Biofortified Crops for Combating Hidden Hunger in South Africa: Availability, Acceptability, Micronutrient Retention and Bioavailability
Abstract
:1. Introduction
Asia | Africa | Latin America and the Caribbean | Total Cases of Deficiency/Inadequate Intake | |
---|---|---|---|---|
Total population at risk | 2,466,226,780 | |||
All | 1,722,763,911 | 541,818,522 | 201,644,347 | 994,556,079 |
Iron | 699,198,517 | 237,395,434 | 57,962,128 | 1,273,705,384 |
Zinc | 901,336,413 | 236,801,679 | 135,567,293 | 197,965,317 |
Vitamin A | 122,228,982 | 67,621,409 | 8,114,927 | 197,965,137 |
Total Kilocalories per day (millions) | ||||
Rice | 3,146,030 | 201,275 | 141,990 | 3,489,295 |
Wheat | 2,017,353 | 358,305 | 194,579 | 2,570,236 |
Maize | 301,673 | 352,693 | 211,579 | 866,175 |
Potatoes | 223,633 | 34,527 | 24,846 | 283,007 |
Cassava | 71,263 | 140,542 | 31,554 | 243,359 |
2. Micronutrient Deficiencies in South Africa
2.1. Vitamin A Deficiency
2.2. Iron Deficiency
2.3. Zinc Deficiency
3. Feeding Practices and Micronutrient Deficiencies in South Africa
4. Crop Biofortification as a Strategy
4.1. Biofortification by Conventional Breeding and Transgenics (rDNA Technology)
4.2. Provitamin a Biofortified Crops in South Africa
4.3. Orange-Fleshed Sweet Potato
4.4. Provitamin A Biofortified Maize
4.5. Zinc and Iron Biofortified Crops
5. Agronomic Biofortification
Zinc Agronomic Biofortification
6. Bioavailability of Target Micronutrients in Biofortified Foods
6.1. Provitamin A Bioavailability
6.2. Iron Bioavailability
6.3. Zinc Bioavailability
7. Retention of Target Nutrients during Processing/Preparation of Biofortified Foods
7.1. Provitamin A Retention
7.2. Zinc and Iron Retention
8. Consumer Acceptability of Biofortified Foods
8.1. Consumer Acceptability
8.2. Nutrition Education
8.3. Cost of Biofortified Foods
9. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ruel-Bergeron, J.C.; Stevens, G.A.; Sugimoto, J.; Roos, F.F.; Ezzati, M.; Black, R.E.; Kraemer, K. Global Update and Trends of Hidden Hunger, 1995–2011: The Hidden Hunger Index. PLoS ONE 2015, 10, e0143497. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Micronutrients; World Health Organization: Geneva, Switzerland, 2015; Available online: https://www.who.int/gho/publications/world_health_statistics/2015/en/ (accessed on 12 August 2019).
- Ahmed, T.; Hossain, M.; Sanin, K.I. Global Burden of Maternal and Child Undernutrition and Micronutrient Deficiencies. Ann. Nutr. Metab. 2012, 61, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Stevens, G.A.; Bennett, J.E.; Hennocq, Q.; Lu, Y.; De-Regil, L.M.; Rogers, L.; Danaei, G.; Li, G.; White, R.A.; Flaxman, S.R.; et al. Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: A pooled analysis of population-based surveys. Lancet Glob. Health 2015, 3, e528–e536. [Google Scholar] [CrossRef] [Green Version]
- Subramaniam, G.; Girish, M. Iron Deficiency Anemia in Children. Indian J. Pediatr. 2015, 82, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Mandal, K.; Lu, H. Zinc deficiency in children. IJSIT 2017, 6, 9–19. [Google Scholar]
- Prasad, A.S. Discovery of Human Zinc Defi ciency: Its Impact on Health and Disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.S.; Manger, M.S.; Krittaphol, W.; Pongcharoen, T.; Gowachirapant, S.; Bailey, K.B.; Winichagoon, P. Does zinc deficiency play a role in stunting among primary school children in NE Thailand? Br. J. Nutr. 2007, 97, 167–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casale, D.; Desmond, C.; Richter, L. The association between stunting and psychosocial development among preschool children: A study using the South African Birth to Twenty cohort data. Child Care Health Dev. 2014, 40, 900–910. [Google Scholar] [CrossRef]
- Mendez, M.A.; Adair, L.S. Severity and timing of stunting in the first two years of life affect performance on cognitive tests in late childhood. J. Nutr. 1999, 129, 1555–1562. [Google Scholar] [CrossRef] [Green Version]
- Hoddinott, J.; Behrman, J.R.; Maluccio, J.A.; Melgar, P.; Quisumbing, A.R.; Ramirez-Zea, M.; Stein, A.D.; Yount, K.M.; Martorell, R. Adult consequences of growth failure in early childhood123. Am. J. Clin. Nutr. 2013, 98, 1170–1178. [Google Scholar] [CrossRef]
