Fertilizer Logistics in Brazil: Application of a Mixed-Integer Programming Mathematical Model for Optimal Mixer Locations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Transport Network and Premises
2.2. Proposed Mathematical Model
O | : ports (offer); |
F | : fertilizers factories (offer); |
M | : mixers (centroids); |
D | : demand for fertilizers (centroids); |
P | : type of fertilizer; |
I | : nutrients (N, P, K); |
E | : inbound trans-shipment terminal; |
S | : output trans-shipment terminal. |
: total road costs of port O, mixed in M and distributed to D, USD/ton; | |
: total road costs of factory M, mixed in M and distributed to D, USD/ton; | |
: total intermodal costs of leaving port O and passing through terminals E and S, mixed in M and distributed to D, USD/ton; | |
: volume imported at port O for each type of fertilizer P, tons; | |
: production capacity of factory F for each type of fertilizer P, tons; | |
: capacity of input terminal E, tons; | |
: demand for fertilizers in consumer D for each nutrient I, tons; | |
: fertilizer conversion factor from fertilizer type P to nutrient I, %; | |
C | : fixed cost linked to the opening of a mixer, USD/ton; |
: minimum volume to open a mixing unit, tons; | |
: road CO2 emission coefficient for transportation from port O, mixed in M and distributed to D, in tons of CO2 equivalent per ton of fertilizers transported; | |
: road CO2 emission coefficient for transportation from factory F, mixed in M and distributed to D, in tons of CO2 equivalent per ton of fertilizers transported; | |
: intermodal emission coefficient of leaving port O and passing through terminals E and S, mixed in M and distributed to D, in tons of CO2 equivalent per ton of fertilizers transported. |
: road volume transported from port O, mixed in M and distributed to D, for fertilizer type P, tons; | |
: road volume transported from factory F, mixed in M and distributed to D, for fertilizer type P, tons; | |
: multimodal volume transported from port O and passing through terminals E and S, mixed in M and distributed to D, for fertilizer type P, tons; | |
: CO2 emissions per nutrient I in fertilizer logistics, tons; | |
: total CO2 emissions in fertilizer logistics, tons; | |
: CO2 emissions from the inert weight of fertilizers (excluding nitrogen, phosphorus and potassium) in fertilizer logistics, tons; | |
: Binary decision variable for optimal location. |
2.3. Parameters and Data Sources
- CT: total cost associated with the transport flow;
- CP: port cost;
- CI: inbound cost (mixer supply flow);
- CO: outbound cost (flow of distribution for consumption);
- I: taxes.
- Y: estimated value of the freight of fertilizers (in USD/t);
- X: road distance of the route (in km);
- a: angular coefficient (or slope);
- b: linear coefficient (or intercept).
2.4. Analyzed Scenarios
3. Results
3.1. Logistics Costs of the Fertilizer Production Chain
3.2. Greenhouse Gas Emissions in Fertilizer Logistics
3.3. Transport Flows of Fertilizer
3.4. Location of Fertilizer Mixer Factories: Capacity and Resilience
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ANDA. Associação Nacional para Difusão de Adubos. Anuário Estatístico. 2019. Available online: http://www.anda.org.br/ (accessed on 3 October 2020).
- IFA. International Fertilizer Association. IFASTAT. Consumption. 2018. Available online: https://www.ifastat.org/databases/plant-nutrition (accessed on 6 October 2020).
- Camargo, F.A.O.; Silva, L.S.; Merten, G.H.; Carlos, F.S.; Baveye, P.C.; Triplett, E.W. Brazilian agriculture in perspective: Great expectations vs. reality. Adv. Agron. 2017, 141, 53–114. [Google Scholar] [CrossRef]
- IBGE. Instituto Brasileiro de Geografia e Estatística. Pesquisa Agrícola Municipal (PAM). 2018. Available online: https://sidra.ibge.gov.br/pesquisa/pam/tabelas (accessed on 12 September 2019).
