The Detection of Substitution Adulteration of Paprika with Spent Paprika by the Application of Molecular Spectroscopy Tools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Preparation of Samples
2.3. NIR Analysis
2.4. FTIR Analysis
2.5. Chemometrics
2.6. Validation Procedure
2.6.1. Internal Cross-Validation
2.6.2. External Validation
2.7. Sudan Dye Detection in Spent Material
3. Results and Discussion
3.1. Raw Spectral Data
3.2. Chemometric Models
3.3. External Validation Results
3.4. Sudan Dye
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Raghaven, S. Handbook of Spices, Seasonings, and Flavorings; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- ESA European Spice Association. List of Culinary Herbs and Spices; ESA: Bonn, Germany, 2018. [Google Scholar]
- Galvin-King, P.; Haughey, S.A.; Elliott, C.T. Herb and spice fraud; the drivers, challenges and detection. Food Control 2018, 88, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Horn, B.; Esslinger, S.; Pfister, M.; Fauhl-Hassek, C.; Riedl, J. Non-targeted detection of paprika adulteration using mid-infrared spectroscopy and one-class classification—Is it data preprocessing that makes the performance? Food Chem. 2018, 257, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.; Martín, A.; Aranda, E.; Bartolomé, T.; Córdoba, J.J. Application of temperature-induced phase partition of proteins for the detection of smoked paprika adulteration by free zone capillary electrophoresis (FZCE). Food Chem. 2007, 105, 1219–1227. [Google Scholar] [CrossRef]
- Lead Action News Adulteration of Paprika in Hungary. 1995. Available online: http://www.lead.org.au/lanv3n3/lanv3n3-6.html (accessed on 29 September 2017).
- Whitworth, J. Testing Method Confirms Almond in Paprika, not Mahleb. 2015. Available online: http://www.foodqualitynews.com/Lab-Technology/Government-Chemist-distinguishes-between-almond-and-mahaleb (accessed on 29 September 2017).
- Hodúr, C.; Lászlķ, Z.; Horváth, Z.H. Case studies in food safety and environmental health. ntegrating safety and environmental knowledge into food studies towards European sustainable development. In A Ban on Paprika in Hungary; Ho, P., Vieira, M.M.C., Eds.; Springer: Boston, MA, USA, 2007. [Google Scholar]
- Palacios-Morillo, A.; Jurado, J.M.; Alcazar, A.; De Pablos, F. Differentiation of Spanish paprika from Protected Designation of Origin based on color measurements and pattern recognition. Food Control 2016, 62, 243–249. [Google Scholar] [CrossRef]
- Palacios-Morillo, A.; Jurado, J.M.; Alcázar, Á.; Pons, F.D.P. Geographical characterization of Spanish PDO paprika by multivariate analysis of multielemental content. Talanta 2014, 128, 15–22. [Google Scholar] [CrossRef]
- Hernández, A.; Aranda, E.; Martín, A.; Benito, M.J.; Bartolomé, T.; de Gua Cordoba, M. Efficiency of DNA Typing Methods for Detection of Smoked Paprika “Pimenton de la Vera” Adulteration Used in the Elaboration of Dry-Cured Iberian Pork Sausages. J. Agric. Food Chem. 2010, 58, 11688–11694. [Google Scholar] [CrossRef]
- Brunner, M.; Katona, R.; Stefánka, Z.; Prohaska, T. Determination of the geographical origin of processed spice using multielement and isotopic pattern on the example of Szegedi paprika. Eur. Food Res. Technol. 2010, 231, 623–634. [Google Scholar] [CrossRef]
- Serrano, N.; Ceto, X.; Núñez, O.; Aragó, M.; Gámez, A.; Ariño, C.; Díaz-Cruz, J.M. Characterization and classification of Spanish paprika (Capsicum annuum L.) by liquid chromatography coupled to electrochemical detection with screen-printed carbon-based nanomaterials electrodes. Talanta 2018, 189, 296–301. [Google Scholar] [CrossRef]
- Cetó, X.; Sánchez, C.; Serrano, N.; Díaz-Cruz, J.M.; Núñez, O. Authentication of paprika using HPLC-UV fingerprints. LWT 2020, 124, 109153. [Google Scholar] [CrossRef]
- Perlez, J. Budapest Journal; Crisis of goulash capitalism: Where’s the paprika? The New York Times, 11 October 1994. [Google Scholar]
- RASFF Portal. Available online: https://ec.europa.eu/food/safety/rasff/portal_en (accessed on 2 January 2020).
