Chemistry and Sensory Characterization of a Bakery Product Prepared with Oils from African Edible Insects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Extraction of Insect Oils
2.3. Plant Oil
2.4. Gas Chromatography Coupled to Mass Spectrometry (GC-MS) Analysis of Fatty Acids
2.5. GC-MS Analysis of Vitamin E
2.6. Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) Analysis of Flavonoids
2.7. Analysis of Headspace Volatiles
2.8. Wheat Flour Blended Cookies Baked with Insect and Plant Oils
2.9. Proximate Analysis of Wheat Flour Cookies Baked with Insect and Plant Oils
2.10. Sensory Analysis
2.11. Data Analysis
3. Results
3.1. Yields of Insect Oils
3.2. Chemical Profiles of Insect and Plant Oils and Cookies
3.3. Nutritional Composition of Cookies Prepared with Insect and Plant Oils
3.4. Sensory Evaluation and Consumer Acceptability
4. Discussion
4.1. Chemistry, Nutritional, and Health Properties of Oils Derived from Insect and Plant as Well as Their Respective Bakery Product
4.2. Sensory Evaluation and Consumer Acceptability
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population Prospects: The 2019, Highlights; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Langley-Evans, S.C. Nutritional programming of disease: Unravelling the mechanism. J. Anat. 2009, 215, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Suleria, H.A.R.; Rauf, A. Edible insects as innovative foods: Nutritional and functional assessments. Trends Food Sci. Technol. 2019, 86, 352–359. [Google Scholar] [CrossRef]
- Parodi, A.; Leip, A.; De Boer, I.J.M.; Slegers, P.M.; Ziegler, F.; Temme, E.H.M.; Herrero, M.; Tuomisto, H.; Valin, H.; Van Middelaar, C.E.; et al. The potential of future foods for sustainable and healthy diets. Nat. Sustain. 2018, 1, 782–789. [Google Scholar] [CrossRef] [Green Version]
- van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects. Future Prospects for Food and Feed Security; Food and Agricultural Organization of the United Nation: Rome, Italy, 2013; Volume 171. [Google Scholar]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Kelemu, S.; Niassy, S.; Torto, B.; Fiaboe, K.; Affognon, H.; Tonnang, H.; Maniania, N.K.; Ekesi, S. African edible insects for food and feed: Inventory, diversity, commonalities and contribution to food security. J. Insects Food Feed 2015, 1, 103–119. [Google Scholar] [CrossRef] [Green Version]
- Cheseto, X.; Kuate, S.P.; Tchouassi, D.P.; Ndung’u, M.; Teal, P.E.A.; Torto, B. Potential of the desert locust Schistocerca gregaria (Orthoptera: Acrididae) as an unconventional source of dietary and therapeutic sterols. PLoS ONE 2015, 10, e0127171. [Google Scholar] [CrossRef]
- Mariod, A.A. Importance of insects as food in Africa. In African Edible Insects as Alternative Source of Food, Oil, Protein and Bioactive Components; Adam Mariod, A., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–12. [Google Scholar]
- Manditsera, F.A.; Luning, P.A.; Fogliano, V.; Lakemond, C.M.M. The contribution of wild harvested edible insects (Eulepida mashona and Henicus whellani) to nutrition security in Zimbabwe. J. Food Compos. Anal. 2019, 75, 17–25. [Google Scholar] [CrossRef]
- Raheem, D.; Carrascosa, C.; Oluwole, O.B.; Nieuwland, M.; Saraiva, A.; Millán, R.; Raposo, A. Traditional consumption of and rearing edible insects in Africa, Asia and Europe. Crit. Rev. Food Sci. Nutr. 2019, 59, 2169–2188. [Google Scholar] [CrossRef]
- Straub, P.; Tanga, C.M.; Osuga, I.; Windisch, W.; Subramanian, S. Experimental feeding studies with crickets and locusts on the use of feed mixtures composed of storable feed materials commonly used in livestock production. Anim. Feed Sci. Technol. 2019, 255, 114215. [Google Scholar] [CrossRef]
- Chia, S.Y.; Tanga, C.M.; Osuga, I.M.; Mohamed, S.A.; Khamis, F.M.; Salifu, D.; Sevgan, S.; Fiaboe, K.K.M.; Niassy, S.; van Loon, J.J.A.; et al. Effects of waste stream combinations from brewing industry on performance of black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). PeerJ 2018, 6, e5885. [Google Scholar] [CrossRef] [Green Version]
- Tzompa-Sosa, D.A.; Fogliano, V. Potential of insect-derived ingredients for food applications. In Insect Physiology and Ecology; InTech: Munich, Germany, 2017. [Google Scholar]
- Montowska, M.; Kowalczewski, P.Ł.; Rybicka, I.; Fornal, E. Nutritional value, protein and peptide composition of edible cricket powders. Food Chem. 2019, 289, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Elloumi, J.; Ben-Ayed, R.; Aifa, S. An overview of olive oil biomolecules. Curr. Biotechnol. 2012, 1, 115–124. [Google Scholar] [CrossRef]
- Persistence Market Research: Global Market Study on Edible Insects: Consumption of Insects as a Whole to Gain Maximum Traction during 2017–2024; Globa Newswire: Los Angeles, CA, USA, 2017.