- Adair, L.S.; Fall, C.H.D.; Osmond, C.; Stein, A.D.; Martorell, R.; Ramirez-Zea, M.; Sachdev, H.S.; Dahly, D.L.; Bas, I.; Norris, S.A.; et al. Associations of linear growth and relative weight gain during early life with adult health and human capital in countries of low and middle income: Findings from five birth cohort studies. Lancet 2013, 382, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Bhutta, Z.A. Early nutrition and adult outcomes: Pieces of the puzzle. Lancet 2013, 382, 486–487. [Google Scholar] [CrossRef]
- Hoffman, D.; Sawaya, A.L.; Verreschi, I.; Tucker, K.L.; Roberts, S.B. Why are nutritionally stunted children at increased risk of obesity? Studies of metabolic rate and fat oxidation in shantytown children from São Paulo, Brazil. Am. J. Clin. Nutr. 2000, 72, 702–707. [Google Scholar] [CrossRef] [PubMed]
- Harika, R.; Faber, M.; Samuel, F.; Bezabih, A.M.; Kimiywe, J.; Eilander, A. Are Low Intakes and Deficiencies in Iron, Vitamin A, Zinc, and Iodine of Public Health Concern in Ethiopian, Kenyan, Nigerian, and South African Children and Adolescents? Food Nutr. Bull. 2017, 38, 405–427. [Google Scholar] [CrossRef] [PubMed]
- Labadarios, D.; Steyn, N.; Mgijima, C.; Daldla, N. Review of the South African nutrition policy 1994–2002 and targets for 2007: Achievements and challenges. Nutrition 2005, 21, 100–108. [Google Scholar] [CrossRef]
- Steyn, N.P.; Wolmarans, P.; Nel, J.H.; Bourne, L.T. National fortification of staple foods can make a significant contribution to micronutrient intake of South African adults. Public Health Nutr. 2008, 11, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Labadarios, D.; Mchiza, Z.J.; Steyn, N.P.; Gericke, G.; Maunder, E.M.W.; Davids, Y.D.; Parker, W.-A. Food security in South Africa: A review of national surveys. Bull. World Health Organ. 2011, 89, 891–899. [Google Scholar] [CrossRef]
- Temple, N.J.; Steyn, N.P.; Fourie, J.; De Villiers, A. Price and availability of healthy food: A study in rural South Africa. Nutrition 2011, 27, 55–58. [Google Scholar] [CrossRef]
- Pfeiffer, W.H.; McClafferty, B. HarvestPlus: Breeding Crops for Better Nutrition. Crop. Sci. 2007, 47. [Google Scholar] [CrossRef]
- Wolson, R.A. Assessing the Prospects for the Adoption of Biofortified Crops in South Africa. Agribioforum 2007, 10, 184–191. [Google Scholar]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Secur. 2017, 12, 49–58. [Google Scholar] [CrossRef]
- Saltzman, A.; Birol, E.; Bouis, H.E.; Boy, E.; De Moura, F.F.; Islam, Y.; Pfeiffer, W.H. Biofortification: Progress toward a more nourishing future. Glob. Food Secur. 2013, 2, 9–17. [Google Scholar] [CrossRef]
- Laurie, S.; Faber, M.; Adebola, P.; Belete, A. Biofortification of sweet potato for food and nutrition security in South Africa. Food Res. Int. 2015, 76, 962–970. [Google Scholar] [CrossRef]
- Coutsoudis, A.; Hussey, G.; Ijsselmuiden, C.; Labadarios, D.; Harris, B.; Robertson, H.L.; van Middelkoop, A.; deHoop, M.; Kotze, J.; Cameron, N.; et al. Anthropometric, vitamin A, iron and immunisation coverage status in children aged 6–71 months in South Africa, 1994. S. Afr. Med. J. 1996, 86, 354–357. [Google Scholar]
- Shisana, O.; Labdarios, D.; Rehle, T.; Simbayi, L.; Zuma, K.; Dhansay, A.; Reddy, P.; Parker, W.; Hoosain, E.; Naidoo, P.; et al. South African National Health and Nutrition Examination Survey (SANHANES-1); HSRC Press: Cape Town, South Africa, 2013. [Google Scholar]
- Labadarios, D.; Steyn, N.P.; Maunder, E.; MacIntryre, U.; Gericke, G.; Swart, R.; Huskisson, J.; Dannhauser, A.; Vorster, H.H.; Nesmvuni, A.E.; et al. The National Food Consumption Survey (NFCS): South Africa, 1999. Public Health Nutr. 2005, 8, 533–543. [Google Scholar] [CrossRef]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary Reference Intakes: Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. J. Am. Diet. Assoc. 2001, 101, 294–301. [Google Scholar] [CrossRef]
- Labadarios, D. National Food Consumption Survey—Fortification Baseline (NFCS-FB-I): The knowledge, attitude, behaviour and procurement regarding fortified foods, a measure of hunger and the anthropometric and selected micronutrient status of children aged 1–9 years a. S. Afr. J. Clinc. Nutr. 2008, 21, 275–300. [Google Scholar] [CrossRef]
- Department of Health South Africa. National Vitamin A Supplimentataion Policy Guidelines for South Africa; South African Medical Journal: Pretoria, South Africa, 2012.