- CEPEA—Centro de Estudos Avançados em Economia Aplicada. PIB do Agronegócio Brasileiro. 2019. Available online: https://www.cepea.esalq.usp.br/br/pib-do-agronegocio-brasileiro.aspx (accessed on 2 October 2020).
- Farias, P.I.V.; Freire, E.; Cunha, A.L.C.D.; Grumbach, R.J.D.S.; Antunes, A.M.D.S. The Fertilizer Industry in Brazil and the Assurance of Inputs for Biofuels Production: Prospective Scenarios after COVID-19. Sustainability 2020, 12, 8889. [Google Scholar] [CrossRef]
- Abideen, A.Z.; Sundram, V.P.K.; Pyeman, J.; Othman, A.K.; Sorooshian, S. Food Supply Chain Transformation through Technology and Future Research Directions—A Systematic Review. Logistics 2021, 5, 83. [Google Scholar] [CrossRef]
- Caixeta-Filho, J.V.; Pera, T.G. Fertilizer logistics in Brazil: Challenges and opportunities. In Fertilizer Focus; Argus Media: London, UK, 2018; pp. 55–59. [Google Scholar]
- Lima, L.M.; Elias, L.P.; Caixeta-Filho, J.V.; Campos, J. Fertilizer freight rate disparity in Brazil: A regional approach. Int. Food Agribus. Manag. Rev. 2016, 19, 109–128. [Google Scholar] [CrossRef]
- Simões, D.C.; Caixeta-Filho, J.V.; Palekar, U.S. Fertilizer distribution flows and logistic costs in Brazil: Changes and benefits arising from investments in port terminals. Int. Food Agribus. Manag. Rev. 2018, 21, 407–422. [Google Scholar] [CrossRef]
- Reis, J.G.M.; Machado, S.T.; Neto, F.G.; Souza, A.E.; De Alencar Nass, I. Brazilian import transport network of fertilizer (NPK): An analysis using SNA. Interconnected Supply Chains in an Era of Innovation. In Proceedings of the 8th International Conference on Information Systems, Logistics and Supply Chain, ILS, Austin, TX, USA, 22–24 April 2020; Anais: Los Angeles, CA, USA, 2020. [Google Scholar]
- Rabbani, M.; Molana, S.M.H.; Sajadi, S.M.; Davoodi, M.H. Sustainable fertilizer supply chain network design using evolutionary-based resilient robust stochastic programming. Comput. Ind. Eng. 2022, 174, 108770. [Google Scholar] [CrossRef]
- Benhamou, L.; Giard, V.; Khoulod, M.; Fenies, P.; Fontane, F. Reverse Blending: An economically efficient approach to the challenge of fertilizer mass customization. Int. J. Prod. Econ. 2020, 226, 107603. [Google Scholar] [CrossRef]
- Siswanto, N.; Kurniawati, U.; Latiffianti, E.; Rusdiansyah, A.; Sarker, R. A Simulation study of sea transport based fertilizer product considering disruptive supply and congestion problems. Asian J. Shipp. Logist. 2018, 34, 269–278. [Google Scholar] [CrossRef]
- Santoro, M.C.; Ronconi, D.P. Modelling the transportation and warehousing of potassium chloride in the fertiliser industry. Int. J. Logist. Syst. Manag. 2011, 8, 3. [Google Scholar] [CrossRef]
- Wilson, W.W.; Shakya, S. Quantifying impacts of competition and demand on the risk for fertilizer plant locations. J. Commod. Mark. 2023, 30, 100326. [Google Scholar] [CrossRef]
- Carvalho, L.B. Estudo de Localização de Fábricas Misturadoras de Adubo na Região Centro-Oeste Brasileira Utilizando um Modelo de Programação Linear. Master’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 2009. [Google Scholar]
