Integrated Profiling of Fatty Acids, Sterols and Phenolic Compounds in Tree and Herbaceous Peony Seed Oils: Marker Screening for New Resources of Vegetable Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Standards and Reagents
2.3. Gas Chromatography (GC) Analysis of Fatty Acids
2.4. GC-MS Analysis of Squalene, γ-Tocopherol and Phytosterols
2.5. UHPLC-Q-TOF-MS and -MS/MS Analysis of Phenolic Compounds
2.6. Statistical Analysis
3. Results
3.1. Fatty Acids in Paeonia Seed Oils
3.2. Sterol Profiles and Other Nonpolar Compounds in Paeonia Seed Oils
3.3. Phenolic Compounds in Paeonia Seed Oils
3.3.1. Qualitative Analysis
3.3.2. Quantitative Analysis
3.4. HCA of Paeonia Seed Oils Based on Their Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Su, J.H.; Ma, C.Y.; Liu, C.X.; Gao, C.Z.; Nie, R.J.; Wang, H.X. Hypolipidemic activity of peony seed oil rich in alpha-linolenic, is mediated through inhibition of lipogenesis and upregulation of fatty acid beta-oxidation. J. Food Sci. 2016, 81, H1001–H1009. [Google Scholar] [CrossRef] [PubMed]
- Han, J.G.; Liu, Z.; Li, X.Q.; Li, J.; Hu, Y.H. Diversity in seed oil content and fatty acid composition in three tree peony species with potential as sources of omega-3 fatty acids. J. Hortic. Sci. Biotechnol. 2016, 91, 175–179. [Google Scholar] [CrossRef]
- Hao, Q.; Peng, L.P.; Li, Z.; Men, S.Q.; Tong, N.N.; Shu, Q.Y.; Liu, Z.A. Paternal effects on fatty acid composition of tree peony seed oil. Euphytica 2019, 215, 131. [Google Scholar] [CrossRef]
- Wang, X.J.; Liang, H.Y.; Guo, D.L.; Guo, L.L.; Duan, X.G.; Jia, Q.S.; Hou, X.G. Integrated analysis of transcriptomic and proteomic data from tree peony (P. ostii) seeds reveals key developmental stages and candidate genes related to oil biosynthesis and fatty acid metabolism. Hortic. Res. 2019, 6, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, K.; Wang, Y.W.; Cheng, Y.Y. Determination of paeonol and paeoniflorin in Chinese medicine Cortex Moutan and ‘Shuangdan’ granule by micellar electrokinetic capillary chromatography. J. Pharm. Biomed. Anal. 2006, 40, 1257–1262. [Google Scholar] [CrossRef]
- Xing, Y.Y.; Meng, W.T.; Sun, W.Y.; Li, D.X.; Yu, Z.G.; Tong, L.; Zhao, Y.L. Simultaneous qualitative and quantitative analysis of 21 mycotoxins in Radix Paeoniae Alba by ultra-high performance liquid chromatography quadrupole linear ion trap mass spectrometry and QuEChERS for sample preparation. J. Chromatogr. B 2016, 1031, 202–213. [Google Scholar] [CrossRef]
- Mao, Y.Y.; Han, J.G.; Tian, F.; Tang, X.; Hu, Y.H.; Guan, Y. Chemical Composition Analysis, Sensory, and Feasibility Study of Tree Peony Seed. J. Food Sci. 2017, 82, 553–561. [Google Scholar] [CrossRef]
- Xiong, L.N.; Yang, J.J.; Jiang, Y.R.; Lu, B.Y.; Hu, Y.Z.; Zhou, F.; Mao, S.Q.; Shen, C.X. Phenolic compounds and antioxidant capacities of 10 common edible flowers from China. J. Food Sci. 2014, 79, C517–C525. [Google Scholar] [CrossRef]
- Deng, R.X.; Yang, X.; Wang, Y.X.; Du, M.Z.; Hao, X.T.; Liu, P. Optimization of Ultrasound-assisted extraction of monoterpene glycoside from oil peony seed cake. J. Food Sci. 2018, 83, 2943–2953. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, Q.; Verardo, V.; del Mar Contreras, M. Fatty acid and sterol composition of tea seed oils: Their comparison by the “FancyTiles” approach. Food Chem. 2017, 233, 302–310. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, Q.; del Mar Contreras, M.; Wang, L. