Use of Air-Protected Headspace to Prevent Yeast Film Formation on the Brine of Leccino and Taggiasca Black Table Olives Processed in Industrial-Scale Plastic Barrels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Experiences
2.1.1. Study of Microbial Film Appearance
2.1.2. Microscopy Observation of the Microbial Films
2.1.3. Detection of Microorganism Populations
2.1.4. Yeast Isolation and Identification
2.1.5. Simulation of Yeast Film Formation
2.2. Studies to prevent the Development of Yeast Films
2.2.1. Tests with Modified and Unmodified barrels
2.2.2. Physicochemical Analysis
pH, and Titratable Acidity
Total Phenol Content in Brine
Free Carbon Dioxide (CO2) Content in Brine
2.3. Statistical Analysis
3. Results
3.1. Contamination of Brine by Microbial Film in Industrial Barrels
3.1.1. Microbiological Analysis and Yeast Species Isolation
3.1.2. Simulation of Yeast Film Formation
3.2. Prevention of Microbial Film Development in Industrial Barrels
3.2.1. Microbiota Characteristics of Olive Brines from the Two Different Barrel Types
3.2.2. Physicochemical Characteristics of Olive brines
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- IOC. International Olive Council. World Table Olive Figures. 2020. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2020/01/OT-W901-29-11-2019-P.pdf (accessed on 3 March 2020).
- Ciafardini, G.; Marsilio, A.; Lanza, B.; Pozzi, N. Hydrolysis of oleuropein by Lactobacillus plantarum strains associated with olive fermentation. Appl. Environ. Microbiol. 1994, 60, 4142–4147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Rico, A.; Fregapane, G.; Salvador, M.D. Effect of cultivar and repining on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res. Int. 2008, 41, 433–440. [Google Scholar] [CrossRef]
- Ciafardini, G.; Zullo, B.A. Improvement of commercial olive oil quality through an evaluation of the polyphenol content of the oily fraction of the olive fruit during its period of maturation. J. Food Process Technol. 2014, 5, 397. [Google Scholar]
- Zullo, B.A.; Di Stefano, M.G.; Cioccia, G.; Ciafardini, G. Evaluation of polyphenol decay in the oily fraction of olive fruit during storage using a mild sample handling method. Eur. J. Lipid Sci. Technol. 2014, 116, 160–168. [Google Scholar] [CrossRef]
- Garrido-Fernández, A.; Fernández-Díez, M.J.; Adams, R.M. Table Olives: Production and Processing, 1st ed.; Chapman and Hall: London, UK, 1997. [Google Scholar]
- Durán Quintana, M.C.; Barranco, C.R.; García, P.G.; Balbuena, M.B.; Garrido-Fernández, A. Lactic acid bacteria in table olive fermentations. Grasas Aceites 1997, 48, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Tassou, C.C.; Panagou, E.Z.; Katsaboxakis, K.Z. Microbiological and physicochemical changes of naturally black olives fermented at different temperatures and NaCl levels in the brines. Food Microbiol. 2002, 19, 605–615. [Google Scholar] [CrossRef]
- Nisiotou, A.A.; Chorianopoulos, N.; Nychas, G.J.E.; Panagou, E.Z. Yeast heterogeneity during spontaneous fermentation of black Conservolea olives in different brine solutions. J. Appl. Microbiol. 2010, 108, 396–405. [Google Scholar] [CrossRef]
- Ciafardini, G.; Zullo, B.A. Use of selected yeast starter cultures in industrial-scale processing of brined Taggiasca black table olives. Food Microbiol. 2019, 84, 103250. [Google Scholar] [CrossRef]
- Oliveira, T.; Ramalhosa, E.; Nunes, L.; Pereira, J.A.; Colla, E.; Pereira, E.L. Probiotic potential of indigenous yeasts isolated during the fermentation of table olives from Northeast of Portugal. Innov. Food Sci. Emerg. Technol. 2017, 44, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Branda, S.S.; Vik, A.; Friedman, L.; Kolter, R. Biofilms: The matrix revisited. Trends Microbiol. 2020, 13, 2026. [Google Scholar] [CrossRef]