- Alencar, R. Localização de Armazéns: Estudo de Caso em uma Empresa do Setor de Fertilizantes; Universidade Federal Fluminense: Niterói, Brazil, 2017. [Google Scholar]
- He-Lambert, L.; Shylo, O.; English, B.C.; Eash, N.S.; Zahn, J.A.; Lambert, D.M. Supply chain and logistic optimization of industrial Spent Microbial Biomass distribution as a soil amendment for field crop production. Resour. Conserv. Recycl. 2019, 146, 218–231. [Google Scholar] [CrossRef]
- Mahmoodjanloo, M.; Tavakkoli-Moghaddam, R.; Baboli, A.; Jamiri, A. A multi-modal competitive hub location pricing problem with customer loyalty and elastic demand. Comput. Oper. Res. 2020, 123, 105048–105061. [Google Scholar] [CrossRef]
- Alumur, S.A.; Campbell, J.F.; Contreras, I.; Kara, B.Y.; Marianov, V.; O’Kelly, M.E. Perspectives on modeling hub location problems. Eur. J. Oper. Res. 2021, 291, 1–17. [Google Scholar] [CrossRef]
- Shang, X.; Yang, K.; Jia, B.; Gao, Z.; Ji, H. Heuristic algorithms for the bi-objective hierarchical multimodal hub location problem in cargo delivery systems. Appl. Math. Model. 2021, 91, 412–437. [Google Scholar] [CrossRef]
- MDIC. Ministério do Desenvolvimento, Indústria, Comércio e Serviços. Comexstat: Exportação e Importação Geral. 2018. Available online: http://comexstat.mdic.gov.br/pt/geral (accessed on 2 October 2020).
- ABISOLO. Associação Brasileira das Indústrias de Tecnologia em Nutrição Vegetal. Anuário ABISOLO. 2018. Available online: https://www.abisolo.com.br/anuario/ (accessed on 20 October 2020).
- ANTT. Agência Nacional de Transportes Terrestres. Anuário Estatístico Ferroviário. Available online: http://www.antt.gov.br/ferrovias/arquivos/Anuario_Estatistico.html (accessed on 3 October 2020).
- ANTAQ. Agência Nacional de Transportes Aquaviários. Estatístico Aquaviário. Available online: http://web.antaq.gov.br/Anuario/ (accessed on 3 October 2020).
- Da Silva, Á.S.; Tobias, M.S.G.; da Rocha, M.P.D.C. A viabilidade do corredor arco norte: Revisão de literatura e perspectivas de pesquisas no brasil. Braz. J. Dev. 2022, 8, 66224–66247. [Google Scholar] [CrossRef]
- Pereira FG, G.; Botter, R.C.; Robles, L.T. Port terminal in the northern region of Brazil: Decision about public port or private use terminal. Int. J. Anal. Hierarchy Process 2019, 11, 195–214. [Google Scholar] [CrossRef]
- GAMS. General Algebraic Modeling System. Software. 2020. Available online: https://www.gams.com/ (accessed on 2 October 2020).
- IAC. Instituto Agronômico de Campinas. Boletim Técnico IAC, 208. Fertilizantes: Cálculo de Fórmulas Comerciais. Campinas, Março de 2011. Available online: http://www.iac.sp.gov.br/publicacoes/publicacoes_online/pdf/boletimtecnicoIAC-208.pdf (accessed on 11 October 2019).
- SIFRECA. Sistema de Informações de Fretes. 2019. Available online: https://sifreca.esalq.usp.br/ (accessed on 2 October 2020).
- Rocha, F.V.; Caixeta-Filho, J.V. Ferrogrão: Impactos econômicos e a localização ótima do terminal de transbordo. Pesqui. Oper. Para Desenvolv. 2018, 10, 108–127. [Google Scholar] [CrossRef]
- GoogleMaps. Distance Matrix API. Available online: https://www.google.com.br/maps/preview (accessed on 3 October 2020).
