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Abstract: Background: Scheduling the arrival of external trucks in container terminals is a critical
operational decision that faces both terminal managers and trucking companies. This issue is crucial
for both stakeholders since the random arrival of trucks causes congestion in the terminals and
extended delays for the trucks. The objective of scheduling external truck appointments is not only to
control the workload inside the terminal and the costs resulting from the excessive waiting times of
trucks but also, to reduce the truck turnaround time. Methods: A binary programming model was
proposed to minimize the waiting time cost, demurrage cost, and container delivery cost. Moreover,
a sensitivity analysis was performed to compare various scenarios in terms of cost and to study
to what extent the workload level is affected. The mathematical model was solved using Gurobi©
8.1.0 software. Results: 30 instances found in the literature were solved and evaluated in terms of
the objective function value (i.e., cost) and truck turnaround time before and after controlling the
workload inside the container terminal using the new proposed constraint. Conclusions: The obtained
results showed a better distribution of the terminal workload, as well as a lower truck turnaround
time that reduces the total cost.

Keywords: truck scheduling problem; container terminal; mathematical modeling; truck appointment
system

1. Introduction

The rapid growth in the worldwide shipping industry has made the process of ex-
changing all kinds of goods easier. Containerized shipping has become the standard model
of exchanging goods in global supply chains. The core advantages of depending on a
sustainable freight mean of transport can be summed up as cost-effectiveness, time-saving,
and higher reliability. Trucks are mainly responsible for the transportation operations
from/to the container terminal. According to the International Chamber of Shipping [1],
almost 90% of raw materials, foods, vehicles, manufacturing equipment, and products
are shipped by sea around the world. Containerized trade using vessels is considered the
lifeblood of the worldwide economy. Therefore, Container Terminals (CTs) have received a
great deal of attention from researchers and responsible authorities who seek to manage
their activities. CTs constitute a complicated network aiming to move goods among the
world countries [2]. CTs consist of three essential areas: the landside, the yard area, and the
seaside. Transport areas commonly link those three vital areas. The seaside has a group of
quay cranes that perform discharging/charging inbound/outbound operations on deck,
respectively. Internal trucks play an essential role in moving containers from/to the quay-
side to/from the yard area. Yard cranes are used for discharging containers transported
by internal trucks. These containers are stacked in the yard area for a dwell time until
they are carried by external trucks. External trucks are dedicated to picking up/delivering
containers from/to the CT. At the landside area, external trucks are inspected, and handling
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containers takes place [3]. Figure 1 depicts the main areas of a CT and the cycle of the
trucks while performing the dispatching tasks [4].
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Figure 1. Schematic diagram representing the typical layout of a container terminal. (XTs: refers to
external trucks) [4].

Due to the increasing demand for transporting containers to/from the terminals,
trucking companies devote their trucks to performing the loading or dropping off tasks.
Having various trucking companies send their trucks during the same time slots results
in high arrival rates of trucks. Therefore, congestion levels rise at the terminal gates,
causing excessive waiting times for the trucks and resulting in harmful emissions that
increase global warming. According to [5], because of the massive amount of emissions, the
international maritime organization in 2018 stated that reducing the amount of greenhouse
gases resulting from international shipping is a must. After applying some policies and
regulations, it is hoped that a reduction in the total amount of CO2 emissions by 50% will
be reached in 2050 compared to 2008. Besides, the traffic fluidity of the streets around the
terminals may be disrupted. Meanwhile, from the container terminal’s perspective, the
bottlenecks that occur during specific time slots throughout the working hours lead to an
unbalanced distribution of the workload and consequently reduce the utilization of the
terminal’s equipment and its efficiency of serving the received tasks. Figure 2 illustrates
typical truck arrival and departure patterns at the port of Alexandria in November 2017 [6].
This figure shows how chaotic the arrival patterns of trucks are during working hours.
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Figure 2. Typical external truck (a) departures and (b) arrivals patterns in Alexandria container
terminal in November 2017 [6].
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In light of the problem of overcrowded trucks in front of the terminal gate and the
yard area, container terminals implement Truck Appointment Systems (TAS). The terminal
managers are responsible for setting such appointments according to various considerations
(e.g., terminal workload, vessel berthing time, quay cranes operation schedule, etc.). The
idea is to alleviate the workload in high load time slots [7]. Although the truck appointment
system is beneficial for trucking companies, there are some anticipated drawbacks. The
main drawback is assigning the trucks to inconvenient appointments for the trucking
companies. This is due to the overlap with other tasks that should be performed by
the same trucking company. On the other hand, if the container terminal allows the
trucks to arrive at the terminal randomly, the terminal managers will lose control of the
terminal workload.

In this study, a new approach is introduced to generate the optimum appointment
schedule for external trucks to avoid bottlenecks at the terminal gate. The considered costs
incurred by the trucking companies include the waiting time cost of a truck (including the
entry, exit, and service times), the demurrage cost, and the cost of transporting a container
to the terminal from the depots and vice versa (container delivery cost). Besides, an
appointment quota that is set by the terminal manager to control the truck densities inside
the terminal is applied. A mathematical model is proposed and formulated as a Binary
Programming model. Gurobi© software is used to solve the developed mathematical model.
The objective of the proposed model is to get the optimum schedule of appointments to
enhance resource utilization and smooth out the workload as well as minimize the total
costs, which will result in a reduction in truck turnaround times. Besides, a constraint is
formulated and added to the proposed model to level the workload inside the terminal and
evaluate to what extent leveling the workload will affect the costs for trucking companies.
A comparison between the two phases of the proposed model is presented along with
a sensitivity analysis to test the model under different scenarios. The obtained results
showed that implementing the introduced approach will benefit the trucking companies by
diminishing the truck turnaround times and enhancing the utilization of their trucks. The
stakeholders are responsible for balancing the trade-off between the workload inside the
terminal and the total cost incurred by trucking companies.