- Grand View Research. Skin Care Products Market Worth $183.03 Billion by 2025; Grand View Research: San Francisco, CA, USA, 2019. [Google Scholar]
- Mariod, A.A. Nutrient composition of desert locust (Schistocerca gregaria). In African Edible Insects as Alternative Source of Food, Oil, Protein and Bioactive Components; Adam Mariod, A., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 257–264. [Google Scholar]
- Kinyuru, J.N.; Kenji, N.G.M.; Muhoho, S.N.; Ayieko, M. Nutritional potential of longhorn grasshopper (Ruspolia differens) Consumed in Siaya District, Kenya. J. Agric. Sci. Technol. 2009, 32–46. [Google Scholar]
- Herrera, B.P.A. Obtaining Fatty Acids from Insect Larvae. U.S. Patent 8,895,767 B2, 25 November 2014. [Google Scholar]
- Tzompa-Sosa, D.A.; Yi, L.; van Valenberg, H.J.F.; Lakemond, C.M.M. Four insect oils as food ingredient: Physical and chemical characterisation of insect oils obtained by an aqueous oil extraction. J. Insects Food Feed 2019, 5, 279–292. [Google Scholar] [CrossRef]
- Delicato, C.; Schouteten, J.J.; Dewettinck, K.; Gellynck, X.; Tzompa-Sosa, D.A. Consumers’ perception of bakery products with insect fat as partial butter replacement. Food Qual. Prefer. 2020, 79, 103755. [Google Scholar] [CrossRef]
- Tzompa-Sosa, D.A.; Yi, L.; van Valenberg, H.J.F.; van Boekel, M.A.S.; Lakemond, C.M.M. Insect lipid profile: Aqueous versus organic solvent-based extraction methods. Food Res. Int. 2014, 62, 1087–1094. [Google Scholar] [CrossRef]
- Christie, W.W. Preparation of ester derivatives of fatty acids for chromatographic analysis. In Advances in Lipid Methodology; Elsevier: Amsterdam, The Netherlands, 1993; pp. 69–111. [Google Scholar]
- Kirwa, H.K.; Murungi, L.K.; Beck, J.J.; Torto, B. Elicitation of differential responses in the root-knot nematode Meloidogyne incognita to tomato root exudate cytokinin, flavonoids, and alkaloids. J. Agric. Food Chem. 2018, 66, 11291–11300. [Google Scholar] [CrossRef]
- Pereira, C.A.M.; Yariwake, J.H.; McCullagh, M. Distinction of the C-glycosylfavone isomer pairs orientin/isoorientin and vitexin/isovitexin using HPLC-MS exact mass measurement and in-source CID. Phytochem. Anal. 2005, 16, 295–301. [Google Scholar] [CrossRef]
- Alipieva, K.; Kokubun, T.; Taskova, R.; Evstatieva, L.; Handjieva, N. LC-ESI-MS analysis of iridoid glucosides in Lamium species. Biochem. Syst. Ecol. 2007, 35, 17–22. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the AOAC, 15th ed.; Helrich, K.C., Ed.; Association of Official Analytical Chemists Inc.: Arlington, VA, USA, 1990. [Google Scholar]
- Finke, M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007, 26, 105–115. [Google Scholar] [CrossRef]
- Kinyuru, J.; Kenji, G.; Njoroge, M. Process development, nutritionand sensory quualities of wheat buns enriched with edible termites (Macrotermes subhylanus) from lake victoria region, Kenya. Afr. J. Food Agric. Nutr. Dev. 2009, 9, 102–110. [Google Scholar]
- ISO 5492 Sensory Analysis. General Guidance for the Selection, Training and Monitoring of Assessors 2008; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- ISO 6658 Sensory Analysis. General Guidance for the Design of Test Rooms 2008; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- R Core Team. R Development Core Team: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Institute of Medicine. Dietary reference intakes. Nutr. Rev. 2004, 62, 400–401. [Google Scholar] [CrossRef]
- Chapman, K.W.; Rosenberry, L.C.; Bandler, D.K.; Boor, K.J. Light-oxidized flavor development and vitamin A degradation in chocolate milk. J. Food Sci. 1998, 63, 930–934. [Google Scholar] [CrossRef]
- Kaur, C.; Kapoor, H.C. Antioxidants in fruits and vegetables—The millennium’s health. Int. J. Food Sci. Technol. 2008, 36, 703–725. [Google Scholar] [CrossRef]
- Anand David, A.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016, 10, 84–89. [Google Scholar] [PubMed] [Green Version]
- Di Mattia, C.; Battista, N.; Sacchetti, G.; Serafini, M. Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edible insects and invertebrates. Front. Nutr. 2019, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, E.H.A. Fatty acids contents of the edible migratory locust Locusta migratoria, Linnaeus, 1758 (Orthoptera: Acrididae). Int. J. Adv. Pharm. Biol. Chem. 2015, 4, 746–750. [Google Scholar]