- Nout, M.J.R.; Rombouts, F.M. Fermented and acidified plant foods. In The Microbiological Safety and Quality of Food; Lund, B.M., Baird-Parker, T.C., Gould, G.W., Eds.; Aspen Publishers, Inc.: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Medina, E.; García-García, P.; Romero, C.; de Castro, A.; Brenes, M. Aerobic industrial processing of Empeltre cv. Natural black olives and product characterization. Int. J. Food Sci. Technol. 2020, 55, 534–541. [Google Scholar] [CrossRef]
- El Adlouni, C.; Tozlovanu, M.; Naman, F.; Faid, M.; Pfohl-Leszkowicz, A. Preliminary data on the presence of mycotoxins (ochratoxin A, citrinin and aflatoxin B1) in black table olives “Greek style” of Moroccan origin. Mol. Nutr. Food Res. 2006, 50, 507–512. [Google Scholar] [CrossRef]
- Golomb, B.L.; Morales, V.; Jung, A.; Yau, B.; Boundy-Mills, K.L.; Marco, M.L. Effects of pectinolytic yeast on the microbial composition and spoilage of olive fermentations. Food Microb. 2013, 33, 97–106. [Google Scholar] [CrossRef]
- Bavaro, S.L.; Susca, A.; Frisvad, J.C.; Tufariello, M.; Chytiri, A.; Perrone, G.; Mita, G.; Logrieco, A.F.; Bleve, G. Isolation, characterization, and selection of molds associated to fermented black table olives. Front. Microbiol. 2017, 8, 1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenes, M. Olive fermentation and processing: Scientific and technological challenges. J. Food Sci. 2004, 69, 33–34. [Google Scholar] [CrossRef]
- Heperkan, D. Microbiota of table olive fermentations and criteria of selection for their use as starters. Front. Microbiol. 2013, 4, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciafardini, G.; Zullo, B.A. Virgin olive oil yeasts: A review. Food Microbiol. 2018, 70, 245–253. [Google Scholar] [CrossRef]
- Maniatis, T.; Fritsch, E.F.; Sambrook, J. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor: New York, NY, USA, 1982. [Google Scholar]
- Tornai-Lehoczki, J.; Pèter, G.; Dlauchy, D. CHROMagar Candida medium as a practical tool for the differentiation and presumptive identification of yeast species isolated from salads. Int. J. Food Microbiol. 2003, 86, 189–200. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Robnett, C.J. Identification of clinical important ascomycetous yeast based on nucleotide divergence in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J. Clin. Microbiol. 1997, 5, 1216–1223. [Google Scholar] [CrossRef] [Green Version]
- American Public Health Association. Standards Methods for the Examination of Water and Wastewater, Twenty, 1st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Garrido, A.; García, P.; Brenes, M. “Olive fermentation”. In Biotechnoly: A Multi-Volume Comprehensive Teatise; Rem, H.J., Reed, G., Eds.; Wiley-VCH: Weinheim, Germany, 1995. [Google Scholar]
- Arroyo-López, F.N.; Romero-Gil, V.; Bautista-Gallego, J.; Rodríguez-Gómez, F.; Jimenez- Diaz, R.; Garcia-Garcia, P.; Querol, A.; Garrido-Fernandez, A. Potential benefits of the application of yeast starters in table olive processing. Front. Microbiol. 2012, 161, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Romero-Gil, V.; Bautista-Gallego, J.; Rodríguez-Gómez, F.; García-García, P.; Jiménez-Díaz, R.; Garrido-Fernández, A.; Arroyo-López, F.N. Evaluating the individual effects of temperature and salt on table olive related microorganisms. Food Microbiol. 2013, 33, 178–184. [Google Scholar] [CrossRef] [PubMed]
- IOOC. International Olive Oil Council. Trade Standard Applying to Table Olives; IOOC: Madrid, Spain, 2004. [Google Scholar]
Yeast | MYGP Broth | Table Olive Brines |
---|---|---|
Saccharomyces cerevisiae (L) | - | - |
Saccharomyces cerevisiae (T) | - | - |
Pichia manshurica 2051 (L) | ++ | ++ |