- Van Stuijvenberg, M.; Dhansay, M.; Smuts, C.M.; Lombard, C.; Jogessar, V.; Benadé, A. Long-term evaluation of a micronutrient-fortified biscuit used for addressing micronutrient deficiencies in primary school children. Public Health Nutr. 2001, 4, 1201–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faber, M.; Phungula, M.A.; Venter, S.L.; Dhansay, M.A.; Benadé, A.S. Home gardens focusing on the production of yellow and dark-green leafy vegetables increase the serum retinol concentrations of 2–5-y-old children in South Africa. Am. J. Clin. Nutr. 2002, 76, 1048–1054. [Google Scholar] [CrossRef] [Green Version]
- Boccio, J.R.; Iyengar, V. Iron Deficiency: Causes, Consequences, and Strategies to Overcome This Nutritional Problem. Biol. Trace Element Res. 2003, 94, 1–32. [Google Scholar] [CrossRef]
- Taljaard, C.; Covic, N.; Van Graan, A.; Kruger, H.S.; Jerling, J. Studies since 2005 on South African primary schoolchildren suggest lower anaemia prevalence in some regions. South Afr. J. Clin. Nutr. 2013, 26, 168–175. [Google Scholar] [CrossRef]
- Hotz, C. Dietary Indicators for Assessing the Adequacy of Population Zinc Intakes. Food Nutr. Bull. 2007, 28, S430–S453. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C.; Caballero, B.; Cousins, R.J.; Tucker, K.L.; Ziegler, T.R. (Eds.) Modern Nutrition in Health and Disease, 11th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2014. [Google Scholar]
- McBean, L.D.; Mahloudji, M.; Reinhold, J.G.; Halsted, J.A. Correlation of Zinc concetrations in human plasma and hair. Am. J. Clin. Nutr. 1971, 24, 506–509. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.S.; Ferguson, E.L. Assessment of dietary zinc in a population. Am. J. Clin. Nutr. 1998, 68, 430S–434S. [Google Scholar] [CrossRef]
- Wessells, K.R.; Singh, G.M.; Brown, K.H. Estimating the Global Prevalence of Inadequate Zinc Intake from National Food Balance Sheets: Effects of Methodological Assumptions. PLoS ONE 2012, 7, e50565. [Google Scholar] [CrossRef] [PubMed]
- Faber, M. Complementary foods consumed by 6–12-month-old rural infants in South Africa are inadequate in micronutrients. Public Health Nutr. 2005, 8, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Steyn, N.; Nel, J.; Labadarios, D. Will fortification of staple foods make a difference to the dietary intake of South African children? S. Afr. J. Clin. Nutr. 2008, 21, 22–26. [Google Scholar] [CrossRef]
- Plessis, D. Vitamin A supplementation in South Africa: Time for reappraisal. S. Afr. J. Clinc. Nutr. 2007, 20, 123–124. [Google Scholar]
- Mason, J.B.; Greiner, T.; Shrimpton, R.; Sanders, D.; Yukich, J. Vitamin A policies need rethinking. Int. J. Epidemiol. 2014, 44, 283–292. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Lyons, G.; Cakmak, I. Agronomic Biofortification of Food Crops with Micronutrients. In Fertilizing Crops to Improve Human Health: A Scientific Review; Bruulsema, T.W., Heffer, P., Welch, R.M., Cakmak, I., Moran, K., Eds.; International Plant Nutrition Institute/International Fertilizer Industry Association: Paris, France, 2012; Volume 1. [Google Scholar]
- Department of Agriculture Forestry and Fisheries. The National Policy on Food and Nutrition Security for the Republic of South Africa; Department of Social Development and Department of Agriculture, Forestry and Fisheries: Pretoria, South Africa, 2014.
- Sharma, P.; Aggarwal, P.; Kaur, A. Biofortification: A new approach to eradicate hidden hunger. Food Rev. Int. 2016, 33, 1–21. [Google Scholar] [CrossRef]
- Consultative Group on International Agricultural Research. CGIAR: Five-Year Biofortification Strategy 2019–2023.Business Plan Companion: Biofortification Strategy, SMB10-BP1f; Version 12 September 2018; HarvestPlus: Washington, DC, USA, 2018. [Google Scholar]
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V.; Arora, P. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Front. Nutr. 2018, 5. [Google Scholar] [CrossRef] [PubMed]
- Tanumihardjo, S.A.; Ball, A.; Kaliwile, C.; Pixley, K.V. The research and implementation continuum of biofortified sweet potato and maize in Africa. Ann. N. Y. Acad. Sci. 2017, 1390, 88–103. [Google Scholar] [CrossRef] [Green Version]
- Chavez, A.L.; Sánchez, T.; Jaramillo, G.; Bedoya, J.M.; Echeverry, J.; Bolaños, E.A.; Ceballos, H.; Iglesias, C.A. Variation of quality traits in cassava roots evaluated in landraces and improved clones. Euphytica 2005, 143, 125–133. [Google Scholar] [CrossRef]
- Ortiz-Monasterio, J.I.; Palacios-Rojas, N.; Meng, E.; Pixley, K.; Trethowan, R.; Peña, R. Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J. Cereal Sci. 2007, 46, 293–307. [Google Scholar] [CrossRef]