The rest of this paper is divided as follows: Section 2 presents a concentrated literature
review. A detailed definition of the truck appointment scheduling problem can be found in
Section 3. Section 4 discusses the formulated binary programming model and parameters,
while Section 5 gives a comprehensive presentation of the obtained results and analysis.
Finally, Section 6 provides conclusions and future work.

2. Review of Literature

The truck appointment scheduling problem in CTs has attracted the interest of many
researchers in the literature. Although some research studies, articles, and books have been
published tackling this problem, some areas still deserve more investigation. For example,
ref. [8] proposed a comprehensive review of the truck appointment scheduling problem
and identified the potential research directions related to this problem. The interested
readers can refer to the previous study for a wider survey of the published research articles
related to the problem in addition to a discussion and comparisons between the identified
approaches found in the literature which were used to tackle the external truck appointment
scheduling in container terminals. Moreover, readers are encouraged to go through [9] to
identify other aspects of container terminal planning and management models.

The importance of external truck appointment scheduling is concluded from the lit-
erature, the surrounded community, and the environmental perspectives. As mentioned
previously, many literature review studies discussed how crucial is to schedule the ap-
pointments of external trucks in container terminals for all stakeholders involved in these
networks such as ref. [8], which assured that there are still some gaps in this research area.
Additionally, many studies have emerged in literature focusing on reducing the harmful
emissions on one hand, and scheduling the appointment of external trucks on the other
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hand as in the work of [10,11]. The community perspectives put pressure on addressing
the external trucks appointment scheduling, especially in the residential areas next to con-
tainer terminals’ landside areas because of the congestion of trucks during rush hours [12].
The previously mentioned reasons motivated the authors to focus on the external truck
appointment scheduling in container terminals.

To begin with, studies presenting rudimentary systems to manage the truck arrivals
at the terminal gate, ref. [13] have laid the foundation for scheduling trucks using a deci-
sion support system to assist the terminal managers in operating the terminal efficiently.
Murty et al. proposed a case study in Hong Kong that relied on dividing the working
time into time slots at which groups of appointments are assigned. Later, more compre-
hensive methodologies were implemented to solve the problem, either by formulating
the appointment scheduling problem mathematically and solving it with the aid of exact
or heuristic algorithms or by simulation software. Simulation packages have witnessed
a significant breakthrough nowadays through supporting 3D models that offer real-life
representations. This development enables users to get more accurate results and a real de-
scription of the studied cases, in addition to determining the key performance indicators of
the container terminal systems (e.g., truck turnaround times, queue lengths in the terminal
gate and yard area, etc.). Moreover, in some publications, the author’s combined previous
approaches to get more efficient and reliable solutions. First of all, ref. [6] conducted a
simulation-based optimization study to reduce waiting times experienced by trucks, and
dangerous emissions, improve utilization of terminal resources and finally reduce the
inconvenience cost of the trucking companies. This cost results from the shifting of appoint-
ments from the reserved ones due to the advanced or delayed arrival of trucks. To leverage
the collaboration between the CT and trucking companies, they developed a Dynamic
Collaborative Truck Appointment System (DCTAS). The integrated model objective is to
reduce the turnaround times of trucks considering yard and gate operations. The results
revealed better workload levels in the terminal yard, less congestion and queue lengths
at the terminal gate, and higher utilization of the terminal equipment. Ref. [14] proposed
a study to investigate the effect of putting a cap on the truck density inside the terminal
using a TAS by allowing a certain number of trucks to come during each time slot. They
used mathematical modeling and simulation to illustrate the effect of employing a TAS
on the truck turnaround time and the utilization of the terminal resources. The problems
resulting from the lack of organization and miscommunication between quay cranes and
yard trucks were investigated by [15]. A mixed-integer linear programming model was
developed to reduce the idle time spent executing two consecutive tasks and was solved by
a particle swarm optimization-based solution method. In order to balance the workload
in the terminal, ref. [16] proposed a mixed integer programming model to determine the
appointment quota optimally, regarding the appointments of vessels, barges, trains, and
trucks, and the obtained results were validated using Discrete Event Simulation (DES).
Ref. [17] presented a DES approach to identify the effect of arrival patterns of external
trucks on the turnaround time. The results of this study showed that there is a direct
impact on the waiting time by changing the arrival patterns of external trucks. Further-
more, they recommended some considerations for terminal managers to reduce the time
spent by trucks at the terminal gate and yard without affecting the working hours of the
terminal gate. A TAS was designed by [18] to achieve a reciprocal benefit for both the
terminal and trucking companies. A mixed-integer nonlinear programming model was
formulated to optimize the optimum quota per each time slot aiming at reducing truck
densities in the gate and yard areas, in addition to providing the best schedule for the
trucking companies to send their trucks without deviation from the reserved appointments.
The obtained results revealed that the container transportation costs declined by 11.5%.
Ref. [19] presented a mixed-integer programming model combined with DES to obtain a
smooth workload distribution during all working hours and reduce the congested trucks at
the terminal. They indicated that the collaboration between the terminal and the trucking
companies improves the key performance indicators (e.g., vessel and truck turnaround
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times). Furthermore, the previous study deduced a more efficient TAS compared with the
one proposed by ref. [20], which is why this system is more convenient to apply in reality.
In this regard, ref. [21] presented an integrated DCTAS aiming at helping both the trucking
companies and container terminals in sharing the decision-making process. Trucking
companies are encouraged to participate in selecting their preferable arrival appointments
while guaranteeing that the workload of the terminal is balanced. The proposed approach
incorporated a DES model and a mixed-integer programming model to solve the problem
while considering the uncertainties related to the problem. The obtained results showed
that adopting DCTAS can benefit both the CT and trucking companies to improve various
key performance indicators such as queue lengths and truck turnaround times. Ref. [22]
used the concept of non-stationary queuing models to design a TAS in order to limit the
over-crowdedness of trucks in the terminal yard by calculating the optimum number of
appointments per time slot. Besides, using the yard cranes efficiently for managing the
workload. The results showed a considerable reduction in the total operating cost. Ref. [12]
implemented an integer linear programming model to obtain the best schedule for the
received appointments of trucks. They aimed at minimizing the total cost by reducing the
shifted appointments due to the delayed arrival of trucks. The presented models tested
to check its performance using several scenarios from the literature. The obtained results
showed a considerable reduction in truck turnaround times.