- Manna, C.; Della Ragione, F.; Cucciolla, V.; Borriello, A.; D’Angelo, S.; Galletti, P.; Zappia, V. Biological effects of hydroxytyrosol, a polyphenol from olive oil endowed with antioxidant activity. Adv. Exp. Med. Biol. 2000, 472, 115–130. [Google Scholar]
- Were, B.A.; Onkware, A.O.; Gudu, S.; Welander, M.; Carlsson, A.S. Seed oil content and fatty acid composition in East African sesame (Sesamum indicum L.) accessions evaluated over 3 years. Field Crop. Res. 2006, 97, 254–260. [Google Scholar] [CrossRef]
- Clarkson, C.; Mirosa, M.; Birch, J. Potential of extracted Locusta migratoria protein fractions as value-added ingredients. Insects 2018, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Aman, P.; Frederich, M.; Uyttenbroeck, R.; Hatt, S.; Malik, P.; Lebecque, S.; Hamaidia, M.; Miazek, K.; Goffin, D.; Willems, L.; et al. Grasshoppers as a food source? A review. Biotechnol. Agron. Soc. Environ. 2016, 20, 337–352. [Google Scholar]
- Rutaro, K.; Malinga, G.M.; Lehtovaara, V.J.; Opoke, R.; Nyeko, P.; Roininen, H.; Valtonen, A. Fatty acid content and composition in edible Ruspolia differens feeding on mixtures of natural food plants. BMC Res. Notes 2018, 11, 687. [Google Scholar] [CrossRef] [PubMed]
- Gołębiowski, M.; Urbanek, A.; Pietrzak, A.; Naczk, A.M.; Bojke, A.; Tkaczuk, C.; Stepnowski, P. Effects of the entomopathogenic fungus Metarhizium flavoviride on the fat body lipid composition of Zophobas morio larvae (Coleoptera: Tenebrionidae). Sci. Nat. 2020, 107, 7. [Google Scholar] [CrossRef] [PubMed]
- Scarlet, D. FT-IR and GC-MS extracts from Euscaphis japonica bark. J. Chem. Inf. Model. 2013, 53, 1689–1699. [Google Scholar]
- Chaliha, B.; Kotoky, R.; Saikia, D.; Nath, S.C.; Saikia, S.P. Oleic acid rich tree-borne oilseeds from forests of Assam, India. J. Oleo Sci. 2020, 69, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, S.M. Monounsaturated fatty acids and cholesterol metabolism: Implications for dietary recommendations. J. Nutr. 1989, 119, 529–533. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Importance of the ratio of omega-6/omega-3 essential fatty acids: Evolutionary aspects. World Rev. Nutr. Diet. 2003, 92, 1–22. [Google Scholar] [PubMed]
- Bourre, J.-M.E.; Dumont, O.L.; Clément, M.E.; Durand, G.A. Endogenous synthesis cannot compensate for absence of dietary oleic acid in rats. J. Nutr. 1997, 127, 488–493. [Google Scholar] [CrossRef] [Green Version]
- Maedler, K.; Oberholzer, J.; Bucher, P.; Spinas, G.A.; Donath, M.Y. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic-cell turnover and function. Diabetes 2003, 52, 726–733. [Google Scholar] [CrossRef] [Green Version]
- Almeida, J.C.D.; Perassolo, M.S.; Camargo, J.L.; Bragagnolo, N.; Gross, J.L. Fatty acid composition and cholesterol content of beef and chicken meat in Southern Brazil. Braz. J. Pharm. Sci. 2006, 42, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Mori, T.A.; Hodgson, J.M. Fatty acids: Health effects of Omega-6 polyunsaturated fatty acids. In Encyclopedia of Human Nutrition; Elsevier: Amsterdam, The Netherlands, 2013; Volume 2–4, pp. 209–214. [Google Scholar]
- Berquin, I.M.; Edwards, I.J.; Chen, Y.Q. Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Lett. 2008, 269, 363–377. [Google Scholar] [CrossRef] [Green Version]
- Horrocks, L.A.; Yeo, Y.K.; Richter, C.K.; Skulas-Ray, A.C.; Kris-Etherton, P.M. Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 2016, 40, 27–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephen, N.M.; Shakila, J.R.; Jeyasekaran, G.; Sukumar, D. Effect of different types of heat processing on chemical changes in tuna. J. Food Sci. Technol. 2010, 47, 174–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuffrè, A.M.; Capocasale, M.; Macrì, R.; Caracciolo, M.; Zappia, C.; Poiana, M. Volatile profiles of extra virgin olive oil, olive pomace oil, soybean oil and palm oil in different heating conditions. LWT-Food Sci. Technol. 2020, 117, 108631. [Google Scholar] [CrossRef]
- Cavalli, J.F.; Fernandez, X.; Lizzani-Cuvelier, L.; Loiseau, A.M. Characterization of volatile compounds of French and Spanish virgin olive oils by HS-SPME: Identification of quality-freshness markers. Food Chem. 2004, 88, 151–157. [Google Scholar] [CrossRef]