- EFSA. Opinion of the scientific panel on food additives, flavourings, processing aids and materials in contact with food on a request from the commission to review the toxicology of a number of dyes illegally present in the EU. EFSA J. 2005, 263, 1–71. [Google Scholar]
- Galaxy Scientific Fast Detection of Paprika Adulteration by FT-NIR Spectroscopy. 2016. Available online: https://www.azom.com/article.aspx?ArticleID=13251 (accessed on 20 September 2017).
- Oliveira, M.; Cruz-Tirado, J.; Roque, J.; Teófilo, R.; Barbin, D. Portable near-infrared spectroscopy for rapid authentication of adulterated paprika powder. J. Food Compos. Anal. 2020, 87, 103403. [Google Scholar] [CrossRef]
- Lohumi, S.; Joshi, R.; Kandpal, L.; Lee, H.; Kim, M.; Cho, H.; Mo, C.; Seo, Y.-W.; Rahman, A.; Cho, B.-K. Quantitative analysis of Sudan dye adulteration in paprika powder using FTIR spectroscopy. Food Addit. Contam. Part A 2017, 34, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Monago-Maraña, O.; Eskildsen, C.E.; Afseth, N.K.; Galeano-Díaz, T.; De La Peña, A.M.; Wold, J.P. Non-destructive Raman spectroscopy as a tool for measuring ASTA color values and Sudan I content in paprika powder. Food Chem. 2019, 274, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Lohumi, S.; Lee, H.; Kim, M.S.; Qin, J.; Kandpal, L.M.; Bae, H.; Rahman, A.; Cho, B.-K. Calibration and testing of a Raman hyperspectral imaging system to reveal powdered food adulteration. PLoS ONE 2018, 13, e0195253. [Google Scholar] [CrossRef]
- Di Anibal, C.V.; Marsal, L.F.; Callao, M.; Ruisánchez, I. Surface Enhanced Raman Spectroscopy (SERS) and multivariate analysis as a screening tool for detecting Sudan I dye in culinary spices. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 87, 135–141. [Google Scholar] [CrossRef]
- Gao, F.; Hu, Y.; Chen, D.; Li-Chan, E.C.; Grant, E.; Lu, X. Determination of Sudan I in paprika powder by molecularly imprinted polymers–thin layer chromatography–surface enhanced Raman spectroscopic biosensor. Talanta 2015, 143, 344–352. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, S.; Wang, S.; Lu, X. Application of nuclear magnetic resonance spectroscopy in food adulteration determination: The example of Sudan dye I in paprika powder. Sci. Rep. 2017, 7, 2637. [Google Scholar] [CrossRef] [Green Version]
- Di Anibal, C.V.; Ruisánchez, I.; Callao, M.P. High-resolution 1H Nuclear Magnetic Resonance spectrometry combined with chemometric treatment to identify adulteration of culinary spices with Sudan dyes. Food Chem. 2011, 124, 1139–1145. [Google Scholar] [CrossRef]
- Di Anibal, C.V.; Rodríguez, M.S.; Albertengo, L. Synchronous fluorescence and multivariate classification analysis as a screening tool for determining Sudan I dye in culinary spices. Food Control 2015, 56, 18–23. [Google Scholar] [CrossRef]
- Márquez, C.; Ruisánchez, I.; Callao, M. Qualitative and quantitative multivariate strategies for determining paprika adulteration with SUDAN I and II dyes. Microchem. J. 2019, 145, 686–692. [Google Scholar] [CrossRef]
- Di Anibal, C.V.; Rodríguez, M.S.; Albertengo, L. UV-Visible Spectroscopy and Multivariate Classification as a Screening Tool to Identify Adulteration of Culinary Spices with Sudan I and Blends of Sudan I + IV Dyes. Food Anal. Methods 2014, 7, 1090–1096. [Google Scholar] [CrossRef]
- Di Anibal, C.V.; Òdena, M.; Ruisánchez, I.; Callao, M.P. Determining the adulteration of spices with Sudan I-II-II-IV dyes by UV–visible spectroscopy and multivariate classification techniques. Talanta 2009, 79, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Vera, D.N.; Ruisánchez, I.; Callao, M. Establishing time stability for multivariate qualitative methods. Case study: Sudan I and IV adulteration in food spices. Food Control 2018, 92, 341–347. [Google Scholar] [CrossRef]
- ESA. ESA Adulteration Awareness Document; ESA: Bonn, Germany, 2018. [Google Scholar]
- CBI Exporting Paprika Oleoresin to Europe. 2018. Available online: https://www.cbi.eu/market-information/natural-food-additives/paprika-oleoresin/ (accessed on 5 May 2020).