Pichia manshurica 2081 (T) | ++ | ++ |
Wickerhamomyces anomalus (L) | +++ | +++ |
Wickerhamomyces anomalus (T) | +++ | +++ |
Candida boidinii (L) | + | - |
Candida boidinii (T) | - | - |
Zygosaccharomyces mrakii (L) | - | - |
Zygosaccharomyces mrakii (T) | - | - |
Treatment | 2 1 | 4 | 6 | 8 |
---|---|---|---|---|
Leccino variety: | ||||
modified barrel | 0.00 | 0.00 | 0.00 | 0.00 |
unmodified barrel | 0.00 | 2.00 ± 0.73 | 8.70 ± 1.92 | 13.80 ± 2.21 |
Taggiasca variety: | ||||
modified barrel | 0.00 | 0.00 | 0.00 | 0.00 |
unmodified barrel | 0.00 | 1.50 ± 0.47 | 6.30 ± 1.11 | 11.00 ± 2.40 |
Table Olives | 4 Months | 6 Months | 8 Months | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LAB 1 | TAB 2 | Yeast | Mold | LAB | TAB | Yeast | Mold | LAB | TAB | Yeast | Mold | |
Leccino variety: | ||||||||||||
modified barrel | 0 | 4.34 ± 0.18 b | 5.29 ± 0.37 | 0 | 0 | 4.47± 0.25 ab | 4.73 ± 0.21 | 0 | 0 | 4.78± 0.30 ab | 3.70 ± 0.18 | 0 |
unmodified barrel | 0 | 6.77 ± 0.32 a | 5.76 ± 0.42 | 4.18 ± 0.1 | 0 | 5.70 ± 0.30 a | 4.58 ± 0.60 | 3.20 ± 0.18 | 0 | 5.54 ± 0.50 a | 4.40 ± 0.32 | 2.70 ± 0.20 |
Taggiasca variety: | ||||||||||||
modified barrel | 0 | 3.60 ± 0.15 b | 5.81 ± 0.15 | 0 | 0 | 3.20 ± 0.18 b | 6.32 ± 0.50 | 0 | 0 | 3.01 ± 0.12 b | 5.67 ± 0.50 | 0 |
unmodified barrel | 0 | 5.10 ± 0.20 a | 5.36 ± 0.40 | 0 | 0 | 4.60± 0.35 ab | 5.57 ± 0.46 | 0 | 0 | 4.50± 0.35 ab | 5.09 ± 0.24 | 0 |
Table Olives | 4 Months | 6 Months | 8 Months | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | Titratable Acidity 1 | Total Phenols 2 | CO2 3 | Δ 4 | pH | Titratable Acidity | Total Phenols | CO2 | Δ | pH | Titratable Acidity | Total Phenols | CO2 | Δ | |
Leccino variety: | |||||||||||||||
modified barrel | 4.48 ± 0.13 | 5.04 ± 0.14 ab | 1.16 ± 0.11 | 1598± 4.54 a | 719 | 4.36 ± 0.13 | 5.34 ± 0.34 ab | 1.02 ± 0.01 ab | 1395 ± 5.65 a | 750 | 4.29 ± 0.11 | 4.97 ± 0.16 b | 1.40 ± 0.08 ab | 959 ± 1.23 a | 500 |
unmodified barrel | 4.59 ± 0.11 | 3.48 ± 0.13 b | 1.21 ± 0.09 | 879 ± 3.01 c | - | 4.50 ± 0.17 | 4.64 ± 0.22 b | 0.71 ± 0.01 b | 645 ± 4.32 c | - | 4.50 ± 0.21 | 3.83 ± 0.17 c | 1.10 ± 0.07 b | 459 ± 2.01 b | - |
Taggiasca variety: | |||||||||||||||
modified barrel | 4.32 ± 0.12 | 6.73 ± 0.21 a | 0.99 ± 0.06 | 1118 ± 2.3 b | 259 | 4.26 ± 0.11 | 8.10 ± 0.43 a | 1.53 ± 0.03 a | 1124 ± 4.12 b | 559 | 4.28 ± 0.09 | 8.24 ± 0.54 a | 1.80 ± 0.05 a | 999 ± 1.02 a | 530 |
unmodified barrel | 4.41 ± 0.09 | 5.90 ± 0.19 ab | 0.92 ± 0.05 | 859 ± 1.24 c | - | 4.32 ± 0.03 | 6.99 ± 0.54 ab | 1.00 ± 0.04 ab | 565 ± 2.12 c | - | 4.35 ± 0.02 | 7.11 ± 0.20 ab | 1.20 ± 0.02 b | 469 ± 1.21 b | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciafardini, G.; Zullo, B.A. Use of Air-Protected Headspace to Prevent Yeast Film Formation on the Brine of Leccino and Taggiasca Black Table Olives Processed in Industrial-Scale Plastic Barrels. Foods 2020, 9, 941. https://doi.org/10.3390/foods9070941
Ciafardini G, Zullo BA. Use of Air-Protected Headspace to Prevent Yeast Film Formation on the Brine of Leccino and Taggiasca Black Table Olives Processed in Industrial-Scale Plastic Barrels. Foods. 2020; 9(7):941. https://doi.org/10.3390/foods9070941
Chicago/Turabian StyleCiafardini, Gino, and Biagi Angelo Zullo. 2020. "Use of Air-Protected Headspace to Prevent Yeast Film Formation on the Brine of Leccino and Taggiasca Black Table Olives Processed in Industrial-Scale Plastic Barrels" Foods 9, no. 7: 941. https://doi.org/10.3390/foods9070941
APA StyleCiafardini, G., & Zullo, B. A. (2020). Use of Air-Protected Headspace to Prevent Yeast Film Formation on the Brine of Leccino and Taggiasca Black Table Olives Processed in Industrial-Scale Plastic Barrels. Foods, 9(7), 941. https://doi.org/10.3390/foods9070941