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil. Food Res. Int. 2017, 102, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Yuan, R.Y.; Chen, L.G.; Wang, L.S.; Hao, X.H.; Wang, L.J.; Zheng, X.C.; Du, H. Systematic qualitative and quantitative assessment of fatty acids in the seeds of 60 tree peony (Paeonia section Moutan DC.) cultivars by GC-MS. Food Chem. 2015, 173, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhang, L.N.; Wang, X.S.; Gao, J.Y.; Yi, J.P.; Deng, R.X. Characterization of Paeonia ostii seed and oil sourced from different cultivation areas in China. Ind. Crop Prod. 2019, 133, 63–71. [Google Scholar] [CrossRef]
- Yu, S.; Du, S.; Yuan, J.; Hu, Y. Fatty acid profile in the seeds and seed tissues of Paeonia L. species as new oil plant resources. Sci. Rep. 2016, 6, 26944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.-X.; Shi, Q.-Q.; Ji, D.; Niu, L.-X.; Zhang, Y.-L. Determination of the phenolic content, profile, and antioxidant activity of seeds from nine tree peony (Paeonia section Moutan DC.) species native to China. Food Res. Int. 2017, 97, 141–148. [Google Scholar] [CrossRef]
- Kim, H.K.; Tak, J.H.; Ahn, Y.J. Acaricidal activity of Paeonia suffruticosa root bark-derived compounds against Dermatophagoides farinae and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J. Agric. Food Chem. 2004, 52, 7857–7861. [Google Scholar] [CrossRef]
- Qi, L.W.; Chen, C.Y.; Li, P. Structural characterization and identification of iridoid glycosides, saponins, phenolic acids and flavonoids in Flos Lonicerae Japonicae by a fast liquid chromatography method with diode-array detection and time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 3227–3242. [Google Scholar] [CrossRef] [PubMed]
- Abad-Garcia, B.; Garmon-Lobato, S.; Berrueta, L.A.; Gallo, B.; Vicente, F. New features on the fragmentation and differentiation of C-glycosidic flavone isomers by positive electrospray ionization and triple quadrupole mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 1834–1842. [Google Scholar] [CrossRef]
- Kite, G.C.; Porter, E.A.; Denison, F.C.; Grayer, R.J.; Veitch, N.C.; Butler, I.; Simmonds, M.S. Data-directed scan sequence for the general assignment of C-glycosylflavone O-glycosides in plant extracts by liquid chromatography-ion trap mass spectrometry. J. Chromatogr. A 2006, 1104, 123–131. [Google Scholar] [CrossRef]
- Ferreres, F.; Silva, B.M.; Andrade, P.B.; Seabra, R.M.; Ferreira, M.A. Approach to the study of C-glycosyl flavones by ion trap HPLC-PAD-ESI/MS/MS: Application to seeds of quince (Cydonia oblonga). Phytochem. Anal. 2003, 14, 352–359. [Google Scholar] [CrossRef]
- Li, X.Y.; Xu, J.D.; Xu, J.; Kong, M.; Zhou, S.S.; Mao, Q.; Brand, E.; Chen, H.B.; Liu, H.Q.; Li, S.L. UPLC-QTOF-MS based metabolomics coupled with the diagnostic ion exploration strategy for rapidly evaluating sulfur-fumigation caused holistic quality variation in medicinal herbs, Moutan Cortex as an example. Anal. Meth. 2016, 8, 1034–1043. [Google Scholar] [CrossRef]
- Xu, S.J.; Yang, L.; Zhang, M.; Wang, Z.T. Rapid identification of compounds in cortex moutan by liquid chromatography-tandem mass spectrometry. Yao Xue Xue Bao 2006, 41, 852–856. [Google Scholar] [PubMed]