In this work, an extension of the work of ref. [23] considers more parameters, and a
modified objective function is proposed. This study differs from the work of ref. [23] by
introducing a linear objective function to reduce the total costs resulting from dispatching
tasks of containers. Moreover, a new formulation of the problem is proposed considering
more constraints to level the workload inside the terminal. The binary programming model
is used to schedule the appointments of the trucks arriving at the terminal to manage the
workload levels inside the terminal to avoid bottlenecks. The model will help in reducing
the total costs related to the dispatch of containers from/to the terminal, in addition, it
will distribute the workload evenly among all the working hours, which provides better
utilization of the terminal resources, reduced turnaround times, and congestion in front of
the gate and the yard areas.

3. The Truck Appointment Scheduling Problem

External truck scheduling is the process of organizing arrivals and departures of trucks
according to various factors, e.g., the workload of the quay and yard areas, the available
trucks in the trucking company, and the truck densities inside the terminal. Assuming
that there is a set of containers that should be delivered/picked up to/from a container
terminal, the trucking companies notify the terminal of the arrival time to deliver outbound
containers. Likewise, the trucking companies follow the same procedure in picking-up
tasks to delivering them to depots. The output of this problem is a schedule of truck
appointments that will not violate the preferred arrival times submitted by truck drivers or
the terminal workload distribution.

The scheduling of truck appointments is executed by an operating system called TAS.
The TAS is a standard communication application that is employed to coordinate between
the terminal and the trucking companies. The TAS is used by the terminal planners for
determining the best appointment for trucks to come. After submitting an appointment
request by a truck driver, the TAS is used to receive the workload levels from the terminal,
then calculate the best schedule for drivers to come. Based on this step, the trucking
companies organize their plans regarding the expected waiting times in the terminal [24].
The TAS enables the terminal managers to balance the workload level and reduce the
congestion, emissions, and total costs resulting from excessive waiting times.

The proposed mathematical model seeks to reduce the total cost that is divided into
three components: the container delivery cost, the demurrage cost, and the waiting time
cost. According to ref. [23], the container delivery cost can be defined as the cost incurred
by the trucking company to deliver containers to customers. This cost includes fuel cost,
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driving cost, and maintenance cost. The container delivery cost varies as it depends on the
time slot at which the container is dispatched to the terminal. If the container is picked up
from the terminal during rush hour time slots, the truck will spend more time delivering the
container, whereas the truck will reach the depot in less time in smooth traffic conditions.

On the other hand, the demurrage cost is a penalty applied per time unit if an inbound
container is picked-up after its free of charge period specified by the terminal, or if an
outbound container is loaded before its free of charge period. According to the stevedoring
tariff document of the Pusan East Container Terminal, the demurrage fee is imposed when
an inbound container is stored for more than four days, which is free of charge. Also, the
shippers have three days to load outbound containers for free [23]. Finally, the waiting time
cost pertains to the entry/exit time to/from the terminal, respectively as well as the service
time. Figure 3 illustrates the times spent by external trucks to deliver or pick up a container.
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In the proposed case, the CT consists of seven-yard blocks. The working hours are
divided into 24-time slots, and the terminal capacity is 30 trucks. The terminal manager
controls the truck quota at each time slot. In this case, the maximum number per time slot
is 10. It is assumed that there is one trucking company that executes the dispatching tasks
of containers to the terminal.