- Lukić, I.; Carlin, S.; Horvat, I.; Vrhovsek, U. Combined targeted and untargeted profiling of volatile aroma compounds with comprehensive two-dimensional gas chromatography for differentiation of virgin olive oils according to variety and geographical origin. Food Chem. 2019, 270, 403–414. [Google Scholar] [CrossRef]
- Nishimura, O.; Masuda, H.; Mihara, S.; Mihara, S. Identification of volatile flavor components of the oil from roasted sesame seeds. Agric. Biol. Chem. 1989, 53, 1891–1899. [Google Scholar]
- Ssepuuya, G.; Nakimbugwe, D.; De Winne, A.; Smets, R.; Claes, J.; Van Der Borght, M. Effect of heat processing on the nutrient composition, colour, and volatile odour compounds of the long-horned grasshopper Ruspolia differens serville. Food Res. Int. 2020, 129, 108831. [Google Scholar] [CrossRef]
- Köhler, R.; Kariuki, L.; Lambert, C.; Biesalski, H.K. Protein, amino acid and mineral composition of some edible insects from Thailand. J. Asia Pac. Entomol. 2019, 22, 372–378. [Google Scholar] [CrossRef]
- Idowu, A.B.; Oliyide, E.O.; Ademolu, K.O.; Bamidele, J.A. Nutritional and anti-nutritional evaluation of three edible insects consumed by the Abeokuta community in Nigeria. Int. J. Trop. Insect Sci. 2019, 39, 157–163. [Google Scholar] [CrossRef]
- Xu, L.; Yu, X.; Li, M.; Chen, J.; Wang, X. Monitoring oxidative stability and changes in key volatile compounds in edible oils during ambient storage through HS-SPME/GC–MS. Int. J. Food Prop. 2017, 20, S2926–S2938. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Posthumus, M.A.; Voragen, A.G.J. Identification and olfactometry of French fries flavour extracted at mouth conditions. Food Chem. 2005, 90, 417–425. [Google Scholar] [CrossRef]
- Li, C.; Hou, L. Review on volatile flavor components of roasted oilseeds and their products. Grain Oil Sci. Technol. 2018, 1, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Gómez, M.; Fonseca, S.; Lorenzo, J.M. Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat. Meat Sci. 2014, 97, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Nzomo, M.A. Effect of Food Plant on Development, Reproductive Performance, Survival and Nutritional Profile of the Desert Locust, Schistocerca gregaria Forskal (Orthoptera: Acrididae). Master’s Thesis, University of Nairobi, Nairobi, Kenya, 2017. [Google Scholar]
- Mohamed, E.H.A. Determination of nutritive value of the edible migratory locust Locusta migratoria, Linnaeus, 1758 (Orthoptera: Acrididae). Int. J. Adv. Pharm. Biol. Chem. 2015, 4, 144–148. [Google Scholar]
- Osimani, A.; Garofalo, C.; Milanović, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Pasquini, M.; Mozzon, M.; Raffaelli, N.; Ruschioni, S.; et al. Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. Eur. Food Res. Technol. 2017, 243, 1157–1171. [Google Scholar] [CrossRef]
- Paul, A.; Frederich, M.; Megido, R.C.; Alabi, T.; Malik, P.; Uyttenbroeck, R.; Francis, F.; Blecker, C.; Haubruge, E.; Lognay, G.; et al. Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. J. Asia Pac. Entomol. 2017, 20, 337–340. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Raheem, D.; Raposo, A.; Oluwole, O.B.; Nieuwland, M.; Saraiva, A.; Carrascosa, C. Entomophagy: Nutritional, ecological, safety and legislation aspects. Food Res. Int. 2019, 126, 108672. [Google Scholar] [CrossRef]
- Sogari, G.; Amato, M.; Biasato, I.; Chiesa, S.; Gasco, L. The potential role of insects as feed: A multi-perspective review. Animals 2019, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Elhassan, M.; Wendin, K.; Olsson, V.; Langton, M. Quality aspects of insects as food-Nutritional, sensory, and related concepts. Foods 2019, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Kauppi, S.M.; Pettersen, I.N.; Boks, C. Consumer acceptance of edible insects and design interventions as adoption strategy. Int. J. Food Des. 2019, 4, 39–62. [Google Scholar] [CrossRef]
Peak No. | tR (min) | Compound Name | ω-n (Δn) | S. gregaria Oil | R. differens Oil | Sesame Oil | Olive Oil | S. gregaria Cookies | R. differens Cookies | Sesame Oil Cookies | Olive oil Cookies |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 13.67 | Methyl octanoate | C8:0 | 1.5 ± 0.08 | 2.2 ± 0.39 | 1.7 ± 0.79 | 2.0 ± 0.16 | 2.1 ± 0.21 | 0.1 ± 0.02 | ||
2 | 16.44 | Methyl decanoate | C10:0 | 0.2 ± 0.05 | 0.6 ± 0.17 | 2.0 ± 0.81 | 1.6 ±0.17 | 1.5 ± 0.19 | 0.2 ± 0.03 | ||
3 | 18.98 | Methyl dodecanoate | C12:0 | 0.6 ± 0.12 | 0.9 ± 0.31 | 0.1 ± 0.03 | 0.1 ± 0.01 | 2.0 ± 0.18 | 1.8 ± 0.08 | 3.5 ± 0.24 | 2.3 ± 0.12 |