- Bates, L. Screening Method for the Determination of Defatted Meal in Paprika and Black Pepper. In ASTA Analytical Method 26.1; ASTA: Englewood Cliffs, NJ, USA, 2000. [Google Scholar]
- ESA. European Spice Association Quality Minima Document; ESA: Bonn, Germany, 2018; Volume 5. [Google Scholar]
- BRC-FDF-SSA. Guidance on Authenticity of Herbs and Spices-Industry Best Practice on Assessing and Protecting Culinary Dried Herbs and Spices; BRC-FDF-SSA: London, UK, 2016. [Google Scholar]
- Rinnan, Å.; Berg, F.V.D.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- US Pharmacopoeia. Guidance on developing and validating non-targeted methods for adulteration detection. In Food Chemicals Codex, Appendix XVIII; US Pharmacopoeia: Rockville, MD, USA, 2019. [Google Scholar]
- Riedl, J.; Esslinger, S.; Fauhl-Hassek, C. Review of validation and reporting of non-targeted fingerprinting approaches for food authentication. Anal. Chim. Acta 2015, 885, 17–32. [Google Scholar] [CrossRef] [PubMed]
- McGrath, T.F.; Haughey, S.; Patterson, J.; Fauhl-Hassek, C.; Donarski, J.; Alewijn, M.; Van Ruth, S.M.; Elliott, C.T. What are the scientific challenges in moving from targeted to non-targeted methods for food fraud testing and how can they be addressed?—Spectroscopy case study. Trends Food Sci. Technol. 2018, 76, 38–55. [Google Scholar] [CrossRef]
- Greiner, M.; Pfeiffer, D.U.; Smith, R.D. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev. Vet. Med. 2000, 45, 23–41. [Google Scholar] [CrossRef]
- Swets, J. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Youden, W.J. Index for Rating Diagnostic Tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Lafeuille, J.-L.; Frégière-Salomon, A.; Michelet, A.; Henry, K.L. A Rapid Non-Targeted Method for Detecting the Adulteration of Black Pepper with a Broad Range of Endogenous and Exogenous Material at Economically Motivating Levels Using Micro-ATR-FT-MIR Imaging. J. Agric. Food Chem. 2019, 68, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Wilde, A.S.; Haughey, S.; Galvin-King, P.; Elliott, C.T. The feasibility of applying NIR and FT-IR fingerprinting to detect adulteration in black pepper. Food Control 2019, 100, 1–7. [Google Scholar] [CrossRef] [Green Version]
- ISO. International Organisation for Standardisation: Standard Method 959-1; ISO: Geneva, Switzerland, 1998. [Google Scholar]
- EU Commission. Commission Regulation (EU) No 231/2012 of 9 March 2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council (1). Off. J. Eur. Communities 2012, 55, 1–295. [Google Scholar]
- Ma, X.-D.; Mao, W.-W.; Zhou, P.; Li, P.; Li, H.-J. Distinguishing Foeniculum vulgare fruit from two adulterants by combination of microscopy and GC-MS analysis. Microsc. Res. Tech. 2015, 78, 633–641. [Google Scholar] [CrossRef]
- Garber, E.A.E.; Parker, C.H.; Handy, S.M.; Cho, C.Y.; Panda, R.; Samadpour, M.; Reynaud, D.H.; Ziobro, G.C. Presence of Undeclared Food Allergens in Cumin: The Need for Multiplex Methods. J. Agric. Food Chem. 2016, 64, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Black, C.; Haughey, S.; Chevallier, O.P.; Galvin-King, P.; Elliott, C.T. A comprehensive strategy to detect the fraudulent adulteration of herbs: The oregano approach. Food Chem. 2016, 210, 551–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Method | Chemometrics | Adulterants | Ref. |