4. The Truck Appointment Scheduling Binary Programming Model

The proposed mathematical model and parameters are presented in this section. The
planning horizon is divided into 24-time slots representing 24 h. It is assumed that all cost
terms are per unit of time. Parameters and sets used in the proposed model are summarized
in Tables 1 and 2.
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4.1. Parameters

Table 1. Symbols and description of the used parameters.

c Cost of waiting per unit time for a truck in the container terminal.
dbs Demurrage penalty of tardiness for each truck appointed at block b at time slot s.
g Cost of transporting a container from the terminal to the depot.
vbs The maximum allowable appointment quota at block b during time slot s.

as
The average time required for a truck to move the container from the terminal to the
depot at time slot s.

nb The number of containers that must be carried from block b.

tIN
i

The time needed for a truck i to arrive at the destination block from the
terminal entrance.

tOUT
i

The time needed for a truck i to depart from the destination block where the task is
performed to the terminal exit.

tis The service time spent by a truck i to finish a task appointed at time slot s.

Us
The number of trucks available for the trucking company during time slot s for
transporting containers from the terminal.

T The maximum service time of a truck excluding the probable waiting times. It is
related to the duration at which the trucks are served.

4.2. Sets

Table 2. Sets used in the proposed model.

U Set of trucks (i ε U)
S Set of time slots (s ε S)
B Set of yard blocks (b ε B)

4.3. Decision Variable

Xibs =

{
1, i f truck i picked up a container f rom block b in time slot s
0, otherwise

4.4. Objective Function

Minimize:

TC(X) = ∑
iεU

∑
bεB

∑
s ε S

[
c
(

tIN
i + tOUT

i + tis

)
+ dbs + g.as

]
Xibs (1)

Subject to
∑
iεU

∑
bεB

Xibs ≤ Us ∀ s ε S (2)

∑
iεU

Xibs ≤ vbs ∀ s ε S, b ε B (3)

∑
iεU

∑
sεS

Xibs = nb ∀ b ε B (4)

tIN
i + tOUT

i + tisXibs ≤ T ∀ i ε U, b ε B, s ∈ S (5)

∑
b ε B

Xibs ≤ 1 ∀ i ε U, s ε S (6)

Xibs ∈ {0, 1} ∀ i ε U, b ε B, s ε S (7)

First, the objective function (1) aims at minimizing the total cost resulting from the
time spent by the trucks to finish the assigned tasks considering the waiting time (i.e., only
inside the container terminal) cost, the demurrage cost, and the container delivery cost.
Constraint (2) considers the limited number of trucks available for the trucking company
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to execute the assigned tasks during each time slot. The maximum quota for each block
during each time slot is regarded in constraint (3). In other words, this constraint limits
the total accepted appointments to a certain number that is set in advance by the terminal
operator to limit congestion in the terminal.

To ensure that all the required tasks are executed, constraint (4) is presented. Con-
straint (5) guarantees that each truck finishes the assigned task within the allowable time.
Constraint (6) provides a guarantee that each truck is assigned to one-yard block during
each time slot (i.e., for each truck at a specific time slot, it is impossible to visit two-yard
blocks simultaneously).

5. Numerical Experiments and Results

In order to show the performance of the proposed model, the model was tested
and validated using a real dataset obtained from the literature [23] (Problem instances
link: http://logistics.ie.pusan.ac.kr/logiticsie/28188/sview.do?enc=Zm5jdDF8QEB8JTJGY
mJzJTJGbG9naXN0aWNzaWUlMkY1ODI1JTJGNjU2NjkxJTJGYXJ0Y2xWaWV3LmRvJTN
GYmJzT3BlbldyZFNlcSzRCUymlzVmlld01pbmUlM0RmYWxzZSUyNnNyY2hDb2x1bW4
lM0QlMjZwYWdlJNEMSUyNnNyY2hXcmQlM0QlMjZyZ3NCZ25kZVN0ciUzRCUyNmJi
c0NsU2VxJNEJTI2cGFzc3dvcmQlM0QlMjZyZ3NFbmRkZVN0ciUzRCUyNg%3D%3D)
(accessed on: 11 February 2019). The data set includes 30 instances, which are solved
in a computational time of less than 1 s. The numerical experiments were performed using
Gurobi© 8.1.0 on an Intel® Core i7-4770 CPU @ 3.40GHz, with a 4.00 GB RAM computer.
Tables 3–6 present the input parameters for the binary programming model. The tables
below indicate the number of containers to be dispatched, type of tasks (inbound or out-
bound), the demurrage cost, the available number of trucks during each time slot, and
finally the appointment quota (i.e., the maximum number of appointments for each yard
block during each time slot). As an example, Tables 7 and 8 illustrate the number of con-
tainers to be picked up from each yard block in instances number 8 and 13, respectively.
These data are taken from Pusan Terminal in Korea, and each instance represents a day. For
example, in instance number 8, the trucking company should dispatch 475 containers from
7-yard blocks during 24-time slots of 1 h each.

Table 3. The structure of problem instances.