4 | 19.25 | Methyl 2,6-dimethylundecanoate | iso-dimethyl-C11:0 | 0.2 ± 0.05 | 0.3 ± 0.11 | ||||||
5 | 19.60 | Methyl 11-methyldodecanoate | iso-methyl-C12:0 | 0.5 ± 0.13 | 0.4 ± 0.10 | ||||||
6 | 19.69 | Methyl 10-methyldodecanoate | iso-methyl-C12:0 | 0.3 ± 0.07 | 0.3 ± 0.06 | ||||||
7 | 20.17 | Methyl tridecanoate | C13:0 | 0.4 ± 0.07 | 1.0 ± 0.13 | 1.6 ± 0.23 | 1.5 ± 0.33 | ||||
8 | 20.46 | Methyl 3-methyltridecanoate | iso-methyl-C13:0 | 0.1 ± 0.03 | 0.2 ± 0.07 | 0.01 ± 0.01 | |||||
9 | 20.75 | Methyl 12-methyltridecanoate | iso-methyl-C13:0 | 0.2 ± 0.04 | 0.3 ± 0.08 | 0.02 ± 0.01 | |||||
10 | 21.32 | Methyl tetradecanoate | C14:0 | 8.6 ± 1.50 | 19.2 ± 1.56 | 0.9 ± 0.09 | 1.0 ± 0.05 | 2.3 ± 0.25 | 1.89 ± 0.32 | 14.9 ± 1.14 | 12.5 ± 0.66 |
11 | 21.51 | Methyl 2-methyltetradecanoate | iso-methyl-C14:0 | 0.3 ± 0.07 | 0.7 ± 0.21 | 0.9 ± 0.02 | |||||
12 | 21.84 | Methyl 13-methyltetradecanoate | iso-methyl-C14:0 | 0.7 ± 0.12 | 1.2 ± 0.16 | 0.2 ± 0.04 | |||||
13 | 21.93 | Methyl 9-methyltetradecanoate | iso-methyl-C14:0 | 1.3 ± 0.33 | 2.2 ± 0.08 | 0.4 ± 0.10 | |||||
14 | 22.37 | Methyl pentadecanoate | C15:0 | 1.7 ± 0.25 | 3.2 ± 0.37 | 0.1 ± 0.01 | 0.5 ± 0.03 | 1.7 ± 0.25 | 1.78 ± 0.14 | 1.1 ± 0.07 | 1.1 ± 0.09 |
15 | 22.66 | Methyl 3-methylpentadecanoate | iso-methyl-C15:0 | 0.1 ± 0.03 | 0.3 ± 0.02 | ||||||
16 | 23.66 | Methyl hexadecanoate | C16:0 | 171.7 ± 26.93 | 73.6 ± 4.70 | 171.7 ± 9.44 | 197.2 ± 9.62 | 295.2 ± 22.56 | 250.4 ± 13.12 | ||
17 | 23.60 | Methyl 10-hexadecanoate | iso-methyl-C16:0 | 71.0 ± 16.58 | 89.2 ± 1.80 | 174.8 ± 8.93 | |||||
18 | 24.05 | Methyl heptadecanoate | C17:0 | 4.9 ± 0.59 | 10.5 ± 1.33 | 139.7 ± 4.39 | 90.9 ± 4.64 | 3.1 ± 0.24 | 2.6 ± 0.14 | ||
19 | 24.14 | Methyl 14-methylhexadecanoate | iso-methyl-C16:0 | 0.7 ± 0.07 | 0.9 ± 0.19 | 72.1 ± 2.21 | 5.86 ± 0.36 | ||||
20 | 25.55 | Methyl octadecanoate | C18:0 | 51.8 ± 3.27 | 58.5 ± 1.14 | 92.1 ± 4.15 | 61.9 ± 1.15 | 3.8 ± 1.11 | 45.4 ± 2.32 | 88.5 ± 6.77 | 66.9 ± 3.51 |
21 | 25.62 | Methyl 6-methyloctadecanoate | iso-methyl-C18:0 | 0.4 ± 0.08 | 0.9 ± 0.17 | 41.7 ± 1.43 | |||||
22 | 26.21 | Methyl nonadecanoate | C19:0 | 0.6 ± 0.08 | 1.6 ± 0.17 | 1.1 ± 0.07 | 1.8 ± 0.08 | 3.2 ± 0.31 | 3.4 ± 0.37 | 0.8 ± 0.07 | 0.6 ± 0.05 |
23 | 27.05 | Methyl eicosanoate | C20:0 | 30.1 ± 1.08 | 23.2 ± 1.71 | 10.0 ± 0.53 | |||||
24 | 27.17 | Methyl 2,6-dimethylnonadecanoate | iso-dimethyl-C19:0 | 0.2 ± 0.06 | 1.1 ± 0.45 | ||||||
25 | 27.86 | Methyl 2,4-dimethylheneicosanoate | iso-dimethyl-C22:0 | 0.9 ± 0.69 | 0.1 ± 0.07 | ||||||
26 | 27.87 | Methyl heneicosanoate | C21:0 | 0.1 ± 0.03 | 0.5 ± 0.19 | 1.1 ± 0.10 | 2.6 ± 0.47 | 2.4 ± 0.22 | 2.2 ± 0.21 | 0.6 ± 0.05 | |
27 | 28.01 | Methyl 3-methylheneicosanoate | iso-methyl-C22:0 | 0.07 ± 0.02 | 0.4 ± 0.11 | ||||||
28 | 28.66 | Methyl docosanoate | C22:0 | 8.9 ± 0.43 | 8.7 ± 0.73 | 5.5 ± 0.29 | 4.6 ± 0.53 | 3.4 ± 0.26 | 2.3 ± 0.12 | ||
29 | 29.42 | Methyl tricosanoate | C23:0 | 2.1 ± 0.31 | 2.8 ± 0.23 | 2.2 ± 0.38 | 2.0 ± 0.24 | 2.0 ± 0.16 | 1.4 ± 0.19 | ||
30 | 30.06 | Methyl 16-methyltricosanoate | iso-methyl-C23:0 | ||||||||
31 | 30.21 | Methyl tetracosanoate | C24:0 | 6.5 ± 0.42 | 5.0 ± 0.62 | 1.6 ± 0.24 | 0.9 ± 0.20 | 4.3 ± 0.30 | 0.4 ± 0.03 | ||
32 | 31.10 | Methyl pentacosanoate | C25:0 | 2.1 ± 0.24 | 1.9 ± 0.21 | ||||||
33 | 32.17 | Methyl hexacosanoate | C26:0 | 2.2 ± 0.49 | 1.1 ± 0.36 | 1.3 ± 0.12 | 1.4 ± 0.21 | 1.9 ± 0.16 | 0.8 ± 0.06 | ||
34 | 33.41 | Methyl 20-methylhexacosanoate | iso-methyl-C26:0 | 0.2 ± 0.01 | |||||||
35 | 34.93 | Methyl octacosanoate | C28:0 | 0.9 ± 0.19 | 0.2 ± 0.05 | 1.2 ± 0.25 | |||||
Ʃ SFA | 297.6 ± 26.18 | 259.9 ± 12.79 | 328.4 ±19.25 | 316.8 ± 16.43 | 285.5 ± 11.09 | 341.7 ± 19.29 | 355.5 ± 19.18 | 418.58 ± 31.95 | |||
36 | 14.27 | Methyl 2-hexenoate | C6:1 (n-4) | 0.1 ± 0.02 | 0.07 ± 0.02 | ||||||
37 | 20.88 | Methyl (11E)-tetradecenoate | C14:1 (n-3) | 0.3 ± 0.04 | 0.3 ± 0.08 | 0.03 ± 0.01 | |||||
38 | 20.94 | Methyl (11Z)-tetradecenoate | C14:1 (n-3) | 0.5 ± 0.12 | 0.3 ± 0.19 | 0.1 ± 0.01 | |||||
39 | 21.01 | Methyl (9E)-dodecenoate | C14:1 (n-3) | 0.02 ± 0.01 | 0.02 ± 0.01 | ||||||
40 | 21.02 | Methyl (9Z)-tetradecenoate | C14:1 (n-3) | 0.1 ± 0.02 | 0.1 ± 0.01 | 1.3 ± 0.27 | 0.5 ± 0.09 | ||||
41 | 22.10 | Methyl (5Z)-decenoate | C10:1 (n-5) | 0.3 ± 0.04 | 0.85 ± 0.08 | 0.9 ± 0.13 | |||||