- Chen, L.; Qi, J.; Chang, Y.-X.; Zhu, D.; Yu, B. Identification and determination of the major constituents in Traditional Chinese Medicinal formula Danggui-Shaoyao-San by HPLC-DAD-ESI-MS/MS. J. Pharm. Biomed. Anal. 2009, 50, 127–137. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Uchida, E.; Kawaguchi, A.; Kitagawa, I.; Yamahara, J. Galloyl-oxypaeoniflorin, suffruticosides A, B, C, and D, five new antioxidative glycosides, and suffruticoside E, A paeonol glycoside, from Chinese moutan cortex. Chem. Pharm. Bull. 1992, 40, 2248–2250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Fu, Z.Q.; Lin, J.; Huang, X.C.; Chen, D.; Yu, H.M.; Huang, Z.H.; Fan, S.M. Qualitative and quantitative analysis of major constituents in Tetrastigma hemsleyanum by HPLC-Q-TOF-MS and UPLC-QqQ-MS. Zhongguo Zhong Yao Za Zhi 2014, 39, 4365–4372. [Google Scholar]
- He, C.; Peng, Y.; Zhang, Y.C.; Xu, L.J.; Gu, J.; Xiao, P.G. Phytochemical and Biological Studies of Paeoniaceae. Chem. Biodivers. 2010, 7, 805–838. [Google Scholar] [CrossRef]
- He, C.; Peng, Y.; Xiao, W.; Liu, H.; Xiao, P.G. Determination of chemical variability of phenolic and monoterpene glycosides in the seeds of Paeonia species using HPLC and profiling analysis. Food Chem. 2013, 138, 2108–2114. [Google Scholar] [CrossRef]
- Peng, L.-P.; Men, S.-Q.; Liu, Z.-A.; Tong, N.-N.; Imran, M.; Shu, Q.-Y. Fatty acid composition, phytochemistry, antioxidant activity on seed coat and kernel of Paeonia ostii from main geographic production areas. Foods 2020, 9, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talhaoui, N.; Gomez-Caravaca, A.M.; Leon, L.; De la Rosa, R.; Fernandez-Gutierrez, A.; Segura-Carretero, A. From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions. Int. J. Mol. Sci. 2016, 17, 337. [Google Scholar] [CrossRef] [Green Version]
- Yun, C.S.; Choi, Y.G.; Jeong, M.Y.; Lee, J.H.; Lim, S. Moutan Cortex Radicis inhibits inflammatory changes of gene expression in lipopolysaccharide-stimulated gingival fibroblasts. J. Nat. Med. 2013, 67, 576–589. [Google Scholar] [CrossRef]
- Xing, G.Q.; Zhang, Z.Y.; Liu, J.Q.; Hu, H.H.; Sugiura, N. Antitumor effect of extracts from moutan cortex on DLD-1 human colon cancer cells in vitro. Mol. Med. Rep. 2010, 3, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, S.M.; Li, R.; Zhang, M.; Gao, S.; Yu, C.Q. Antidepressant-like effects of the Radix Bupleuri and Radix Paeoniae Alba drug pair. Neurosci. Lett. 2016, 633, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.Y.; Cui, L.L.; Shan, Y.; Kang, W.Y. Antithrombotic effect and mechanism of radix paeoniae Rubra. BioMed Res. Int. 2017, 2017, Artn 9475074. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Wang, H.; Ma, C.; Lou, Z.; Liu, C.; Rahman, M.T.; Gao, C.; Nie, R. Anti-diabetic activity of peony seed oil, a new resource food in STZ-induced diabetic mice. Food Funct. 2015, 6, 2930–2938. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, P.; Gao, J.-Y.; Wang, X.-S.; Yan, M.; Xue, N.-C.; Qu, C.-X.; Deng, R.-X. Paeonia veitchii seeds as a promising high potential by-product: Proximate composition, phytochemical components, bioactivity evaluation and potential applications. Ind. Crop. Prod. 2018, 125, 248–260. [Google Scholar] [CrossRef]
Cultivar/Species | P. ostii | P. rockii | TuoPanXianBao | LianTai | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Region | SXWN | SXSL | SDHZ | HNLY | AHTL | AHBZ | JSSY | HBWH | GSDX | GSLZ | SDHZ | SDHZ |
C16:0 | 5.80 ± 0.00 c | 5.88 ± 0.00 a | 5.53 ± 0.00 h | 5.34 ± 0.00 j | 5.73 ± 0.00 d | 5.55 ± 0.00 g | 5.70 ± 0.00 e | 5.70 ± 0.00 f | 5.82 ± 0.00 b | 4.94 ± 0.00 k | 5.50 ± 0.00 i | 3.88 ± 0.00 l |
C18:0 | 1.97 ± 0.00 b | 2.26 ± 0.00 a | 1.74 ± 0.00 i | 1.78 ± 0.00 g | 1.81 ± 0.00 f | 1.75 ± 0.00 h | 1.86 ± 0.00 d | 1.85 ± 0.00 e | 1.87 ± 0.00 c | 1.65 ± 0.00 j | 1.87 ± 0.00 c | 0.81 ± 0.00 k |