Instance Number Number of Tasks Task Type

1 346 Inbound
2 237 Inbound
3 230 Inbound
4 276 Inbound
5 231 Inbound
6 138 Inbound
7 125 Inbound
8 475 Inbound
9 383 Inbound
10 174 Inbound
11 144 Inbound
12 188 Inbound
13 45 Inbound
14 97 Inbound
15 352 Inbound
16 381 Inbound
17 341 Inbound
18 199 Inbound
19 237 Inbound
20 81 Inbound
21 151 Inbound

http://logistics.ie.pusan.ac.kr/logiticsie/28188/sview.do?enc=Zm5jdDF8QEB8JTJGYmJzJTJGbG9naXN0aWNzaWUlMkY1ODI1JTJGNjU2NjkxJTJGYXJ0Y2xWaWV3LmRvJTNGYmJzT3BlbldyZFNlcSzRCUymlzVmlld01pbmUlM0RmYWxzZSUyNnNyY2hDb2x1bW4lM0QlMjZwYWdlJNEMSUyNnNyY2hXcmQlM0QlMjZyZ3NCZ25kZVN0ciUzRCUyNmJic0NsU2VxJNEJTI2cGFzc3dvcmQlM0QlMjZyZ3NFbmRkZVN0ciUzRCUyNg%3D%3D
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Table 3. Cont.

Instance Number Number of Tasks Task Type

22 402 Inbound
23 400 Inbound
24 206 Inbound
25 225 Inbound
26 161 Inbound
27 102 Inbound
28 142 Inbound
29 394 Inbound
30 213 Inbound

Table 4. Demurrage cost for each truck appointed at block b at time slot s.

dbs Time Slots

Block 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1~2 - - - - - - - - 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

3~7 - - - - - - - - - - - - - - - - - - - - - - - -

Table 5. The number of available trucks during each time slot.

Us Time Slots

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

Table 6. The appointment quota for each yard block during each time slot.

vbs Time Slots

Block 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1~7 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Table 7. The number of containers to be picked up from each yard block in instance 8.

Block (b) 1 2 3 4 5 6 7

Number of containers (nb) 63 76 76 80 80 53 47

Table 8. The number of containers to be picked up from each yard block in instance 13.

Block (b) 1 2 3 4 5 6 7

Number of containers (nb) 4 4 9 13 8 5 2

It is assumed that the waiting time cost is c = 120 $/h, and the container delivery cost,
g = 20 $/h. The demurrage cost is 15 $/h, which is imposed by the terminal in specific
yard blocks during certain time slots as discussed in Table 4. All of these parameters are
estimated based on the literature. Table 9 summarizes the values of each used parameter
and the reference upon which these parameters are estimated.
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Table 9. A summary of the input parameters values.

Parameter Name Related Area Source Unit Value

Waiting time cost (c) Yard [23] $/h 120
Demurrage cost (dbs) Yard [23] $ 15

Delivery cost (g) Yard [23] $/h 20
Delivery time (as) Hinterland [23] Hour Range [0.6–1.1]

Time needed to reach block Yard [3] Hour 0.05
Time needed to leave block Yard [3] Hour 0.05

Table 10 shows the total costs for each instance and the required number of tasks that
should be performed. For example, the highest total cost can be found in instance number
8, which includes 475 tasks to be performed. In this case, the total cost equals $20,437.4,
whereas instance 13 produces the smallest total cost of $1653.4 due to the small number
of tasks to be executed. Figures 4 and 5 provide the optimum workload distribution for
instances number 8 and 13, respectively.

Figure 4 reveals a very restricted workload schedule due to a large number of tasks
(i.e., 475 tasks) in this instance. On the other hand, Figure 5 indicates that there are no
tasks to be performed in several time slots (4–10) and (16–23), which in turn, brings about
significant idle times for the terminal resources.

To further investigate the results, a sensitivity analysis was performed to verify the
effect of the number of trucks available at each time slot on the three cost parameters (i.e.,
container delivery cost, demurrage cost, and waiting time cost). The sensitivity analysis
experiment is elaborated on in the next subsection.

Table 10. The obtained results for 30 instances.

Inst. No. Number of Tasks Objective Value ($) Total Turnaround Time (h)

1 346 14,392.6 79.7
2 237 9539.94 53.5
3 230 9235 51.8
4 276 11,244.1 63
5 231 9285 52
6 138 5343.9 30.6
7 125 4814 27.5
8 475 20,437.4 111.86
9 383 16,098.2 88.9
10 174 6858.2 38.8
11 144 5590.3 31.98
12 188 7429.6 42
13 45 1653.4 9.58
14 97 3687.3 21.1
15 352 14,666.6 81.25
16 381 16,004.7 88.4
17 341 14,200.9 77.9
18 199 7915.7 44.5
19 237 9549.9 53.39
20 81 3054.1 17.55
21 151 5893.57 33.49
22 402 16,978.7 93.52
23 400 16,881.6 93.38
24 206 8217.5 46.16
25 225 9017.8 50.59
26 161 6293.4 35.84
27 102 3887.2 22.3
28 142 5508.1 31.55
29 394 16,611.9 91.65
30 213 8495.3 47.82
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5.1. Sensitivity Analysis

In this section, the investigation of the effect of changing the number of available
trucks per time slot on the terminal workload is discussed. Also, a comparison between the
original case and other generated scenarios was conducted to study the effect of varying
the available number of trucks per time slot for the trucking company on the workload
pattern and the total cost. A sensitivity experiment was applied to instance eight, since it
has the largest workload of 475 tasks, to test the solution performance in the worst-case
scenario. Table 11 summarizes the effect of changing the number of available trucks per
time slot on each of the cost items as well as the total cost.
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Table 11. The sensitivity analysis results of instance 8.