42 | 23.24 | Methyl (9Z)-hexadecenoate | C16:1 (n-7) | 3.1 ± 0.27 | 5.9 ± 0.45 | 5.9 ± 0.26 | 27.7 ± 1.34 | 2.0 ± 0.26 | 5.3 ± 0.37 | 4.6 ± 0.24 | |
43 | 24.01 | Methyl 8-heptadecenoate | C17:1 (n-9) | 5.04 ± 0.22 | 8.8 ± 0.64 | ||||||
44 | 24.19 | Methyl (10Z)-heptadecenoate | C17:1 (n-7) | 1.4 ± 0.22 | 2.7 ± 0.37 | 2.4 ± 0.08 | 10.0 ± 0.94 | 3.5 ± 0.42 | 3.8 ± 0.29 | 1.6 ± 0.13 | 2.1 ± 0.28 |
45 | 24.91 | Methyl (6Z)-octadecenoate | C18:1 (n-12) | 0.6 ± 0.08 | 1.3 ± 0.14 | ||||||
46 | 25.24 | Methyl (9Z)-Octadecenoate | C18:1(n-9) | 53.8 ± 2.48 | 41.1 ± 1.81 | 230.9 ± 13.93 | 514.4 ± 15.08 | 1.5 ± 0.14 | 2.7 ± 0.31 | 425.8 ± 32.54 | 151.2 ± 17.30 |
47 | 25.25 | Methyl (6E)-octadecenoate | C18:1 (n-12) | 6.1 ± 0.13 | 10.7 ± 0.74 | ||||||
48 | 25.31 | Methyl 16-octadecenoate | C18:1 (n-2) | 61.9 ± 0.80 | 40.2 ± 1.31 | ||||||
49 | 25.38 | Methyl (9E)-octadecenoate | C18:1(n-9) | 0.7 ± 0.01 | 206.8 ± 6.65 | 205.5 ± 10.49 | |||||
50 | 25.41 | Methyl (3Z)-octadecenoate | C18:1 (n-15) | 70.2 ± 3.40 | 69.6 ± 3.56 | ||||||
51 | 26.01 | Methyl (10Z)-nonadecenoate | C19:1 (n-9) | 6.6 ± 3.15 | 6.0 ± 0.46 | 10.7 ± 0.37 | 11.1 ± 0.62 | 1.3 ± 0.07 | |||
52 | 26.72 | Methyl (11E)-eicosenoate | C20:1(n-9) | 1.1 ± 0.25 | 2.4 ± 0.35 | ||||||
53 | 26.86 | Methyl (11Z)-eicosenoate | C20:1(n-9) | 19.3 ± 1.61 | 3.2 ± 0.32 | 3.9 ± 0.21 | 6.0 ± 0.46 | ||||
54 | 26.87 | Methyl (13Z)-eicosenoate | C20:1(n-7) | 0.3 ± 0.06 | 0.6 ± 0.11 | 8.7 ± 2.09 | 4.9 ± 0.26 | ||||
55 | 28.47 | Methyl (13Z)-docosenoate | C22:1(n-9) | 0.7 ± 0.06 | 0.6 ± 0.01 | 0.6 ± 0.05 | |||||
56 | 28.48 | Methyl (11Z)-docosenoate | C22:1(n-11) | 0.3 ± 0.05 | 0.4 ± 0.05 | ||||||
57 | 30.03 | Methyl (15Z)-tetracosenoate | C24:1(n-9) | 3.5 ± 0.66 | 3.7 ± 0.19 | ||||||
Ʃ MUFA | 134.3 ± 4.69 | 114.5 ± 6.18 | 255.9 ± 19.67 | 579.3 ± 19.53 | 301.3 ± 11.20 | 301.5 ± 15.95 | 166.5 ± 18.48 | 438.8 ± 33.50 | |||
58 | 24.78 | Methyl (9Z,11E)-octadecadienoate | C18:2(n-7) | 2.9 ± 0.23 | 2.1 ± 0.38 | ||||||
59 | 25.21 | Methyl (9Z,12Z)-octadecadienoate | C18:2(n-6) | 60.2 ± 0.19 | 83.7 ± 1.54 | 496.9 ± 12.67 | 4.0 ± 0.91 | 2.9 ± 0.23 | 2.1 ± 0.38 | 330.9 ± 11.54 | 11.5 ± 0.35 |
60 | 25.33 | Methy (9Z,11Z)-octadecadienoate | C18:2(n-7) | 0.6 ± 0.19 | 1.3 ± 0.14 | ||||||
61 | 25.47 | Methyl (5,12)-octadecadienoate | C18:2(n-7) | 126.7 ± 3.34 | 130.9 ± 6.68 | ||||||
62 | 25.60 | Methyl (10E,12Z)-octadecadienoate | C18:2(n-6) | 7.7 ± 0.19 | 15.4 ± 0.28 | 2.0 ± 0.12 | 144.6 ± 3.81 | 149.5 ± 7.63 | |||
63 | 25.71 | Methyl (3R,6E,10E)-3,7,11,15-tetramethylhexadeca-6,10,14-trienoate | iso-tetramethyl C20:3(n-1) | 2.3 ± 0.19 | 4.4 ± 0.18 | ||||||
64 | 25.71 | Methyl (9Z,15Z)-octadecadienoate | C18:2(n-3) | 0.9 ± 0.19 | 1.9 ± 0.08 | ||||||
65 | 25.74 | Methyl (7,10)-octadecadienoate | C18:2(n-8) | 0.1 ± 0.08 | 0.2 ± 0.09 | 1.3 ± 0.11 | 1.1 ± 0.9 | ||||
66 | 25.90 | Methyl (9E,12E)-octadecadienoate | C18:2(n-6) | 2.2 ± 0.19 | 5.6 ± 0.25 | 2.7 ± 0.37 | 7.8 ± 0.37 | 7.9 ± 0.46 | 2.3 ± 0.16 | 2.1 ± 0.29 | |
67 | 26.24 | Methyl (9E,11E)-octadecadienoate | C18:2(n-7) | 4.2 ± 0.19 | |||||||
68 | 26.34 | Methyl (9Z,12Z,15Z)-octadecatrienoate (ALA) | C18:3(n-3) | 14.1 ± 0.51 | 17.6 ± 0.41 | 2.6 ± 0.54 | 1.7 ± 0.28 | 4.1 ± 0.44 | 4.3 ± 0.39 | 0.7 ± 0.21 | 1.3 ± 0.09 |
69 | 26.40 | Methyl (5Z,8Z,11Z,14Z-eicosatetraenoate | C20:4(n-6) | 4.1 ± 0.19 | 7.4 ± 0.58 | ||||||
70 | 26.45 | Methyl (9Z,11E,13E)-octadecatrienoate | C18:3(n-3) | 3.0 ± 0.19 | 5.3 ± 0.55 | 1.3 ± 0.10 | 1.7 ± 0.28 | 16.0 ± 0.84 | 16.2 ± 1.00 | 1.3 ± 0.09 | 2.5 ± 0.27 |
71 | 26.54 | Methyl (5Z,8Z,11Z,14Z,17Z)-eicosapentaenoate (EPA) | C20:5(n-3) | 52.1 ± 1.29 | 44.0 ± 0.65 | 4.7 ± 0.64 | 4.3 ± 0.61 | ||||
72 | 26.68 | Methyl (11E,14E)-eicosadienoate | C20:2(n-6) | 3.5 ± 0.19 | 5.9 ± 0.78 | ||||||
73 | 28.12 | Methyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoate (DHA) | C22:6(n-3) | 3.2 ± 0.43 | 7.7 ± 0.63 | 2.4 ± 0.56 | 2.0 ± 0.38 | ||||
Ʃ PUFA | 158.2 ± 4.22 | 200.5 ± 6.17 | 505.0 ± 13.78 | 9.3 ± 1.67 | 324.8 ± 12.59 | 333.8 ± 19.33 | 337.3 ± 12.39 | 18.1 ± 0.78 | |||
Ʃ n-6 PUFA | 73.6 ± 0.80 | 118.1 ± 3.43 | 49.9 ± 6.52 | 6.0 ± 1.06 | 294.8 ± 9.88 | 304.9 ± 16.58 | 33.3 ± 2.52 | 13.8 ± 0.51 | |||
Ʃ n-3 PUFA | 74.2 ± 2.8 | 77.3 ± 2.59 | 4.0 ± 1.12 | 3.2 ± 0.64 | 27.2 ± 2.49 | 26.8 ± 2.38 | 3.2 ± 0.95 | 4.3 ± 0.27 | |||
Ʃ n-6/n-3 | 1.4 | 1.5 | 12.5 | 1.9 | 10.8 | 11.35 | 10.4 | 3.2 | |||