- Kumar, S.; Palve, A.; Joshi, C.; Srivastava, R.K. Rukhsar Crop biofortification for iron (Fe), zinc (Zn) and vitamin A with transgenic approaches. Heliyon 2019, 5, e01914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aluru, M.; Xu, Y.; Guo, R.; Wang, Z.; Li, S.; White, W.; Wang, K.; Rodermel, S. Generation of transgenic maize with enhanced provitamin A content. J. Exp. Bot. 2008, 59, 3551–3562. [Google Scholar] [CrossRef] [Green Version]
- Naqvi, S.; Zhu, C.; Farre, G.; Ramessar, K.; Bassie, L.; Breitenbach, J.; Conesa, D.P.; Ros, G.; Sandmann, G.; Capell, T.; et al. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc. Natl. Acad. Sci. USA 2009, 106, 7762–7767. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Ahn, Y.O.; Ahn, M.; Lee, H.; Kwak, S. Down-regulation of b-carotene hydroxylase increases b-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato. Phytochemistry 2012, 74, 69–78. [Google Scholar] [CrossRef]
- Welsch, R.; Arango, J.; Bär, C.; Salazar, B.; Al-Babili, S.; Beltran, J.; Chavarriaga, P.; Ceballos, H.; Tohme, J.; Beyer, P. Provitamin A Accumulation in Cassava (Manihot esculenta) Roots Driven by a Single Nucleotide Polymorphism in a Phytoene Synthase Gene[W]. Plant Cell 2010, 22, 3348–3356. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; He, X.; Luo, Y.; Ma, L.; Tang, X.; Huang, K. Nutritional assessment of transgenic lysine-rich maize compared with conventional quality protein maize. J. Sci. Food Agric. 2013, 93, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Underwood, B.A.; Arthur, P. The contribution of vitamin A to public health. FASEB J. 1996, 10, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Laurie, S.M.; Faber, M. Integrated community-based growth monitoring and vegetable gardens focusing on crops rich in β-carotene: Project evaluation in a rural community in the Eastern Cape, South Africa. J. Sci. Food Agric. 2008, 88, 2093–2101. [Google Scholar] [CrossRef]
- Laurie, S.M.; Booyse, M.; Labuschagne, M.T.; Greyling, M.M. Multienvironment Performance of New Orange-Fleshed Sweetpotato Cultivars in South Africa. Crop. Sci. 2015, 55, 1585–1595. [Google Scholar] [CrossRef]
- Hussan, M.; Muhammad, S.; Khayam, U. Composition and Isolation of Beta Carotene from Different Vegetables and Their Effect on Human Serum Retinal Level. Middle East J. Sci. Res. 2011, 9, 496–502. [Google Scholar]
- Faber, M.; Laurie, S.M.; VanJaarsveld, P.J. Total β-carotene content of orange sweetpotato cultivated under optimal conditions and at a rural village. Afr. J. Biotechnol. 2013, 12, 3947–3951. [Google Scholar] [CrossRef]
- Tang, G. Bioconversion of dietary provitamin A carotenoids to vitamin A in humans. Am. J. Clin. Nutr. 2010, 91, 1468S–1473S. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Qin, J.; Dolnikowski, G.; Russell, R.M.; Grusak, M.A. Spinach or carrots can supply significant amounts of vitamin A as assessed by feeding with intrinsically deuterated vegetables. Am. J. Clin. Nutr. 2005, 82, 821–828. [Google Scholar] [CrossRef] [Green Version]
- Van Jaarsveld, P.J.; Faber, M.; Tanumihardjo, S.A.; Nestel, P.; Lombard, C.J.; Benadé, A.J.S. β-Carotene–rich orange-fleshed sweet potato improves the vitamin A status of primary school children assessed with the modified-relative-dose-response test. Am. J. Clin. Nutr. 2005, 81, 1080–1087. [Google Scholar] [CrossRef]
- Low, J.W. Biofortified Crops with a Visible Trait: The Example of Orange-Fleshed Sweet Potato in Sub-Saharan Africa. In Handbook of Food Fortification and Health from Concepts to Public health Applications; Preedy, V.R., Srirajaskanthan, R., Patel, V.B., Eds.; Springer: New York, NY, USA, 2013; Volume 1, pp. 371–384. [Google Scholar] [CrossRef]
- Laurie, S.; Van Jaarsveld, P.; Faber, M.; Philpott, M.; Labuschagne, M. Trans-β-carotene, selected mineral content and potential nutritional contribution of 12 sweetpotato varieties. J. Food Compos. Anal. 2012, 27, 151–159. [Google Scholar] [CrossRef]
- Faber, M.; Laurie, S. A home gardening approach developed in South Africa to address vitamin A deficiency. In Combating Micronutrient Deficiencies: Food-Based Approaches; Thompson, B., Amoroso, L., Eds.; CAB International & Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; pp. 163–182. [Google Scholar] [CrossRef]
- Magasana, V.; Witten, C.; Romano, R.M.; Beeforth, M. Mdantsane orange-fleshed sweetpotato gardens improves community participation in the vitamin A supplementation programme in the Eastern Cape. 17, S16–S17. S. Afr. J. Clin. Nutr. 2004, 17, s16–s17. [Google Scholar]
- Department of Health South Africa. Roadmap for Nutrition in South Africa 2013–2017; National Department of Health: Pretoria, South Africa, 2013.