C18:1n9 | 21.76 ± 0.01 h | 21.44 ± 0.00 i | 21.89 ± 0.01 g | 20.63 ± 0.01 l | 22.09 ± 0.01 f | 21.01 ± 0.01 k | 23.81 ± 0.00 d | 23.79 ± 0.00 e | 21.34 ± 0.00 j | 26.78 ± 0.00 b | 23.83 ± 0.01 c | 31.35 ± 0.01 a |
C18:2n6 | 24.60 ± 0.00 h | 23.98 ± 0.00 i | 25.72 ± 0.00 e | 27.754 ± 0.01 c | 29.94 ± 0.00 b | 27.67 ± 0.00 d | 25.02 ± 0.00 g | 25.04 ± 0.02 f | 23.25 ± 0.01 k | 16.91 ± 0.00 l | 23.62 ± 0.00 j | 30.74 ± 0.01 a |
α-C18:3n3 | 44.38 ± 0.02 d | 44.94 ± 0.01 c | 43.59 ± 0.04 f | 43.04 ± 0.02 g | 38.97 ± 0.01 k | 42.54 ± 0.01 h | 42.11 ± 0.00 j | 42.15 ± 0.02 i | 46.24 ± 0.01 b | 48.31 ± 0.00 a | 43.73 ± 0.00 e | 31.97 ± 0.01 l |
SFA | 8.17 | 8.56 | 7.64 | 7.51 | 7.90 | 7.67 | 7.91 | 7.89 | 8.09 | 6.98 | 7.72 | 4.89 |
MUFA | 22.37 | 22.01 | 22.51 | 21.23 | 22.68 | 21.60 | 24.61 | 24.40 | 21.94 | 27.39 | 24.43 | 32.48 |
PUFA | 69.46 | 69.43 | 69.87 | 71.35 | 69.42 | 70.73 | 67.65 | 67.70 | 69.97 | 65.63 | 67.86 | 62.63 |
UFA | 91.83 | 91.44 | 92.38 | 92.57 | 92.10 | 92.33 | 92.27 | 92.11 | 91.91 | 93.02 | 92.28 | 95.11 |
Cultivar/Species | P. ostii | P. rockii | TuoPanXianBao | LianTai | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Region | SXWN | SXSL | SDHZ | HNLY | AHTL | AHBZ | JSSY | HBWH | GSDX | GSLZ | SDHZ | SDHZ |
Squalene | 30.84 ± 0.59 e | 46.65 ± 0.45 c | 26.58 ± 1.50 f | 40.35 ± 0.57 d | 31.20 ± 1.00 e | 45.90 ± 0.91 c | 43.22 ± 2.30 cd | 55.72 ± 2.41 b | 39.95 ± 0.80 d | 41.05 ± 2.46 d | 115.21 ± 5.89 a | 111.84 ± 3.45 a |
γ-tocopherol | 32.95 ± 0.62 f | 37.44 ± 2.07 e | 28.27 ± 0.26 g | 32.28 ± 1.28 f | 22.07 ± 0.60 h | 47.38 ± 1.70 c | 31.49 ± 1.19 f | 24.81 ± 1.03 h | 55.18 ± 1.17 b | 39.54 ± 3.09 e | 43.29 ± 1.08 d | 59.32 ± 0.67 a |
Cholesterol | 25.74 ± 1.71 b | 20.35 ± 1.16 de | 17.23 ± 0.08 fg | 16.72 ± 1.49 fg | 22.07 ± 0.52 cd | 24.49 ± 0.33 bc | 22.69 ± 2.33 cd | 22.31 ± 2.97 cd | 30.95 ± 0.44 a | 14.80 ± 0.02 g | 18.71 ± 0.19 ef | 32.70 ± 1.63 a |
Campesterol | 51.60 ± 1.88 e | 59.47 ± 0.70 d | 51.72 ± 1.11 e | 37.70 ± 1.32 h | 51.77 ± 0.39 e | 41.36 ± 4.57 gh | 44.92 ± 1.74 fg | 49.21 ± 2.12 ef | 72.81 ± 0.60 c | 115.03 ± 4.29 b | 155.16 ± 4.91 a | 70.56 ± 3.72 c |
Pregnanediol | 20.45 ± 1.10 c | 20.68 ± 0.29 c | 6.33 ± 0.72 f | 15.70 ± 0.58 e | 17.21 ± 4.46 de | 17.19 ± 2.16 de | 20.14 ± 0.49 cd | 21.20 ± 1.37 bc | 28.30 ± 1.48 a | 7.24 ± 0.67 f | 19.08 ± 0.79 cd | 23.97 ± 1.50 b |
β-sitosterol | 2298 ± 9 cd | 2368 ± 42 c | 2274 ± 41 d | 2018 ± 2 f | 2137 ± 21 e | 2010 ± 47 f | 1803 ± 55 g | 2091 ± 6 ef | 2794 ± 61 a | 2330 ± 44 cd | 2043 ± 18 f | 2482 ± 46 b |
Fucosterol | 1123 ± 25 b | 1098 ± 24 b | 965 ± 40 d | 990 ± 4 d | 1036 ± 11 c | 854 ± 39 f | 682 ± 23 h | 766 ± 18 g | 1225 ± 34 a | 1198 ± 22 a | 566 ± 9 i | 903 ± 4 e |
∆5-Avenasterol | 22.90 ± 0.50 c | 18.95 ± 1.18 d | 17.95 ± 1.97 de | 17.60 ± 0.34 de | 18.58 ± 1.02 d | 31.64 ± 1.23 a | 16.21 ± 2.14 e | 19.13 ± 0.30 d | 26.26 ± 0.54 b | 26.42 ± 0.54 b | 10.00 ± 0.10 f | 18.34 ± 1.00 d |
∆7-Avenasterol | 51.56 ± 2.78 f | 77.88 ± 2.48 d | 35.51 ± 0.79 h | 66.75 ± 0.95 e | 23.04 ± 2.37 i | 53.70 ± 1.92 f | 35.28 ± 1.55 h | 37.42 ± 1.02 gh | 41.67 ± 0.77 g | 164.54 ± 7.01 b | 275.12 ± 5.01 a | 107.69 ± 2.73 c |
Obtusifoldienol | 88.48 ± 1.95 ab | 88.64 ± 2.15 ab | 41.72 ± 0.59 f | 68.66 ± 0.47 d | 67.16 ± 3.44 d | 92.16 ± 7.45 a | 40.98 ± 3.06 f | 49.46 ± 4.73 e | 83.30 ± 1.06 b | 76.56 ± 0.68 c | 21.53 ± 0.18 h | 32.41 ± 0.87 g |