Ʃ ALA+ EPA + DHA | 69.5 ± 2.23 | 69.3 ± 1.69 | 2.6 ± 0.53 | 1.5 ± 0.36 | 11.1 ± 2.85 | 10.7 ± 1.38 | 0.7 ± 0.21 | 3.0 ± 0.17 |
Peak No. | tR (Min) | Flavonoid Name | Molecular Formula | [M + H] + | Key Fragment Ions | S. gregaria Oil | R differens Oil | Sesame Oil | Olive Oil |
---|---|---|---|---|---|---|---|---|---|
1 a | 6.20 | Rutin | C27H30O16 | 611.2 | 633.4, 465.3, 303.3 | − | − | + | + |
2 a | 6.39 | Apigenin | C15H10O5 | 271.2 | 293.4, 153.5, 121.4, 145.6 | − | − | − | + |
3 a | 7.98 | Quercetin | C15H10O7 | 303.4 | 325.2, 285.1, 229.3, 153.2, 137.5 | + | + | − | − |
4 a | 8.79 | Luteolin | C15H10O6 | 287.3 | 309.3, 269.1, 153.2, 135.2 | + | + | − | − |
5 a | 9.60 | Kaempferol | C15H10O6 | 287.5 | 309.6, 153.4, 137.3, 121.6 | + | + | − | − |
6 b | 12.30 | Orientin | C21H20O11 | 449.3 | 471.2, 299.1, 329.2 | + | + | − | − |
7 b | 12.62 | Hesperidin | C28H34O15 | 611.5 | 633.2, 593.3, 575.2, 303.4 | − | − | + | − |
8 b | 12.73 | Sesamoside | C17H24O12 | 421.4 | 863.4, 459.2, 443.2 | − | − | + | − |
tR (min) | Compound | Compound Class | S. gregaria Oil | R. differens Oil | Sesame Oil | Olive Oil | S. gregaria Cookies | R. differens Cookies | Sesame Oil Cookies | Olive Oil Cookies |
---|---|---|---|---|---|---|---|---|---|---|
3.43 | 1-Penten-3-ol | Alcohol | 8.9 ± 3.26 | 17.2 ± 1.33 | 5.4 ± 0.46 | 3.9 ± 0.55 | 19.0 ± 0.89 | |||
3.68 | Pentanal | Aldehyde | 20.8 ± 0.93 | 11.9 ± 1.05 | 18.6 ± 0.81 | |||||
3.92 | Acetoin | Ketone | 46.6 ± 2.95 | 73.5 ± 1.60 | ||||||
4.61 | 3-Methyl-1-butanol | Alcohol | 4.5 ± 0.42 | |||||||
4.71 | 3-Penten-2-one | Ketone | ||||||||
4.94 | 2-Methylpentanal | Aldehyde | 3.7 ± 1.36 | |||||||
5.46 | 2,3-Dimethylhexane | hydrocarbon | 26.9 ± 3.33 | 14.1 ± 1.38 | ||||||
5.58 | Pentanol | Alcohol | 27.2 ± 1.11 | 4.0 ± 1.36 | 30.2 ± 1.20 | |||||
5.96 | 2,3-Butanediol | Alcohol | 70.0 ± 1.98 | 10.8 ± 0.44 | ||||||
6.49 | Hexanal | Aldehyde | 74.3 ± 2.41 | 18.4 ± 0.74 | 43.2 ± 4.83 | 27.9 ± 2.52 | 54.2 ± 2.72 | 79.8 ± 3.33 | 37.5 ± 4.16 | 163.3 ± 9.91 |
6.67 | 2-Hexanol | Alcohol | 4.1 ± 0.37 | |||||||
7.15 | Methylpyrazine | nitrogen comp. | 3.1 ± 0.24 | 6.8 ± 0.24 | 5.7 ± 0.15 | |||||
7.40 | (Z)-1-Methoxyhex-3-ene | Ester | 12.6 ± 1.03 | |||||||
7.44 | Furfural | Aldehyde | 4.7 ± 0.15 | 5.9 ± 1.39 | 12.2 ± 0.73 | 8.3 ± 0.26 | 5.2 ± 1.25 | 15.1 ± 1.00 | ||
7.55 | 2,5-Dimethyl-3-hexanone | Ketone | 5.7 ± 0.51 | |||||||
7.62 | 2,4-Dimethyl-1-heptene | hydrocarbon | 17.0 ±0.64 | 4.7 ± 0.37 | 12.9 ± 0.83 | |||||
7.93 | Ethyl 2-methylbutanoate | Ester | 4.2 ± 1.22 | 4.5 ± 0.36 | ||||||
7.97 | (E)-2-Hexenal | Aldehyde | 18.2 ± 0.52 | 4.5 ± 0.13 | ||||||
8.04 | (E)-3-Hexenol | Alcohol | 57.2 ± 2.88 | |||||||
8.04 | 3-Furanmethanol | furanoid | 12.5 ± 0.63 | |||||||
8.10 | Ethylbenzene | benzenoid | 12.4 ± 1.53 | 12.2 ± 1.34 | 11.8 ± 0.50 | |||||
8.27 | (Z)-3-Hexen-1-ol | Alcohol | 7.5 ± 0.37 | |||||||
8.32 | p-Xylene | benzenoid | 5.2 ± 2.23 | 21.3 ± 0.47 | 12.5 ± 1.18 | 4.7 ± 0.15 | 5.7 ± 0.18 | |||
8.32 | 3-Methylbutanoic acid | Carboxylic acid | 137.6 ± 7.08 | 19.4 ± 2.07 | ||||||
8.38 | Hexanol | Alcohol | 38.0 ± 1.54 | 6.3 ± 0.38 | ||||||
8.62 | 2-Methylbutanoic acid | Carboxylic acid | 50.8 ± 1.19 | 29.2 ± 1.69 | ||||||
8.83 | Styrene | benzenoid | 8.7 ± 3.11 | 9.7 ± 1.53 | 17.8 ± 0.39 | 15.9 ± 1.82 | 3.1 ± 0.11 | 5.4 ± 0.20 | 3.1 ± 0.05 | 3.4 ± 0.03 |
8.90 | 2-Heptanone | Ketone | 11.4 ± 0.63 | 12.6 ± 0.64 | 4.8 ± 0.13 | 15.3 ± 0.80 | ||||
9.09 | (Z)-4-Heptenal | Aldehyde | 5.3 ± 0.44 | |||||||
9.14 | Heptanal | Aldehyde | 7.8 ± 0.43 | 9.8 ± 0.40 | 12.6 ± 0.64 | 8.3 ± 0.15 | 21.9 ± 2.66 | |||
9.24 | Methional | Aldehyde | 4.2 ± 0.45 | |||||||
9.33 | 2,5-Dimethylpyrazine | nitrogen comp. | 6.2 ± 0.59 | 10.7 ± 1.59 | 7.9 ± 0.35 | 2.9 ± 0.04 | 13.3 ± 1.30 | |||
9.66 | (1Z,5E)-Cycloocta-1,5-diene | hydrocarbon | 3.6 ± 0.47 | |||||||
9.82 | α-Pinene | monoterpene | 3.5 ± 0.25 | 12.5 ± 1.63 | 6.8 ± 0.78 | 4.2 ± 0.12 | 4.2 ± 0.26 | 8.0 ± 1.36 | ||
10.08 | Pyrrolidine | nitrogen comp. | 12.8 ± 1.38 | |||||||
10.14 | 1-Methyl-2-propylcyclohexane | hydrocarbon | 6.4 ± 1.55 | 8.1 ± 0.79 | 3.5 ± 0.47 | 7.6 ± 0.33 | 9.9 ± 1.03 | |||
10.33 | (E)-2-heptenal | Aldehyde | 27.2 ± 0.80 | 10.0 ± 0.55 | 9.6 ± 0.86 | 15.3 ± 1.55 | ||||
10.39 | Benzaldehyde | Aldehyde | 12.6 ± 0.57 | 10.8 ± 1.59 | 34.8 ± 2.00 | 25.6 ± 1.44 | 8.2 ± 0.70 | 33.7 ± 1.93 | ||