- Voster, H.H. South African Food-Based Dietary Guidelines. S. Afr. J. Clinc. Nutr. 2001, 14, s2. [Google Scholar]
- Zuma, M.K.; Kolanisi, U.; Modi, A.T. The Potential of Integrating Provitamin A-Biofortified Maize in Smallholder Farming Systems to Reduce Malnourishment in South Africa. Int. J. Environ. Res. Public Health 2018, 15, 805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awobusuyi, T.D.; Siwela, M.; Kolanisi, U.; Amonsou, E.O. Provitamin A retention and sensory acceptability of amahewu, a non-alcoholic cereal-based beverage made with provitamin A-biofortified maize. J. Sci. Food Agric. 2015, 96, 1356–1361. [Google Scholar] [CrossRef]
- Govender, L.; Pillay, K.; Derera, J.; Siwela, M. Acceptance of a complementary food prepared with yellow, provitamin A-biofortified maize by black caregivers in rural KwaZulu-Natal. S. Afr. J. Clin. Nutr. 2014, 27, 217–221. [Google Scholar] [CrossRef]
- Greiner, T. Combatting Vitamin A deficiency: Overcoming obstacles to optimize the food-based approach. World Nutr. 2017, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Titcomb, T.J.; Sheftel, J.; Sowa, M.; Gannon, B.M.; Davis, C.R.; Palacios-Rojas, N.; Tanumihardjo, S.A. β-Cryptoxanthin and zeaxanthin are highly bioavailable from whole-grain and refined biofortified orange maize in humans with optimal vitamin A status: A randomized, crossover, placebo-controlled trial. Am. J. Clin. Nutr. 2018, 108, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Howe, J.A.; Tanumihardjo, S.A. Evaluation of Analytical Methods for Carotenoid Extraction from Biofortified Maize (Zea mays sp.). J. Agric. Food Chem. 2006, 54, 7992–7997. [Google Scholar] [CrossRef]
- Petry, N.; Boy, E.; Wirth, J.P.; Hurrell, R. Review: The Potential of the Common Bean (Phaseolus vulgaris) as a Vehicle for Iron Biofortification. Nutrition 2015, 7, 1144–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moloto, R.M.; Moremi, L.H.; Soundy, P.; Maseko, S.T. Biofortification of dry beans as a complementary approach to addressing vitamin and micronutrient deficiency in South Africans. Acta Agric. Scand. Sect. B Soil Plant Sci. 2018, 115, 323–324. [Google Scholar] [CrossRef]
- International Center for Tropical Agriculture. Annual Report 2008; Outcome Line SBA: Improved Beans for the Developing World; CIAT: Cali, Colombia, 2008. [Google Scholar]
- Marles, R.J. Mineral nutrient composition of vegetables, fruits and grains: The context of reports of apparent historical declines. J. Food Compos. Anal. 2017, 56, 93–103. [Google Scholar] [CrossRef]
- Blair, M.W.; Monserrate, F.; Beebe, S.E.; Restrepo, J.; Flores, J.O. Registration of High Mineral Common Bean Germplasm Lines NUA35 and NUA56 from the Red-Mottled Seed Class. J. Plant Regist. 2010, 4, 55–59. [Google Scholar] [CrossRef]
- Muller, M.; Schreiner, B.; Smith, L.; van Koppen, B.; Sally, H.; Aliber, M.; Cousins, B.; Tapela, B.; Van der Merwe-Botha, M.; Karar, E.; et al. Water Security in South Africa; Working Paper Series No.12; Development Planning Division: Midrand, South Africa, 2009. [Google Scholar]
- Laurie, S.M.; Faber, M.; Claasen, N. Incorporating orange-fleshed sweet potato into the food system as a strategy for improved nutrition: The context of South Africa. Food Res. Int. 2018, 104, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Laurie, S.M.; Faber, M.; Van Jaarsveld, P.J.; Laurie, R.; Du Plooy, C.P.; Modisane, P. β-Carotene yield and productivity of orange-fleshed sweet potato (Ipomoea batatas L. Lam.) as influenced by irrigation and fertilizer application treatments. Sci. Hortic. 2012, 142, 180–184. [Google Scholar] [CrossRef]
- Omotobora, B.O.; Adebola, P.O.; Modise, D.M.; Laurie, S.M.; Gerrano, A.S. Greenhouse and Field Evaluation of Selected Sweetpotato (Ipomoea batatas (L.) LAM) Accessions for Drought Tolerance in South Africa. Am. J. Plant Sci. 2014, 5, 3328–3339. [Google Scholar] [CrossRef] [Green Version]
- Van Der Waals, J.H.; Laker, M.C. Micronutrient Deficiencies in Crops in Africa with Emphasis on Southern Africa. In Micronutrient Deficiencies in Global Crop Production; Alloway, B.J., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 201–224. [Google Scholar]
- Hafeez, B.; Khanif, Y.M.; Saleem, M. Role of Zinc in Plant Nutrition- A Review. Am. J. Exp. Agric. 2013, 3, 374–391. [Google Scholar] [CrossRef]
