 | 9 | 0.41 | 0.74 | 0.51 | 0.60 | 47 | 0.61 | 0.48 | |
SNV 1,30,30 | MIR-ATR | 158 | 8 | 8 | 0.35 | 0.82 | 0.55 | 0.53 | 0.78 | 0.19 | ||
Inverse MSC 2,8,8 | Synchronous fluorescence | 155 | 11 | 5 | 0.45 | 0.65 | 0.51 | 0.57 | 0.77 | 0.03 | ||
Sum of trans FA | ||||||||||||
SNV and Detrend 1,4,4 | NIR | 157 | 9 | 10 | 1.59 | 0.94 | 2.31 | 0.88 | 52 | 2.95 | 0.84 | |
None 2,16,16 | MIR-ATR | 155 | 11 | 2 | 3.33 | 0.56 | 3.88 | 0.40 | 5.82 | 0.30 | ||
None 0,0,1 | Fluorescence (carotene) | 154 | 12 | 5 | 3.27 | 0.58 | 3.97 | 0.44 | 5.52 | 0.37 | ||
n-3 FA | ||||||||||||
SNV and Detrend 2,10,10 | NIR | 162 | 4 | 9 | 0.16 | 0.52 | 0.20 | 0.26 | 47 | 0.19 | 0.29 | |
SNV and Detrend 1,20,20 | MIR-ATR | 162 | 4 | 1 | 0.20 | 0.19 | 0.22 | 0.04 | 0.20 | 0.11 | ||
Standard MSC 1,4,4 | Synchronous fluorescence | 153 | 11 | 5 | 0.13 | 0.59 | 0.16 | 0.39 | 0.15 | 0.47 | ||
n-6 FA | ||||||||||||
MSC 2,10,10 | NIR | 162 | 4 | 2 | 0.21 | 0.34 | 0.23 | 0.28 | 51 | 0.19 | 0.30 | |
SNV 0,0,1 | MIR-ATR | 162 | 4 | 7 | 0.19 | 0.49 | 0.24 | 0.27 | 0.32 | 0.03 | ||
None 0,0,1 | Fluorescence (carotene) | 160 | 6 | 4 | 0.20 | 0.43 | 0.22 | 0.33 | 0.20 | 0.21 |
Components | Bias | SPEc | ||||
---|---|---|---|---|---|---|
MIR-ATR | NIR | Fluorescence | MIR-ATR | NIR | Fluorescence | |
Carotenoids | ||||||
cis13-β-carotene (µg/mL) | 0.002 | 0.002 | 0.005 * | 0.01 | 0.009 | 0.009 |
cis9-β-carotene (µg/mL) | 0.009 | 0.001 | 0.01 * | 0.009 ab | 0.008 a | 0.01 b |
All-trans-β-carotene (µg/mL) | 0.01 | 0.02 * | 0.03 * | 0.10 a | 0.08 ab | 0.07 b |
Sum of β-carotenes (µg/mL) | 0.01 | 0.01 | 0.03 * | 0.10 | 0.09 | 0.08 |
β-cryptoxanthin (µg/mL) | 0.002 | 0.003 * | 0.01 * | 0.01 a | 0.01 a | 0.02 b |
Lutein (µg/mL) | 0.01 | 0.01 | 0.03 * | 0.04 a | 0.06 b | 0.05 ab |
Zeaxanthin (µg/mL) | 0.004 | 0.005 | 0.02 * | 0.05 | 0.04 | 0.05 |
Sum of Carotenoids (µg/mL) | 0.02 | 0.01 | 0.09 * | 0.19 a | 0.15 b | 0.17 ab |
Vitamins | ||||||
α-tocopherol (µg/mL) | 0.17 * | 0.17 * | 0.21 * | 0.41 a | 0.52 b | 0.47 ab |
γ-tocopherol (µg/mL) | 0.06 * | 0.05 * | 0.01 | 0.15 | 0.17 | 0.18 |
Sum of tocopherols (µg/mL) | 0.24 * | 0.25 * | 0.28 * | 0.55 | 0.57 | 0.60 |
Vitamin A (µg retinol/mL) | −0.03 | −0.02 | 0.09 * | 0.16 | 0.15 | 0.17 |
Vitamin B12 (pg/mL) | 212.83 | −67.08 | 290.98 | 907.3 | 611.82 | 918.32 |
Vitamin B9 (ng/mL) | −4.85 | 8.81 | 2.16 | 22.95 ab | 37.95 a | 14.29 b |
FA (g 100/g of the total FA) | ||||||
C4:0 | −0.04 | −0.02 | −0.03 | 0.42 | 0.38 | 0.41 |
C6:0 | −0.04 | −0.002 | 0.0002 | 0.44 a | 0.17 b | 0.42 a |
C8:0 | −0.03 | −0.01 | 0.10 | 0.35 a | 0.12 b | 0.37 a |
C10:0 | −0.07 | 0.04 | 0.25 | 0.91 a | 0.33 b | 0.97 a |