Cycloartenol | 337.88 ± 18.45 a | 326.36 ± 2.86 a | 200.18 ± 1.89 cd | 203.94 ± 1.25 c | 197.48 ± 3.14 cde | 228.12 ± 12.78 b | 161.67 ± 5.67 f | 184.43 ± 11.28 e | 228.44 ± 5.61 b | 188.62 ± 0.48 de | 58.58 ± 0.64 g | 229.46 ± 5.72 b |
Betulin | 185.96 ± 5.64 a | 121.99 ± 1.13 bc | 123.19 ± 1.86 bc | 134.08 ± 5.72 b | 132.41 ± 0.38 b | 121.98 ± 5.35 bc | 75.89 ± 2.88 de | 81.90 ± 3.25 d | 122.34 ± 2.03 bc | 64.02 ± 2.09 e | 190.21 ± 1.22 a | 112.71 ± 3.89 c |
Lanosterol | 128.61 ± 9.22 e | 184.85 ± 1.10 b | 85.76 ± 2.13 f | 136.44 ± 4.91 e | 149.33 ± 0.29 d | 84.37 ± 5.25 f | 68.10 ± 0.64 g | 134.84 ± 4.78 e | 164.41 ± 3.00 c | 248.53 ± 7.89 a | 62.71 ± 4.22 g | 188.13 ± 3.63 b |
Total phytosterol | 4334.60 | 4385.12 | 3818.87 | 3706.54 | 3852.00 | 3560.33 | 2970.65 | 3457.07 | 4817.23 | 4433.52 | 3420.26 | 4200.56 |
Peak | Rt (min) | Formula | Exp. m/z | Calc. m/z | Error (ppm) | MS/MS Ions | Compound | Reference |
---|---|---|---|---|---|---|---|---|
1 | 0.71 | C7H6O5 | 169.0147 | 169.0142 | 2.96 | 125.0339 | Gallic acid | [15] |
2 | 2.59 | C7H6O3 | 137.0246 | 137.0244 | 1.46 | 93.0336 | p-Hydroxybenzoic acid | [15] |
3 | 2.93 | C16H18O9 | 353.0874 | 353.0878 | −1.13 | 191.0548 | Chlorogenic acid | [15] |
4 | 3.13 | C8H8O3 | 151.0403 | 151.0401 | 1.32 | 107.0497 | p-Hydroxy phenylacetic acid | [15] |
5 | 3.22 | C23H28O12 | 495.1508 | 495.1508 | 0.00 | 357.0649, 137.0494, 333.0500 | Oxypaeoniflorin | [23] |
6 | 3.26 | C27H30O16 | 609.1446 | 609.1456 | −1.64 | 300.0011, 301.0121 | Rutin | [15] |
7 | 3.26 | C30H32O15 | 631.1658 | 631.1668 | −1.58 | 613.4873, 491.3507, 169.1158, 125.1254 | Galloylpaeoniflorin | [24] |
8 | 4.00 | C30H32O14 | 615.1739 | 615.1719 | 3.25 | 585.4402, 477.3758, 447.2843, 137.0231 | Mudanpioside H | [22] |
9 | 4.37 | C30H32O13 | 599.1790 | 599.1770 | 3.34 | 477.2317, 121.2042 | Mudanpioside C | [22] |
10 | 4.38 | C30H32O13 | 599.1961 | 599.1964 | −0.50 | 477.1955, 449.2358, 315.1011 | Benzoyloxy paeoniflorin | [22] |
11 | 4.48 | C23H28O11 | 479.1558 | 479.1559 | −0.21 | 449.1927, 357.1182, 327.1803, 195.0655, 165.0875, 121.0527 | Paeoniflorin | [22] |
12 | 4.50 | C24H30O13 | 525.1617 | 525.1614 | 0.57 | 495.1454, 357.1171 | Mudanpioside E | [22] |
13 | 4.77 | C27H32O16 | 611.1614 | 611.1618 | −0.65 | 462.0420, 169.1193, 151.0693, 125.1209 | Suffruticoside A or C | [24] |
14 | 4.83 | C21H20O10 | 431.0960 | 431.0984 | −5.57 | 341.2250, 311.1516, 281.1583 | Vitexin | [19] |
15 | 4.968 | C21H20O11 | 447.0932 | 447.0933 | −0.22 | 357.2028, 327.2799, 297.0389 | Orientin | [20] |
16 | 5.06 | C24H30O12 | 509.1667 | 509.1664 | 0.59 | 357.2204, 327.2506, 151.2981 | Mudanpioside D | [22] |
17 | 5.14 | C7H6O2 | 121.0295 | 121.0295 | 0.00 | 77.0400 | Benzoic acid | Standard |
18 | 5.20 | C11H12O5 | 223.0614 | 223.0612 | 0.90 | 208.0384, 163.0401 | Sinapic acid | [15] |
19 | 5.27 | C14H12O4 | 243.0667 | 243.0663 | 1.65 | 225.1162, 199.1161, 175.0011, 157.0022 | Oxyresveratrol | [25] |
20 | 5.36 | C23H28O11 | 479.1559 | 479.1559 | 0.00 | 435.1389, 327.0819, 283.1088 | Albiflorin | [23] |
21 | 5.90 | C8H6O4 | 165.0193 | 165.0193 | 0.00 | 121.0293, 77.0393 | Phthalic acid | [11] |
22 | 6.05 | C8H8O4 | 167.0350 | 167.0350 | 0.00 | 152.0113, 123.0458, 108.0210 | Vanillic acid | [15] |
23 | 6.07 | C15H12O6 | 287.0560 | 287.0561 | −0.35 | 151.0024, 135.0435 | Eriodictyol | [20] |
24 | 6.21 | C9H8O2 | 147.0450 | 147.0452 | −1.36 | 103.0545 | Cinnamic acid | [15] |