- Imran, M.; Rehim, A. Zinc fertilization approaches for agronomic biofortification and estimated human bioavailability of zinc in maize grain. Arch. Agron. Soil Sci. 2016, 63, 106–116. [Google Scholar] [CrossRef]
- Frossard, E.; Bucher, M.; Ma, F.; Mozafar, A.; Hurrell, R. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J. Sci. Food Agric. 2000, 80, 861–879. [Google Scholar] [CrossRef]
- Zou, C.Q.; Zhang, Y.Q.; Rashid, A.; Ram, H.; Savasli, E.; Arisoy, R.Z.; Ortiz-Monasterio, I.; Simunji, S.; Wang, Z.H.; Sohu, V.; et al. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil 2012, 361, 119–130. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.B. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2017, 69, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Van Lieshout, M.; West, C.E.; Muhilal; Permaesih, D.; Wang, Y.; Xu, X.; Van Breemen, R.B.; Creemers, A.F.; Verhoeven, M.A.; Lugtenburg, J. Bioefficacy of beta-carotene dissolved in oil studied in children in Indonesia. Am. J. Clin. Nutr. 2001, 73, 949–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Frano, M.; De Moura, F.F.; Boy, E.; Lönnerdal, B.; Burri, B.J. Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops. Nutr. Rev. 2014, 72, 289–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Lintig, J. Provitamin A metabolism and functions in mammalian biology. Am. J. Clin. Nutr. 2012, 96, 1234S–1244S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooperstone, J.L.; Goetz, H.J.; Riedl, K.M.; Harrison, E.H.; Schwartz, S.J.; Kopec, R.E. Relative contribution of α-carotene to postprandial vitamin A concentrations in healthy humans after carrot consumption. Am. J. Clin. Nutr. 2017, 106, 59–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, A.C.; Siamusantu, W.; Chileshe, J.; Schulze, K.J.; Barffour, M.; Craft, N.E.; Molobeka, N.; Kalungwana, N.; Arguello, M.A.; Mitra, M.; et al. Provitamin A–biofortified maize increases serum β-carotene, but not retinol, in marginally nourished children: A cluster-randomized trial in rural Zambia. Am. J. Clin. Nutr. 2016, 104, 181–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gannon, B.; Kaliwile, C.; Arscott, S.; Schmaelzle, S.; Chileshe, J.; Kalungwana, N.; Mosonda, M.; Pixley, K.; Masi, C.; Tanumihardjo, S.A. Biofortified orange maize is as efficacious as a vitamin A supplement in Zambian children even in the presence of high liver reserves of vitamin A: A community-based, randomized placebo-controlled trial. Am. J. Clin. Nutr. 2014, 100, 1541–1550. [Google Scholar] [CrossRef]
- Katz, J.M.; La Frano, M.; Winter, C.K.; Burri, B.J. Modelling potential β-carotene intake and cyanide exposure from consumption of biofortified cassava. J. Nutr. Sci. 2013, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Talsma, E.F.; Brouwer, I.D.; Verhoef, H.; Mbera, G.N.; Mwangi, A.M.; Demir, A.Y.; Maziya-Dixon, B.; Boy, E.; Zimmermann, M.B.; Melse-Boonstra, A. Biofortified yellow cassava and vitamin A status of Kenyan children: A randomized controlled trial. Am. J. Clin. Nutr. 2015, 103, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Haas, J.D.; Luna, S.V.; Lungaho, M.; Wenger, M.J.; Murray-Kolb, L.E.; Beebe, S.; Gahutu, J.B.; Egli, I.M. Consuming Iron Biofortified Beans Increases Iron Status in Rwandan Women after 128 Days in a Randomized Controlled Feeding Trial. J. Nutr. 2016, 146, 1586–1592. [Google Scholar] [CrossRef]
- Finkelstein, J.L.; Mehta, S.; Udipi, S.A.; Ghugre, P.S.; Luna, S.V.; Wenger, M.J.; Murray-Kolb, L.E.; Przybyszewski, E.M.; Haas, J.D. A Randomized Trial of Iron-Biofortified Pearl Millet in School Children in India. J. Nutr. 2015, 145, 1576–1581. [Google Scholar] [CrossRef] [Green Version]
- Kolahdooz, F.; Spearing, K.; Sharma, S. Dietary Adequacies among South African Adults in Rural KwaZulu-Natal. PLoS ONE 2013, 8, e67184. [Google Scholar] [CrossRef] [PubMed]
- Rosado, J.L.; Hambidge, K.M.; Miller, L.V.; García, O.P.; Westcott, J.; González, K.; Conde, J.; Hotz, C.; Pfeiffer, W.; Ortiz-Monasterio, I.; et al. The quantity of zinc absorbed from wheat in adult women is enhanced by biofortification. J. Nutr. 2009, 139, 1920–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hambidge, K.M.; Krebs, N.F. Zinc Deficiency: A Special Challenge. J. Nutr. 2007, 137, 1101–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feil, B. Phytic Acid. J. New Seeds 2001, 3, 1–35. [Google Scholar] [CrossRef]