---|---|---|---|
Fourier transform infrared (FT-IR) | Principal component analysis (PCA), One class soft independent modelling class analogy (OCSIMCA) | 1% Sudan I, 1% Sudan IV, 3% lead chromate, 3% lead oxide, 5% silicon dioxide, 10% polyvinyl chloride, 10% gum arabic | [4] |
FT-Near-infrared (NIR) | Classical least squares (CLS)-based Advanced ID algorithm | Tomato skins, brick dust, Sudan I | [18] |
NIR—Portable | Partial least squares-discriminant analysis (PLS-DA), Partial least squares regression (PLSR) | Potato starch, acacia gum, annatto | [19] |
FTIR | Hybrid linear analysis (HLA)/GO | Sudan I | [20] |
Raman | PLSR, PLS-DA | Sudan I | [21] |
Raman hyper-spectral imaging (HSI) | Linear correlation | Sudan I and Congo Red | [22] |
Surface-enhanced Raman spectroscopy (SERS) | PCA | Sudan I | [23] |
Molecularly imprinted polymers-thin layer chromatography-surface enhanced Raman spectroscopy (MIP-TLC-SERS) | PCA, Linear Correlation, PLSR | Sudan I | [24] |
Solution-NMR (Nuclear Magnetic Resonance), Solid-State NMR | Linear Regression | Sudan I | [25] |
1H NMR | PLS-DA | Sudan I-IV | [26] |
Synchronous fluorescence spectroscopy (SFS) | PLS-DA | Sudan I | [27] |
UV-Vis | PCA, PLS-DA, PLSR | Sudan I and II | [28] |
UV-Vis | PCA, PLS-DA, K-nearest neighbours (KNN) | Sudan I, Sudan I + IV blend | [29] |
UV-Vis | PLS-DA, KNN, SIMCA | Sudan I, II, III and IV | [30] |
UV-Vis | PCA, PLS-DA | Sudan I and IV | [31] |
NIR Correct Classification % | FTIR Correct Classification % | |
---|---|---|
100% Paprika | 100% | 83.3% |
10% Spent | 20% | 50% |
20% Spent | 30% | 70% |
30% Spent | 70% | 90% |
40% Spent | 90% | 100% |
50% Spent | 100% | 100% |
60% Spent | 100% | 100% |
70% Spent | 100% | 100% |
80% Spent | 100% | 100% |
90% Spent | 100% | 100% |
% Spent | % Sudan 1 | NIR | FTIR | % Spent | % Sudan 1 | NIR | FTIR |
---|---|---|---|---|---|---|---|
Cut-off | 0.737 | 0.922 | Cut-off | 0.737 | 0.922 | ||
50% | 0.10% | 0.587 | 0.769 | 100% | 0.10% | 0.152 | 0.112 |
50% | 0.50% | 0.577 | 0.769 | 100% | 0.50% | 0.140 | 0.115 |
50% | 1% | 0.578 | 0.715 | 100% | 1% | 0.129 | 0.075 |
50% | 2.50% | 0.538 | 0.602 | 100% | 2.50% | 0.094 | −0.047 |
50% | 5% | 0.480 | 0.574 | 100% | 5% | 0.043 | −0.109 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galvin-King, P.; Haughey, S.A.; Elliott, C.T. The Detection of Substitution Adulteration of Paprika with Spent Paprika by the Application of Molecular Spectroscopy Tools. Foods 2020, 9, 944. https://doi.org/10.3390/foods9070944
Galvin-King P, Haughey SA, Elliott CT. The Detection of Substitution Adulteration of Paprika with Spent Paprika by the Application of Molecular Spectroscopy Tools. Foods. 2020; 9(7):944. https://doi.org/10.3390/foods9070944
Chicago/Turabian StyleGalvin-King, Pamela, Simon A. Haughey, and Christopher T. Elliott. 2020. "The Detection of Substitution Adulteration of Paprika with Spent Paprika by the Application of Molecular Spectroscopy Tools" Foods 9, no. 7: 944. https://doi.org/10.3390/foods9070944
APA StyleGalvin-King, P., Haughey, S. A., & Elliott, C. T. (2020). The Detection of Substitution Adulteration of Paprika with Spent Paprika by the Application of Molecular Spectroscopy Tools. Foods, 9(7), 944. https://doi.org/10.3390/foods9070944