Iteration
Number

Truck Capacity
per Time Slot

Objective
Value ($)

Waiting Time
Cost ($)

Delivery Cost
($)

Demurrage
Cost ($) Total TTT (h)

1 15 Infeasible solution
2 20 20,733.4 13,157.4 7576 0 109.65
3 22 20,579.7 13,215.7 7364 0 110.13
4 24 20,502.5 13,290.5 7212 0 110.75
5 26 20,464.4 13,348.4 7116 0 111.23
6 28 20,447.7 13,393.7 7054 0 111.6
7 30 (Original case) 20,437.4 13,423.4 7014 0 111.86

It can be concluded that increasing the available number of trucks made the total cost
be decreased. As the number of available trucks increases, the delivery cost decreases
while the waiting time cost increases. That is because restricting the number of available
trucks results in more trips to the terminal to execute the required tasks. On the other hand,
the waiting time cost decreases because of the low density of trucks. The demurrage cost
remains stable at zero because all tasks are executed at the free of charge period (i.e., no
demurrage fee).

Figure 6 shows the effect of the variation that occurred in the RHS of constraint (2) not
only on the total cost but also on all cost parameters. By comparing scenario number 2 (as
it has the minimum cost) with the original case (iteration 7), the percentage of increase in
the total cost is 1.5%. In comparison, the rate of decrease in the waiting time cost is 2.4% by
reducing the number of trucks. Also, the delivery cost increased by 9.2% after reducing the
number of trucks.
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From the above justifications, it could be deduced that the proposed model is respon-
sive to the variation of the number of available trucks during each time slot. Therefore,
both stakeholders try to balance the trade-off between the total costs and the number of
trucks available. Also, the workload levels will be influenced if this parameter is changed.

From the CT perspective, it is vital to smoothen the workload to avoid congestion
inside the terminal. Therefore, the effect of leveling the workload distribution along the
planning horizon will be considered and presented in the next section.

5.2. Effect of Leveling the Workload on the Total Cost

From the previous discussion of the results, it could be concluded that there is a
considerable variation in the number of trucks served along the planning horizon among
most of the solved instances. This variation means that the terminal does not achieve high
utilization of its resources. Bottlenecks are likely to occur because of the truck congestion
in specific time slots, while other time slots are almost idle. Another adverse effect of
uncontrolled workload during the working hours inside the terminal is the congestion
either in the yard area or in the gate area.

Many traffic problems, especially in small cities and villages which suffer from poor
quality of streets and rudimentary infrastructures, are resulting in tons of emissions that
harm the environment. Furthermore, trucking companies are subjected to many penalties
due to congestion. From the trucking companies’ point of view, the waiting times of trucks
at the gate and yard and the fuel consumed due to this idle time costs a lot of money.
Besides, the delay in vehicles may lead the trucking companies to reject a new dispatching
order because of the shortage of trucks. That is why it is advantageous to balance the
workload pattern to overcome all the previously mentioned issues. The leveling constraint
is formulated as follows:

∑
i∈U

∑
b∈B

Xibs − ∑
i∈U

∑
b∈B

Xibs+1 ≤ 0 ∀ s ε S, i f s < S (8)

Constraint (8) aims at reducing the variation of truck densities among all-time slots,
smoothing the workload pattern inside the terminal.

Table 12 shows the results of leveling the terminal workload. It can be seen that
the workload level of the terminal becomes more stable. Although the objective function
value is slightly increased, the congestion inside the terminal is avoided. There are many
positive sides to leveling the workload. Even though the costs are higher compared to the
case before leveling, the Truck Turnaround Time (TTT) decreased, which enables trucking
companies to compensate for the spent expenses by accepting more dispatching orders.

Table 12. A comparison between results before and after applying the leveling constraint.

Instance
Number

Number of
Tasks

Before Applying Leveling
Constraint

After Applying Leveling
Constraint

Objective
Value ($)

Workload
Level (Peak,

Valley)

Objective
Value ($)

Workload
Level (Peak,

Valley)

1 346 14,392.6 (30, 0) 14,766.1 (18, 13)
2 237 9539.94 (25, 0) 9957.5 (11, 9)
3 230 9235 (25, 0) 9644.8 (15, 9)
4 276 11,244.1 (30, 0) 11,641.7 (16, 10)
5 231 9285 (24, 0) 9763.65 (15, 9)
6 138 5343.9 (19, 0) 5673 (12, 4)
7 125 4814 (18, 0) 5137.76 (9, 5)
8 475 20,437.4 (30, 4) 20,751.2 (24, 19)
9 383 16,098.2 (30, 0) 16,450.1 (20, 14)
10 174 6858.2 (20, 0) 7396.97 (11, 7)
11 144 5590.3 (20, 0) 5925.85 (11, 4)
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Table 12. Cont.