25 | 6.33 | C30H32O16 | 647.1692 | 647.1618 | −0.93 | 509.2651, 449.5288 | Galloyloxypaeoniflorin | [22] |
26 | 6.43 | C31H34O14 | 629.1874 | 629.1876 | −0.32 | 599.2841, 507.1883 | Mudanpioside J | [22] |
27 | 7.15 | C9H8O4 | 179.0348 | 179.0350 | −1.12 | 135.0454 | Caffeic acid | [15] |
28 | 7.19 | C31H34O13 | 613.1922 | 613.1927 | −0.82 | 583.2593, 431.2965 | Mudanpioside A | [22] |
29 | 7.47 | C10H10O4 | 193.0506 | 193.0506 | 0.00 | 178.0262, 149.0602, 134.0376 | Ferulic acid | [15] |
30 | 7.58 | C9H10O3 | 165.0558 | 165.0557 | 0.61 | 150.0598, 135.1075, 122.0603 | Paeonol | [22] |
31 | 7.99 | C15H12O5 | 271.0614 | 271.0612 | 0.74 | 151.0033, 119.0503, 107.0133 | Naringenin | Standard |
32 | 8.03 | C18H24O14 | 463.1814 | 463.1821 | −1.51 | 403.3115, 343.5776 | Mudanoside B | [23] |
33 | 9.29 | C30H32O12 | 583.1827 | 583.1821 | 1.03 | 553.3238, 535.4236 | Benzoylpaeoniflorin | [23] |
34 | 9.43 | C15H22O8 | 329.1248 | 329.1242 | 1.82 | 314.3025, 299.1015, 271.2795 | Mudanoside A | [23] |
Cultivar/Species | P. ostii | P. rockii | Tuopanxianbao | Liantai | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Region | SXWN | SXSL | SDHZ | HNLY | AHTL | AHBZ | JSSY | HBWH | GSDX | GSLZ | SDHZ | SDHZ |
Benzoic acid | 3.665 ± 0.012 j | 3.519 ± 0.008 k | 7.591 ± 0.053 a | 5.845 ± 0.077 e | 6.417 ± 0.008 c | 5.411 ± 0.005 f | 7.322 ± 0.035 b | 6.223 ± 0.104 d | 4.222 ± 0.022 h | 4.577 ± 0.012 g | 3.589 ± 0.016 k | 4.024 ± 0.025 i |
p-Hydroxybenzoic acid | 1.257 ± 0.004 f | 1.243 ± 0.007 f | 2.566 ± 0.005 c | 2.667 ± 0.009 b | 1.470 ± 0.001 d | 3.041 ± 0.008 a | 2.679 ± 0.012 b | 1.485 ± 0.029 d | 1.286 ± 0.0060 e | 1.048 ± 0.013 g | 0.640 ± 0.004 i | 0.709 ± 0.0150 h |
Cinnamic acid | 0.403 ± 0.002 a | 0.175 ± 0.000 bc | 0.177 ± 0.005 b | 0.172 ± 0.005 cd | 0.125 ± 0.004 e | 0.168 ± 0.002 d | 0.095 ± 0.002 h | 0.121 ± 0.001 e | 0.107 ± 0.002 fg | 0.112 ± 0.001 f | 0.110 ± 0.002 fg | 0.106 ± 0.002 g |
p-Hydroxyphenylacetic acid | 0.172 ± 0.002 i | 0.176 ± 0.001 i | 0.508 ± 0.003 c | 0.460 ± 0.003 d | 0.413 ± 0.002 e | 0.364 ± 0.015 f | 0.508 ± 0.004 c | 0.409 ± 0.004 e | 0.273 ± 0.001 g | 0.206 ± 0.002 h | 2.917 ± 0.024 b | 3.098 ± 0.009 a |
Phthalic acid | 0.364 ± 0.005 j | 0.398 ± 0.011 i | 1.100 ± 0.001 c | 1.154 ± 0.014 b | 0.584 ± 0.012 g | 1.607 ± 0.016 a | 1.069 ± 0.009 d | 0.575 ± 0.008 g | 0.535 ± 0.003 h | 0.396 ± 0.002 i | 0.724 ± 0.002 f | 0.808 ± 0.006 e |
Vanillic acid | 0.872 ± 0.005 d | 0.704 ± 0.007 f | 1.266 ± 0.005 b | 1.678 ± 0.013 a | 0.318 ± 0.001 i | 0.959 ± 0.008 c | 0.772 ± 0.008 e | 0.321 ± 0.000 i | 0.358 ± 0.002 h | 0.569 ± 0.014 g | 0.258 ± 0.001 j | 0.257 ± 0.001 j |
Gallic acid | 4.774 ± 0.076 a | 2.787 ± 0.068 e | 2.639 ± 0.003 f | 3.151 ± 0.008 c | 0.838 ± 0.012 j | 1.963 ± 0.001 g | 3.209 ± 0.010 b | 2.870 ± 0.006 d | 1.382 ± 0.022 h | 1.342 ± 0.007 h | 0.944 ± 0.013 i | 0.475 ± 0.004 k |
Caffeic acid | 1.027 ± 0.004 e | 1.085 ± 0.024 d | 1.806 ± 0.009 c | 2.099 ± 0.019 a | 0.372 ± 0.003 k | 0.214 ± 0.004 l | 1.993 ± 0.004 b | 0.392 ± 0.002 j | 0.799 ± 0.012 h | 1.005 ± 0.005 f | 0.765 ± 0.008 i | 0.855 ± 0.005 g |
Ferulic acid | 0.797 ± 0.010 e | 0.782 ± 0.011 e | 0.830 ± 0.017 d | 1.021 ± 0.005 c | 0.789 ± 0.002 e | 0.707 ± 0.006 g | 0.738 ± 0.012 f | 1.198 ± 0.016 b | 0.471 ± 0.001 j | 0.514 ± 0.001 i | 0.549 ± 0.000 h | 11.861 ± 0.015 a |
Sinapic acid | 2.692 ± 0.008 f | 2.835 ± 0.040 e | 3.873 ± 0.010 b | 5.255 ± 0.006 a | 2.439 ± 0.013 g | 3.004 ± 0.010 d | 3.807 ± 0.011 c | 2.430 ± 0.016 g | 1.752 ± 0.025 j | 1.856 ± 0.019 i | 1.863 ± 0.012 i | 2.086 ± 0.014 h |