- Branco, J.E.H.; Caixeta-Filho, J.V. Estimativa da demanda de carga captável pela estrada de ferro Norte-Sul. J. Transp. Lit. 2011, 5, 17–50. [Google Scholar]
- MAPA. Ministério da Agricultura, Pecuária e Abastecimento. Projeções do Agronegócio. Brasil 2017/18 a 2027/28. 2018. Available online: https://www.gov.br/agricultura/pt-br/assuntos/politica-agricola/todas-publicacoes-de-politica-agricola/projecoes-do-agronegocio (accessed on 4 October 2020).
- Zhang, C.; Xu, Y.; Hu, Y.; Wu, J.; Ren, J.; Zhang, Y. A Blockchain-Based Multi-Cloud Storage Data Auditing Scheme to Locate Faults. IEEE Trans. Cloud Comput. 2022, 10, 2252–2263. [Google Scholar] [CrossRef]
- Xu, Y.; Bhuiyan, M.Z.A.; Wang, T.; Zhou, X.; Singh, A.K. C-FDRL: Context-Aware Privacy-Preserving Offloading through Federated Deep Reinforcement Learning in Cloud-Enabled IoT. IEEE Trans. Ind. Inform. 2023, 19, 1155–1164. [Google Scholar] [CrossRef]
Nutrient/Fertilizer | ID | N | P | K |
---|---|---|---|---|
Potassium chloride (KCl) | 1 | 0% | 0% | 60% |
Di-ammonium phosphate (DAP) | 2 | 18% | 45% | 0% |
NPK formulas | 3 | 16% | 15% | 15% |
Monoammonium phosphate (MAP) | 4 | 10% | 52% | 0% |
Ammonium nitrate | 5 | 33% | 0% | 0% |
Nitrocalcium | 6 | 20% | 0% | 0% |
Others | 7 | 13% | 5% | 11% |
Other fertilizers with N and P | 8 | 9% | 3% | 1% |
Others with nitrogen | 9 | 13% | 4% | 4% |
Ammonium sulfate | 10 | 20% | 0% | 0% |
Simple superphosphate | 11 | 0% | 18% | 0% |
Triple superphosphate | 12 | 0% | 44% | 0% |
Urea | 13 | 45% | 0% | 0% |
Scenarios | Characteristics/Alterations |
---|---|
C1 | Base scenario |
C2 | Full tax exemption |
C3 | Unrestricted import capacity |
C4 | New intermodal logistics solutions/increase in the current capacity |
C5 | Expansion of fertilizer demand |
Transportation Mode | Scenarios | ||||
---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | |
Waterway | 1% | 0% | 1% | 1% | 3% |
Railway | 8% | 2% | 6% | 9% | 11% |
Road | 91% | 98% | 93% | 90% | 86% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pauli de Bastiani, F.; Péra, T.G.; Caixeta-Filho, J.V. Fertilizer Logistics in Brazil: Application of a Mixed-Integer Programming Mathematical Model for Optimal Mixer Locations. Logistics 2024, 8, 4. https://doi.org/10.3390/logistics8010004
Pauli de Bastiani F, Péra TG, Caixeta-Filho JV. Fertilizer Logistics in Brazil: Application of a Mixed-Integer Programming Mathematical Model for Optimal Mixer Locations. Logistics. 2024; 8(1):4. https://doi.org/10.3390/logistics8010004
Chicago/Turabian StylePauli de Bastiani, Fernando, Thiago Guilherme Péra, and José Vicente Caixeta-Filho. 2024. "Fertilizer Logistics in Brazil: Application of a Mixed-Integer Programming Mathematical Model for Optimal Mixer Locations" Logistics 8, no. 1: 4. https://doi.org/10.3390/logistics8010004
APA StylePauli de Bastiani, F., Péra, T. G., & Caixeta-Filho, J. V. (2024). Fertilizer Logistics in Brazil: Application of a Mixed-Integer Programming Mathematical Model for Optimal Mixer Locations. Logistics, 8(1), 4. https://doi.org/10.3390/logistics8010004