Instance
Number

Number of
Tasks

Before Applying Leveling
Constraint

After Applying Leveling
Constraint

Objective
Value ($)

Workload
Level (Peak,

Valley)

Objective
Value ($)

Workload
Level (Peak,

Valley)

12 188 7429.6 (22, 0) 7806.73 (15, 6)
13 45 1653.4 (13, 0) 1802.65 (7, 1)
14 97 3687.3 (16, 0) 3951.3 (10, 3)
15 352 14,666.6 (30, 0) 15,037.6 (21, 13)
16 381 16,004.7 (30, 0) 16,359.2 (19, 14)
17 341 14,200.9 (30, 0) 14,622.9 (17, 14)
18 199 7915.7 (22, 0) 8425 (12, 8)
19 237 9549.9 (24, 0) 10,035.1 (10, 9)
20 81 3054.1 (15, 0) 3365.23 (9, 3)
21 151 5893.57 (20, 0) 6400.5 (10, 6)
22 402 16,978.7 (30, 1) 17,327.1 (23, 15)
23 400 16,881.6 (30, 1) 17,233.4 (22, 15)
24 206 8217.5 (22, 0) 8769.2 (14, 8)
25 225 9017.8 (24, 0) 9414.4 (14, 9)
26 161 6293.4 (20, 0) 6650.24 (13, 5)
27 102 3887.2 (17, 0) 4184.2 (8, 4)
28 142 5508.1 (20, 0) 5843 (10, 4)
29 394 16,611.9 (30, 0) 16,954.8 (20, 15)
30 213 8495.3 (24, 0) 8886 (16, 7)

Based on the above facts, analyzing the results will generate a clear view of the impact
of implementing the balancing constraint on the proposed model to enhance the utilization
of the terminal. Therefore, a comprehensive comparison is conducted in the next section to
investigate the terminal workload curve before and after applying the balancing constraint
on the proposed model.

5.3. Effect of Applying the Leveling Constraint on the Lowest Workload Instance (Instance 13)

Some experiments were performed on selected instances to understand the impact of
balancing the workload patterns inside the terminal. Choosing instance 13 goes for having
the lowest workload among all instances.

Figure 7 represents the variation that occurred in the terminal workload curve after
redistributing the trucks upon the time slots. What is striking in this figure is the stability
of the workload after applying the proposed constraint. The graph shows a significant
difference between the two workload patterns. A considerable number of trucks are
assigned to deliver containers to the terminal in time slots 1 and 13. In contrast, the
terminal will not receive containers in other time slots (e.g., 4–9) causing a long idle time of
terminal resources and, consequently, a low utilization level.

On the other hand, the workload pattern is leveled after implementing the suggested
constraint. No peaks and valleys are observed in the workload pattern, which refers to the
constant rate of truck arrivals to the terminal.

5.4. Impact of Using Leveling Constraint on the Highest Workload Instance (Instance 8)

The same procedure was performed on instance 8, which incorporates the highest
workload. The previously mentioned scenarios were tested with the leveling constraints
(refer to Table 8). Figures 8–13 show the workload of the container terminal before and
after applying the leveling constraint. Before leveling, it is noticeable that in Figure 8, the
workload curve almost has no peaks (constant workload level) in all-time slots, which
confers higher utilization of all the terminal resources. However, this scenario results in the
highest total cost among all other scenarios due to the limited number of trucks compared
with the required tasks per each time slot. While in the case of iteration 7, the workload
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level is not stable because there are plenty of trucks that can execute the required tasks
during each time slot.
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Figure 9. The workload before and after using balancing constraint on iteration 3.
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Figure 10. The workload before and after applying balancing constraint on iteration 4.
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On the other hand, Figure 9 shows a slight change in the workload pattern of iteration
two after adding the new constraint. The rest of the iterations clarify the effect of the
constraint on workload pattern inside the terminal in each scenario presented in Table 8.
It could be noticed that the level of workload during the working hours for all iterations
is almost steady. The minimum workload level is 19 trucks for each time slot. Although
the workload level slightly increased in some time slots among all iterations, no peaks or
valleys are observed in the workload patterns, which results in a stable workload, and high
utilization of the resources.

5.5. Impact of the Leveling Constraint on the Total TTT for the Proposed Scenarios of Instance 8

Leveling the workload pattern of the terminal has several effects on all stakeholders.
From the terminal manager’s perspective, it guarantees that all resources are exploited
optimally. Moreover, it preserves the truck densities inside the terminal to avoid congestion.
Likewise, it is beneficial for trucking companies because it reduces the total TTT. Figure 14
shows the effect of the proposed constraint on the total TTT in each scenario. The higher
the available trucks per time slot, the more the reduction percentage of total TTT, which is
revealed in Figure 15. Hence, leveling the workload is very useful for decreasing the TTT,
especially with a high number of available trucks.
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Figure 14. The total TTT before and after levelling the workload.
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5.6. Impact of the Leveling Constraint on the Cost for the Proposed Scenarios of Instance 8

By investigating the effect of leveling the workload on the objective function value
and its components in all the scenarios, it can be deduced that the total costs become higher
after leveling. The objective function values after modifying the workload are close, owing
to the leveled workload pattern (see Table 13). Figure 16 indicates the difference occurred
in the value of the objective function for each scenario. As mentioned before, the change in
the total cost is not significant by balancing the workload, especially in iterations 3, 4, 5, 6,
and 7. Therefore, the change is not that much, so we can say that the effect of leveling on
the cost is negligible. Figure 17 represents the reduction of waiting time costs before and
after leveling the workload. Since the total TTT is decreased, the resulting waiting costs are
consequently reduced in all scenarios as well. As shown in Figure 18, leveling the workload
in the terminal may cause higher delivery costs due to the increasing consumption of the
trucks, which leads to higher driving, maintenance, fuel, and overhauling costs.

Based on the above results, we can conclude that smoothing out the workload pattern is
beneficial for both container terminals and trucking companies. Container terminals avoid
bottlenecks and high truck densities in the terminal gate and yard. Also, it reduces the total
TTT, and consequently, trucking companies will be able to achieve more dispatching tasks.