Chlorogenic acid | 3.819 ± 0.036 f | 4.043 ± 0.064 e | 4.358 ± 0.047 d | 2.896 ± 0.061 g | 0.571 ± 0.005 k | 2.233 ± 0.006 h | 4.520 ± 0.051 c | 0.564 ± 0.021 k | 1.481 ± 0.022 i | 0.671 ± 0.013 j | 5.382 ± 0.074 b | 5.680 ± 0.044 a |
Naringenin | 0.024 ± 0.000 i | 0.029 ± 0.001 g | 0.033 ± 0.000 e | 0.064 ± 0.001 c | 0.035 ± 0.000 d | 0.033 ± 0.000 e | 0.027 ± 0.000 h | 0.032 ± 0.000 f | 0.019 ± 0.000 j | 0.013 ± 0.000 k | 0.069 ± 0.000 a | 0.067 ± 0.001 b |
Eriodictyol | 0.013 ± 0.001 g | 0.013 ± 0.000 g | 0.036 ± 0.001 b | 0.067 ± 0.001 a | 0.020 ± 0.000 d | 0.014 ± 0.000 f | 0.030 ± 0.000 c | 0.018 ± 0.000 e | 0.013 ± 0.000 g | 0.005 ± 0.000 i | 0.012 ± 0.000 h | 0.013 ± 0.000 g |
Vitexin | 0.178 ± 0.001 ab | 0.103 ± 0.003 cde | 0.055 ± 0.001 e | 0.059 ± 0.001 e | 0.146 ± 0.002 bc | 0.099 ± 0.001 cde | 0.098 ± 0.001 cde | 0.143 ± 0.001 bc | 0.126 ± 0.001 bcd | 0.074 ± 0.003 de | 0.150 ± 0.110 bc | 0.210 ± 0.002 a |
Orientin | 0.054 ± 0.000 e | 0.020 ± 0.000 j | 0.037 ± 0.000 i | 0.087 ± 0.004 c | 0.045 ± 0.001 g | 0.011 ± 0.000 k | 0.073 ± 0.001 d | 0.049 ± 0.001 f | 0.039 ± 0.000 h | 0.040 ± 0.001 h | 0.113 ± 0.001 b | 0.122 ± 0.002 a |
Rutin | 0.059 ± 0.001 j | 0.086 ± 0.002 h | 0.080 ± 0.001 i | 0.032 ± 0.000 k | 0.146 ± 0.002 e | 0.103 ± 0.002 g | 0.081 ± 0.001 i | 0.111 ± 0.003 f | 0.180 ± 0.001 c | 0.271 ± 0.002 a | 0.152 ± 0.000 d | 0.263 ± 0.001 b |
Paeoniflorin | 35.220 ± 0.165 i | 39.243 ± 1.839 h | 61.551 ± 0.260 e | 23.049 ± 0.211 j | 63.940 ± 0.160 d | 61.463 ± 0.171 e | 64.616 ± 0.084 d | 60.259 ± 0.204 f | 69.270 ± 0.261 c | 86.546 ± 0.077 a | 41.255 ± 0.087 g | 77.222 ± 0.577 b |
Albiflorin | 6.643 ± 0.013 b | 15.300 ± 0.006 a | 1.458 ± 0.010 g | 0.682 ± 0.001 i | 1.526 ± 0.016 f | 1.458 ± 0.021 g | 1.551 ± 0.008 f | 1.452 ± 0.033 g | 1.896 ± 0.019 e | 2.267 ± 0.012 c | 1.115 ± 0.010 h | 2.109 ± 0.019 d |
Oxypaeoniflorin | 0.608 ± 0.010 k | 0.765 ± 0.008 j | 0.809 ± 0.003 i | 0.313 ± 0.003 l | 1.469 ± 0.020 e | 1.162 ± 0.022 g | 1.021 ± 0.028 h | 1.217 ± 0.005 f | 1.892 ± 0.030 c | 3.329 ± 0.005 a | 1.502 ± 0.010 d | 3.188 ± 0.011 b |
Mudanpioside D | 0.569 ± 0.011 h | 0.581 ± 0.0098 h | 1.753 ± 0.004 c | 2.444 ± 0.018 b | 1.213 ± 0.004 f | 3.149 ± 0.013 a | 1.746 ± 0.014 c | 1.181 ± 0.012 g | 1.167 ± 0.014 g | 1.374 ± 0.010 e | 1.381 ± 0.025 e | 1.663 ± 0.014 d |
Mudanpioside E | 0.368 ± 0.003 g | 0.438 ± 0.002 e | 0.474 ± 0.002 d | 0.479 ± 0.006 d | 0.359 ± 0.002 h | 0.480 ± 0.003 d | 0.495 ± 0.002 c | 0.338 ± 0.002 i | 0.431 ± 0.003 f | 0.424 ± 0.003 f | 0.715 ± 0.010 b | 0.886 ± 0.006 a |
Benzoylpaeoniflorin | 0.303 ± 0.018 d | 0.347 ± 0.001 b | 0.223 ± 0.002 i | 0.267 ± 0.009 f | 0.587 ± 0.001 a | 0.251 ± 0.002 h | 0.258 ± 0.001 g | 0.181 ± 0.012 j | 0.189 ± 0.005 j | 0.189 ± 0.000 j | 0.286 ± 0.000 e | 0.331 ± 0.001 c |
Benzoyloxypaeoniflorin | 0.050 ± 0.000 h | 0.068 ± 0.007 gh | 0.063 ± 0.000 gh | 0.065 ± 0.000 gh | 0.161 ± 0.002 d | 0.082 ± 0.002 fgh | 0.103 ± 0.001 efg | 0.131 ± 0.001 de | 0.218 ± 0.002 c | 0.118 ± 0.088 def | 0.417 ± 0.001 b | 0.652 ± 0.003 a |
Mudanpioside C | 0.246 ± 0.003 a | 0.234 ± 0.001 b | 0.110 ± 0.001 f | 0.050 ± 0.000 k | 0.088 ± 0.001 h | 0.198 ± 0.001 c | 0.072 ± 0.003 j | 0.074 ± 0.002 i | 0.104 ± 0.001 g | 0.149 ± 0.000 e | 0.160 ± 0.003 d | 0.238 ± 0.007 b |
Mudanpioside A | 0.275 ± 0.008 f | 0.190 ± 0.002 i | 0.357 ± 0.001 d | 0.496 ± 0.001 a | 0.216 ± 0.003 g | 0.396 ± 0.001 c | 0.345 ± 0.003 e | 0.202 ± 0.002 h | 0.077 ± 0.001 k | 0.180 ± 0.002 j | 0.394 ± 0.003 c | 0.429 ± 0.001 b |