- Bechoff, A.; Dhuique-Mayer, C. Factors influencing micronutrient bioavailability in biofortified crops. Ann. N. Y. Acad. Sci. 2016, 1390, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Sun, C.; Yang, L.; Zeng, G.; Liu, Z.; Li, Y. β-carotene content in sweet potato varieties from China and the effect of preparation on β-carotene retention in the Yanshu No. 5. Innov. Food Sci. Emerg. Technol. 2008, 9, 581–586. [Google Scholar] [CrossRef]
- Pillay, K.; Siwela, M.; Derera, J.; Veldman, F.J. Provitamin A carotenoids in biofortified maize and their retention during processing and preparation of South African maize foods. J. Food Sci. Technol. 2011, 51, 634–644. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, A.; Namutebi, A.; Alminger, M.; Svanberg, U. Effects of various traditional processing methods on the all-trans-β-carotene content of orange-fleshed sweet potato. J. Food Compos. Anal. 2008, 21, 134–143. [Google Scholar] [CrossRef]
- Park, Y.W. Effect of Freezing, Thawing, Drying, and Cooking on Carotene Retention in Carrots, Broccoli and Spinach. J. Food Sci. 1987, 52, 1022–1025. [Google Scholar] [CrossRef]
- Burt, A.J.; Grainger, C.M.; Young, J.C.; Shelp, B.J.; Lee, E.A. Impact of Postharvest Handling on Carotenoid Concentration and Composition in High-Carotenoid Maize (Zea maysL.) Kernels. J. Agric. Food Chem. 2010, 58, 8286–8292. [Google Scholar] [CrossRef]
- Van Jaarsveld, P.J.; Marais, D.W.; Harmse, E.; Nestel, P.; Rodriguez-Amaya, D. Retention of β-carotene in boiled, mashed orange-fleshed sweet potato. J. Food Compos. Anal. 2006, 19, 321–329. [Google Scholar] [CrossRef]
- Kidmose, U.; Christensen, L.P.; Agili, S.M.; Thilsted, S.H. Effect of home preparation practices on the content of provitamin A carotenoids in coloured sweet potato varieties (Ipomoea batatas Lam.) from Kenya. Innov. Food Sci. Emerg. Technol. 2007, 8, 399–406. [Google Scholar] [CrossRef]
- Vimala, B.; Nambisan, B.; Hariprakash, B. Retention of carotenoids in orange-fleshed sweet potato during processing. J. Food Sci. Technol. 2011, 48, 520–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, J.W.; Mwanga, R.O.; Andrade, M.; Carey, E.; Ball, A.-M. Tackling vitamin A deficiency with biofortified sweetpotato in sub-Saharan Africa. Glob. Food Secur. 2017, 14, 23–30. [Google Scholar] [CrossRef]
- Bechoff, A.; Taleon, V.; Carvalho, L.; Carvalho, J.; Boy, E. Micronutrient (Provitamin A and Irion/Zinc) Retention in Biofortified Crops. Afr. J. Food Agric. Nutr. Dev. 2017, 17, 11893–11904. [Google Scholar] [CrossRef]
- Li, S.; Tayie, F.A.K.; Young, M.F.; Rocheford, T.; White, W.S. Retention of Provitamin A Carotenoids in High β-Carotene Maize (Zea mays) During Traditional African Household Processing. J. Agric. Food Chem. 2007, 55, 10744–10750. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.M.J.; Corrêa, M.M.; Pereira, E.J.; Nutti, M.R.; Carvalho, J.L.V.; Ribeiro, E.M.G.; Freitas, S.C. Iron and zinc retention in common beans (Phaseolus vulgaris L.) after home cooking. Food Nutr. Res. 2012, 56, 15618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bechoff, A.; Chijioke, U.; Westby, A.; Tomlins, K.I. ‘Yellow is good for you’: Consumer perception and acceptability of fortified and biofortified cassava products. PLoS ONE 2018, 13, e0203421. [Google Scholar] [CrossRef]
- Talsma, E.F.; Melse-Boonstra, A.; De Kok, B.P.H.; Mbera, G.N.K.; Mwangi, A.M.; Brouwer, I.D. Biofortified Cassava with Pro-Vitamin A Is Sensory and Culturally Acceptable for Consumption by Primary School Children in Kenya. PLoS ONE 2013, 8, e73433. [Google Scholar] [CrossRef] [Green Version]
- Lagerkvist, C.J.; Okello, J.J.; Muoki, P.; Heck, S.; Prain, G. Nutrition promotion messages: The effect of information on consumer sensory expectations, experiences and emotions of vitamin A-biofortified sweet potato. Food Qual. Prefer. 2016, 52, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Stone, H.; Sidel, J.L. Sensory Evaluation Practices, 3rd ed; Elsevier Academic Press: Redwood City, CA, USA, 2004. [Google Scholar]
- Pillay, K.; Derera, J.; Siwela, M.; Veldman, F.J. Consumer acceptance of yellow, provitamin A-biofortified maize in KwaZulu-Natal. S. Afr. J. Clin. Nutr. 2011, 24, 186–191. [Google Scholar] [CrossRef]
- Amod, R.; Pillay, K.; Siwela, M.; Kolanisi, U. Acceptance of a Complementary Food based on Provitamin A-Biofortified Maize and Chicken Stew. J. Hum. Ecol. 2016, 55, 152–159. [Google Scholar] [CrossRef]