Table 13. The objective values and other cost terms after balancing the workload level.

After Levelling the Workload

Iteration No.
Truck

Capacity/Time
Slot

Objective
Value ($)

Waiting Time
Cost ($)

Delivery
Cost ($)

Demurrage
Cost ($)

1 15 Infeasible
2 20 20,769.7 13,159.7 7610 0
3 22 20,752.2 13,170.2 7582 0
4 24 20,606.4 13,204.4 7402 0
5 26 20,605.8 13,213.8 7392 0
6 28 20,752 13,174 7578 0
7 30 20,751.2 13,175.2 7576 0
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Figure 16. The total cost before and after leveling the workload.
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Figure 17. The difference in the waiting time cost before and after leveling the workload.
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Figure 18. The change in the delivery cost before and after leveling the workload.
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5.7. Impact of Leveling the Workload on the Total TTT of All the Instances

In this section, the total TTT is measured in all instances before and after balancing
the workload to verify the performance of our model. From Figure 19, It can be seen that
the total TTT decreased in all cases. Figure 20 is constructed to feel the significant effect
of the proposed model. It is noticeable that the maximum reduction of the total TTT has
resulted in instance 28, reaching 4.9% compared with before leveling. While the minimum
percentage of reduction is 1.9%, which is recorded in instance 8.

Logistics 2022, 6, x FOR PEER REVIEW 20 of 23 
 

 

 
Figure 18. The change in the delivery cost before and after leveling the workload. 

5.7. Impact of Leveling the Workload on the Total TTT of All the Instances 
In this section, the total TTT is measured in all instances before and after balancing 

the workload to verify the performance of our model. From Figure 19, It can be seen that 
the total TTT decreased in all cases. Figure 20 is constructed to feel the significant effect of 
the proposed model. It is noticeable that the maximum reduction of the total TTT has re-
sulted in instance 28, reaching 4.9% compared with before leveling. While the minimum 
percentage of reduction is 1.9%, which is recorded in instance 8. 

Based on the above results, we can conclude that smoothing out the workload pattern 
is beneficial for both container terminals and trucking companies. Container terminals 
avoid bottlenecks and high truck densities in the terminal gate and yard. Also, it reduces 
the total TTT, and consequently, trucking companies will be able to achieve more dis-
patching tasks. 

 
Figure 19. The total TTT before and after leveling the workload for all instances. 

7000

7100

7200

7300

7400

7500

7600

7700

7800

20 22 24 26 28 30

Co
st

 ($
)

Truck capacity per time slot

Delivery cost

Before After

0
10
20
30
40
50
60
70
80
90

100
110
120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Ti
m

e 
(H

rs
)

Instance number

Total turnaround time

Before After

Figure 19. The total TTT before and after leveling the workload for all instances.
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6. Conclusions and Discussion

Since the expansion of seaborne trade has led to the presence of large vessels at CTs,
consequently, terminal managers relentlessly seek to alleviate the congestion to avoid bottle-
necks, especially during peak periods. Truck Appointment Systems create a communication
channel between the trucking companies and container terminals to fulfill the ultimate
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benefit for both parties. The collaboration between them results in better workload levels,
fewer traffic problems inside and surrounding the terminal, high utilization of terminal
resources, and more throughput.

Similarly, the trucking company could exploit all its resources efficiently without
having high costs while performing the container transporting tasks. In this paper, a
linear integer programming model was implemented and solved. The mathematical model
investigated the truck appointment scheduling problem to minimize the total cost. Also,
it was validated and tested using 30 instances from the literature. The obtained results
showed a significant effect of applying the presented model on the workload distribution as
well as reducing the total cost. An optimum scheduling of appointments leads to reduced
TTT and maintaining the utilization of terminal resources. Besides, smoothing out the
workload pattern results in low possibilities of congestion. A sensitivity analysis was
performed to compare multiple scenarios and monitor the effect on both the total cost and
the workload.

After testing the proposed mathematical model for reducing the total cost, a new
constraint was formulated to control the truck densities inside the terminal. The leveling
constraint aims at mitigating the congestion in the yard areas in addition to reducing the
total TTT. In other words, the new constraint makes our model consider both stakeholders
to achieve the ultimate benefit of their resources. When the total TTT decreases, the
trucking companies could earn more money by exploiting the available trucks in new
pickup/delivery tasks because the vehicles will achieve the assigned jobs with less time.
Therefore, the presented model considers reducing the congestion inside the terminal in
addition to reducing the total cost.

It can be deduced that for the terminal managers and the trucking companies, it is a
trade-off between the total cost and controlling the workload level inside the terminal to
achieve the best use of the resources and avoid bottlenecks. A comparison between the
results before and after applying the new constraint stated that the total cost is slightly
increased. However, still, in return, the TTT is decreased, and the resources’ utilization is
increased significantly.

For future work, the model may be expanded to cover more cost terms related to
trucking companies. For instance, this can be achieved by manipulating the objective
function to consider the waiting time cost at the terminal gate. Moreover, measuring the
system time, which combines the waiting time at the yard in addition to the service time,
from a real terminal to make the model more realistic. Additionally, another future direction
of research can be realized by considering the stochasticity of time parameters using Sample
Average Approximation (SAA) methods to deal with stochastic optimization models.
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