Mudanpioside H | 0.092 ± 0.001 i | 0.103 ± 0.005 h | 0.089 ± 0.003 i | 0.083 ± 0.007 j | 0.211 ± 0.002 e | 0.131 ± 0.007 g | 0.181 ± 0.002 f | 0.174 ± 0.004 f | 0.275 ± 0.000 d | 0.394 ± 0.000 b | 0.367 ± 0.003 c | 0.509 ± 0.001 a |
Mudanpioside J | 0.660 ± 0.007 j | 0.702 ± 0.015 i | 1.241 ± 0.002 f | 1.747 ± 0.003 d | 0.821 ± 0.021 g | 1.442 ± 0.015 e | 1.230 ± 0.008 f | 0.817 ± 0.021 g | 0.750 ± 0.002 h | 2.452 ± 0.024 a | 1.951 ± 0.010 c | 2.230 ± 0.005 b |
Galloylpaeoniflorin | 0.133 ± 0.003 j | 0.185 ± 0.000 g | 0.166 ± 0.002 h | 0.055 ± 0.000 k | 0.260 ± 0.001 d | 0.216 ± 0.003 f | 0.153 ± 0.002 i | 0.217 ± 0.003 f | 0.275 ± 0.000 c | 0.444 ± 0.003 a | 0.252 ± 0.012 e | 0.368 ± 0.002 b |
Galloyloxypaeoniflorin | 0.117 ± 0.010 j | 0.147 ± 0.003 h | 0.190 ± 0.001 fg | 0.278 ± 0.001 d | 0.125 ± 0.003 i | 0.196 ± 0.003 f | 0.189 ± 0.002 g | 0.124 ± 0.003 i | 0.247 ± 0.002 e | 0.525 ± 0.001 a | 0.385 ± 0.002 c | 0.446 ± 0.000 b |
paeonol | 1.300 ± 0.019 j | 1.449 ± 0.056 i | 4.034 ± 0.004 c | 4.201 ± 0.049 b | 2.128 ± 0.044 g | 5.841 ± 0.057 a | 3.914 ± 0.031 d | 2.094 ± 0.028 g | 1.902 ± 0.048 h | 1.425 ± 0.006 i | 2.586 ± 0.007 f | 2.904 ± 0.021 e |
Mudanoside A | 5.021 ± 0.048 d | 5.545 ± 0.131 c | 7.093 ± 0.030 b | 1.553 ± 0.033 k | 4.718 ± 0.066 e | 7.353 ± 0.046 a | 4.594 ± 0.006 f | 4.235 ± 0.009 g | 4.111 ± 0.013 h | 2.303 ± 0.002 i | 1.975 ± 0.037 j | 2.361 ± 0.007 i |
Mudanoside B | 1.032 ± 0.031 d | 1.263 ± 0.141 c | 1.822 ± 0.018 a | 0.842 ± 0.003 e | 1.088 ± 0.004 d | 0.625 ± 0.003 g | 1.575 ± 0.056 b | 1.034 ± 0.005 d | 0.828 ± 0.005 e | 1.020 ± 0.004 d | 0.747 ± 0.003 f | 0.846 ± 0.002 e |
Suffruticoside A or C | 0.043 ± 0.000 h | 0.053 ± 0.001 g | 0.057 ± 0.000 f | 0.019 ± 0.000 j | 0.183 ± 0.005 b | 0.107 ± 0.000 d | 0.079 ± 0.002 e | 0.146 ± 0.004 c | 0.210 ± 0.001 a | 0.032 ± 0.000 i | 0.058 ± 0.000 f | 0.058 ± 0.000 f |
Oxyresveratrol | 0.041 ± 0.000 a | 0.041 ± 0.000 a | 0.040 ± 0.000 b | 0.019 ± 0.000 h | 0.040 ± 0.000 e | 0.019 ± 0.000 i | 0.009 ± 0.000 j | 0.040 ± 0.000 d | 0.001 ± 0.000 e | 0.008 ± 0.000 k | 0.037 ± 0.000 g | 0.038 ± 0.000 f |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, C.; Contreras, M.d.M.; Verardo, V.; Gómez-Caravaca, A.M.; Xing, C. Integrated Profiling of Fatty Acids, Sterols and Phenolic Compounds in Tree and Herbaceous Peony Seed Oils: Marker Screening for New Resources of Vegetable Oil. Foods 2020, 9, 770. https://doi.org/10.3390/foods9060770
Wang X, Li C, Contreras MdM, Verardo V, Gómez-Caravaca AM, Xing C. Integrated Profiling of Fatty Acids, Sterols and Phenolic Compounds in Tree and Herbaceous Peony Seed Oils: Marker Screening for New Resources of Vegetable Oil. Foods. 2020; 9(6):770. https://doi.org/10.3390/foods9060770
Chicago/Turabian StyleWang, Xiaoqin, Chunhuan Li, María del Mar Contreras, Vito Verardo, Ana María Gómez-Caravaca, and Chen Xing. 2020. "Integrated Profiling of Fatty Acids, Sterols and Phenolic Compounds in Tree and Herbaceous Peony Seed Oils: Marker Screening for New Resources of Vegetable Oil" Foods 9, no. 6: 770. https://doi.org/10.3390/foods9060770
APA StyleWang, X., Li, C., Contreras, M. d. M., Verardo, V., Gómez-Caravaca, A. M., & Xing, C. (2020). Integrated Profiling of Fatty Acids, Sterols and Phenolic Compounds in Tree and Herbaceous Peony Seed Oils: Marker Screening for New Resources of Vegetable Oil. Foods, 9(6), 770. https://doi.org/10.3390/foods9060770