C12:0 | −0.13 | −0.04 | 0.23 | 1.26 a | 0.37 b | 1.60 a |
C14:0 | −0.06 | 0.05 | 0.05 | 2.61 a | 0.91 b | 3.49 a |
C16:0 | −0.33 | 0.42 | 1.70 | 6.25 a | 2.38 b | 7.29 a |
C18:0 | 0.04 | −0.39 | 0.13 | 2.64 a | 1.48 b | 1.01 c |
trans10-C18:1 | 0.03 | 0.08 * | 0.02 | 0.42 a | 0.23 b | 0.26 b |
trans11-C18:1 | 0.40 | −0.10 | 0.57 | 2.81 a | 1.39 b | 3.10 a |
cis9-C18:1 | 1.02 | 0.006 | −0.36 | 5.22 a | 2.08 b | 6.74 a |
trans11cis15-C18:2 | 0.04 | 0.03 | 0.15 | 0.39 a | 0.35 a | 0.69 b |
C18:2 n-6 | −0.05 * | −0.06 * | −0.10 * | 0.19 | 0.18 | 0.16 |
C18:3 n-3 | −0.06 * | 0.2 | −0.009 | 0.13 a | 1.07 b | 0.19 c |
cis9trans11-C18:2 | 0.17 | −0.02 | 0.19 | 1.23 a | 0.67 b | 1.40 a |
Sum of SFA | −3.12 | −0.07 | −26.91 * | 12.63 a | 2.03 b | 13.76 a |
Sum of MUFA | 0.89 | −0.69 | −3.58 * | 7.94 a | 4.13 b | 11.30 c |
Sum of PUFA | 0.10 | −0.14 | 0.36 | 2.01 a | 0.95 b | 2.39 a |
Sum of odd and/or branched FA | −0.05 | 0.05 | −0.08 | 0.78 | 0.61 | 0.77 |
Sum of trans FA | 1.03 | −0.15 | 1.14 | 5.82 a | 2.95 b | 5.52 a |
n-3 FA | −0.04 | −0.03 | −0.04 | 0.20 a | 0.19 ab | 0.15 b |
n-6 FA | −0.05 | −0.04 | −0.08 * | 0.32 a | 0.19 b | 0.20 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soulat, J.; Andueza, D.; Graulet, B.; Girard, C.L.; Labonne, C.; Aït-Kaddour, A.; Martin, B.; Ferlay, A. Comparison of the Potential Abilities of Three Spectroscopy Methods: Near-Infrared, Mid-Infrared, and Molecular Fluorescence, to Predict Carotenoid, Vitamin and Fatty Acid Contents in Cow Milk. Foods 2020, 9, 592. https://doi.org/10.3390/foods9050592
Soulat J, Andueza D, Graulet B, Girard CL, Labonne C, Aït-Kaddour A, Martin B, Ferlay A. Comparison of the Potential Abilities of Three Spectroscopy Methods: Near-Infrared, Mid-Infrared, and Molecular Fluorescence, to Predict Carotenoid, Vitamin and Fatty Acid Contents in Cow Milk. Foods. 2020; 9(5):592. https://doi.org/10.3390/foods9050592
Chicago/Turabian StyleSoulat, Julien, Donato Andueza, Benoît Graulet, Christiane L. Girard, Cyril Labonne, Abderrahmane Aït-Kaddour, Bruno Martin, and Anne Ferlay. 2020. "Comparison of the Potential Abilities of Three Spectroscopy Methods: Near-Infrared, Mid-Infrared, and Molecular Fluorescence, to Predict Carotenoid, Vitamin and Fatty Acid Contents in Cow Milk" Foods 9, no. 5: 592. https://doi.org/10.3390/foods9050592
APA StyleSoulat, J., Andueza, D., Graulet, B., Girard, C. L., Labonne, C., Aït-Kaddour, A., Martin, B., & Ferlay, A. (2020). Comparison of the Potential Abilities of Three Spectroscopy Methods: Near-Infrared, Mid-Infrared, and Molecular Fluorescence, to Predict Carotenoid, Vitamin and Fatty Acid Contents in Cow Milk. Foods, 9(5), 592. https://doi.org/10.3390/foods9050592