- Pillay, K.; Khanyile, N.; Siwela, M. Acceptance of an orange-fleshed sweet potato complementary food by infant caregivers in KwaZulu-Natal Province—A preliminary study. S. Afr. J. Child. Health 2018, 12, 100–104. [Google Scholar] [CrossRef]
- Laurie, S.M. Consumer acceptability of four products made from beta-carotene-rich sweet potato. Afr. J. Food Sci. 2012, 6, 96–103. [Google Scholar] [CrossRef]
- Tumuhimbise, G.A.; Namutebi, A.; Turyashemererwa, F.; Muyonga, J. Provitamin A Crops: Acceptability, Bioavailability, Efficacy and Effectiveness. Food Nutr. Sci. 2013, 4, 430–435. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Meenakshi, J.; Tomlins, K.; Owori, C. Are Consumers in Developing Countries Willing to Pay More for Micronutrient-Dense Biofortified Foods? Evidence from a Field Experiment in Uganda. Am. J. Agric. Econ. 2011, 93, 83–97. [Google Scholar] [CrossRef]
- Khumalo, T.P.; Schönfeldt, H.C.; Vermeulen, H. Consumer acceptability and perceptions of maize meal in Giyani, South Africa. Dev. S. Afr. 2011, 28, 271–281. [Google Scholar] [CrossRef]
- Kuchenbecker, J.; Reinbott, A.; Mtimuni, B.; Krawinkel, M.B.; Jordan, I. Nutrition education improves dietary diversity of children 6–23 months at community-level: Results from a cluster randomized controlled trial in Malawi. PLoS ONE 2017, 12, e0175216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchitelle-Pierce, B.; Ubomba-Jaswa, P. Marketing biofortified crops: Insights from consumer research. Afr. J. Food Agric. Nutr. Dev. 2017, 17, 12051–12062. [Google Scholar] [CrossRef]
- Okello, J.J.; Kwikiriza, N.; Muoki, P.; Wambaya, J.; Heck, S. Effect of Intensive Agriculture-Nutrition Education and Extension Program Adoption and Diffusion of Biofortified Crops. J. Agric. Food Inf. 2019, 20, 254–276. [Google Scholar] [CrossRef] [Green Version]
- Lockyer, S.; White, A.; Walton, J.; Buttriss, J.L. Proceedings of the ‘Working together to consider the role of biofortification in the global food chain’ workshop. Nutr. Bull. 2018, 43, 416–427. [Google Scholar] [CrossRef]
- De Groote, H.; Kimenju, S.C.; Morawetz, U.B. Estimating consumer willingness to pay for food quality with experimental auctions: The case of yellow versus fortified maize meal in Kenya. Agric. Econ. 2010, 42, 1–16. [Google Scholar] [CrossRef]
- Birol, E.; Meenakshi, J.V.; Oparinde, A.; Perez, S.; Tomlins, K. Developing country consumers’ acceptance of biofortified foods: A synthesis. Food Secur. 2015, 7, 555–568. [Google Scholar] [CrossRef] [Green Version]
Targeted Micronutrient | Staple Crop | Targeted Country | Agronomic Traits |
---|---|---|---|
Vitamin A | OFSP | South Africa, Uganda and Mozambique | Disease resistance, drought tolerance, acid soil tolerance |
Vitamin A | Maize | Nigeria and Zambia | Disease resistance and drought tolerance |
Vitamin A | Cassava | DRC and Nigeria | Disease resistance |
Iron | CB | DRC and Rwanda | Virus resistance, heat and drought tolerance |
Iron | Pearl millet | India | Mild dew resistance, drought resistance |
Zn | Wheat | India and Pakistan | Disease and lodging resistance |
Zn | Rice | Bangladesh and India | Disease and pest resistance Cold and submergence tolerance |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siwela, M.; Pillay, K.; Govender, L.; Lottering, S.; Mudau, F.N.; Modi, A.T.; Mabhaudhi, T. Biofortified Crops for Combating Hidden Hunger in South Africa: Availability, Acceptability, Micronutrient Retention and Bioavailability. Foods 2020, 9, 815. https://doi.org/10.3390/foods9060815
Siwela M, Pillay K, Govender L, Lottering S, Mudau FN, Modi AT, Mabhaudhi T. Biofortified Crops for Combating Hidden Hunger in South Africa: Availability, Acceptability, Micronutrient Retention and Bioavailability. Foods. 2020; 9(6):815. https://doi.org/10.3390/foods9060815
Chicago/Turabian StyleSiwela, Muthulisi, Kirthee Pillay, Laurencia Govender, Shenelle Lottering, Fhatuwani N. Mudau, Albert T. Modi, and Tafadzwanashe Mabhaudhi. 2020. "Biofortified Crops for Combating Hidden Hunger in South Africa: Availability, Acceptability, Micronutrient Retention and Bioavailability" Foods 9, no. 6: 815. https://doi.org/10.3390/foods9060815
APA StyleSiwela, M., Pillay, K., Govender, L., Lottering, S., Mudau, F. N., Modi, A. T., & Mabhaudhi, T. (2020). Biofortified Crops for Combating Hidden Hunger in South Africa: Availability, Acceptability, Micronutrient Retention and Bioavailability. Foods, 9(6), 815. https://doi.org/10.3390/foods9060815