10.73 | δ-3-Carene | monoterpene | 4.9 ± 0.45 | 11.0 ± 1.34 | ||||||
10.73 | Myrcene | monoterpene | 3.0 ± 0.09 | 7.1 ± 0.12 | ||||||
10.80 | 1-Octen-3-ol | Alcohol | 20.5 ± 1.68 | 5.9 ± 0.34 | 21.8 ± 1.21 | |||||
10.84 | Phenol | benzenoid | 5.2 ± 0.31 | 13.5 ± 0.69 | 5.0 ± 0.88 | |||||
10.91 | 2,5-Octanedione | Ketone | 10.9 ± 1.34 | |||||||
11.00 | Methoxymethylbenzene | benzenoid | 8.1 ± 0.69 | |||||||
11.04 | 2-Pentyl furan | furanoid | 15.5 ± 0.82 | 12.9 ± 0.66 | 7.2 ± 0.58 | 16.1 ± 0.35 | ||||
11.07 | 1,2,4-Trimethylbenzene | furanoid | 5.1 ± 1.65 | 6.9 ± 0.63 | 26.4 ± 1.49 | 10.1 ± 1.84 | 6.1 ± 0.24 | |||
11.24 | 2,3,5-Trimethylpyrazine | nitrogen comp. | 27.0 ± 0.65 | |||||||
11.28 | Octanal | Aldehyde | 8.1 ± 1.14 | 6.7 ± 0.37 | 21.0 ± 0.98 | |||||
11.34 | (Z)-3-Hexenylbutanoate | Ester | 183.7 ± 15.10 | |||||||
11.37 | 3,3,5-Trimethylheptane | hydrocarbon | 9.7 ± 0.95 | 31.1 ± 1.78 | ||||||
11.45 | 2E,4E-Heptadienal | Aldehyde | 6.8 ± 0.53 | 8.3 ± 0.26 | ||||||
11.64 | 1-Undecyne | hydrocarbon | 10.3 ± 1.09 | 15.4 ± 0.55 | 9.9 ± 0.33 | 5.8 ± 0.22 | 51.2 ± 1.15 | |||
11.75 | Limonene | monoterpene | 15.4 ± 1.84 | 85.9 ± 3.59 | 14.6 ± 0.76 | 6.5 ± 0.18 | 5.4 ± 0.43 | 11.9 ± 0.41 | ||
11.91 | (Z)-β-Ocimene | monoterpene | 15.3 ± 0.56 | |||||||
12.02 | 1-Tetradecyl acetate | Ester | 15.5 ± 0.27 | |||||||
12.04 | Benzene acetaldehyde | Aldehyde | 6.9 ± 0.58 | 11.9 ± 1.36 | 7.5 ± 0.23 | 17.7 ± 0.66 | ||||
12.10 | (E)-β-Ocimene | monoterpene | 25.1 ± 1.98 | 8.6 ± 1.70 | ||||||
12.56 | (Z)-9-Methyl-5-undecene | hydrocarbon | 20.9 ± 1.15 | 15.2 ± 0.95 | 5.4 ± 0.20 | 12.0 ± 0.42 | ||||
12.77 | (E)-Dodecene | hydrocarbon | 15.2 ± 0.32 | 12.3 ± 0.67 | 94.5 ± 5.67 | |||||
13.07 | Nonanal | Aldehyde | 20.1 ± 0.67 | 30.7 ± 3.88 | 111.3 ± 4.67 | 31.7 ± 1.24 | ||||
13.80 | Camphor | monoterpene | 14.0 ± 0.73 | 4.9 ± 0.94 | ||||||
14.41 | Naphthalene | benzenoid | 11.2 ± 0.22 | 4.4 ± 0.71 | ||||||
14.76 | Decanal | Aldehyde | 9.0 ± 0.68 | |||||||
15.43 | Precocene I | chromene | 3.5 ± 2.11 | 4.8 ± 0.45 | ||||||
16.20 | (2E,4E)-Dodeca-2,4-dienal | Aldehyde | 3.2 ± 0.06 | 4.1 ± 0.08 | 2.7 ± 0.03 | 8.2 ± 0.26 | ||||
17.11 | Butyl butanoate | Ester | 5.4 ± 0.32 | 28.4 ± 1.12 | 12.2 ± 1.73 | |||||
17.20 | α-Copaene | sesquiterpene | 9.5 ± 0.31 | |||||||
17.27 | Pentadecanol | Alcohol | 4.3 ± 1.52 | 4.7 ± 0.29 | 4.7 ± 0.11 | |||||
17.65 | Longifolene | sesquiterpene | 11.7 ± 0.40 | 5.9 ± 0.64 | ||||||
17.73 | (Z)-α-Bisabolene | sesquiterpene | 11.1 ± 0.55 | 6.0 ± 0.54 | ||||||
18.82 | 2,4-bis(1,1-dimethylethyl)-phenol | benzenoid | 8.9 ± 1.64 | 10.7 ± 0.44 | 27.0 ± 1.03 | 15.9 ± 1.36 | 7.7 ± 0.23 | 3.8 ± 0.07 | ||
18.85 | 4-tert-butylphenyl acetate | Ester | 5.6 ± 0.21 | 3.9 ± 0.07 | ||||||
18.96 | o-Hydroxybiphenyl | benzenoid | 4.5 ± 0.26 | 24.2 ± 0.94 | 9.6 ± 1.52 |
Treatment | Proximate Analysis | ||||
---|---|---|---|---|---|
Moisture | Ash | Fiber | Crude Protein | Carbohydrate | |
Desert locust oil (S. gregaria) | 5.48 ± 0.84 a | 2.31 ± 0.13 a | 0.13 ± 0.001 b | 8.82 ± 0.22 a | 51.36 ± 0.79 c |
Olive oil | 3.89 ± 0.29 b | 1.78 ± 0.18 b | 0.15 ± 0.003 a | 7.49 ± 0.37 b | 71.47 ± 0.61 b |
African bush-cricket oil (R. differens) | 3.54 ± 0.07 b | 1.53 ± 0.01 c | 0.11 ± 0.002 c | 7.75 ± 0.28 b | 71.39 ± 0.39 b |
Sesame oil | 3.24 ± 0.09 b | 1.50 ± 0.01 c | 0.05 ± 0.004 d | 7.48 ± 0.16 b | 73.86 ± 0.68 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheseto, X.; Baleba, S.B.S.; Tanga, C.M.; Kelemu, S.; Torto, B. Chemistry and Sensory Characterization of a Bakery Product Prepared with Oils from African Edible Insects. Foods 2020, 9, 800. https://doi.org/10.3390/foods9060800
Cheseto X, Baleba SBS, Tanga CM, Kelemu S, Torto B. Chemistry and Sensory Characterization of a Bakery Product Prepared with Oils from African Edible Insects. Foods. 2020; 9(6):800. https://doi.org/10.3390/foods9060800
Chicago/Turabian StyleCheseto, Xavier, Steve B.S. Baleba, Chrysantus M. Tanga, Segenet Kelemu, and Baldwyn Torto. 2020. "Chemistry and Sensory Characterization of a Bakery Product Prepared with Oils from African Edible Insects" Foods 9, no. 6: 800. https://doi.org/10.3390/foods9060800
APA StyleCheseto, X., Baleba, S. B. S., Tanga, C. M., Kelemu, S., & Torto, B. (2020). Chemistry and Sensory Characterization of a Bakery Product Prepared with Oils from African Edible Insects. Foods, 9(6), 800. https://doi.org/10.3390/foods9060800