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Abstract: Background: The global pharmaceutical industry is crucial for providing medications but
faces challenges in distributing products safely, especially in tropical and remote areas. Pharma-
ceuticals require careful transport control to maintain quality; therefore, manufacturers must adopt
optimal distribution strategies to ensure product quality throughout the supply chain. The current
research focused on creating a model to assess risk levels and predict risk categorization (low, mod-
erate, and high) associated with thermal mapping across pharmaceutical transportation pathways.
Methods: Data from a company for pharmaceutical logistics in Brazil were used. The data had
85,261 instances and six attributes (season, origin, destination, route, temperature, and temperature
excursion). The dataset consisted of critical destinations, including the shipment time, cargo tempera-
ture, and route information. The classification algorithms (CART-Decision Tree, NB-Naive Bayes,
and MP-Multilayer Perceptron) were used to build up a model of rules for predicting risk levels in
thermal mapping routes; Results: The MP model presented the best performance, indicating a better
application probability. The machine learning model is the basis for an automated risk prediction for
routes of pharmaceutical transportation; Conclusions: the developed MP model might automatically
predict risk during the distribution of pharmaceutical products, which might lead to optimizing time
and costs.

Keywords: classifiers; pharmaceuticals logistics; risk management; route operation

1. Introduction

The global pharmaceutical industry is vital in ensuring access to essential medications
for populations worldwide. However, numerous challenges have hampered the efficient
and safe distribution of pharmaceutical products, particularly in regions characterized
by tropical climates and distant rural areas [1]. Pharmaceutical products are susceptible
to transport conditions and need strategic control to ensure quality during transport
operations [2–4].

After the drug is manufactured, it is exposed to an environmental temperature outside
the packaging range during a particular time. After this time of exposure, the product
passes the long-term stability test stage to determine whether or not the excursion practiced
initially impacts its stability until the end of its shelf life [5,6]. This requirement is a
challenge for the manufacturer, as the warranty extends to end-use after passing through
controls in the supply chain. The manufacturer must choose the best product distribution
strategy to avoid degradation and maintain quality [3].

According to Klopott [7], 25% of the losses in the drug cold chain are attributed
to issues encountered during transportation. The primary cause of loss or damage in
pharmaceutical transport is the breakdown or malfunction of refrigerating equipment,
which accounts for over half of all claims. The emergence of pharmaceutical cold chain
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logistics is based on refrigeration technology and the development of specialized logistics.
The transport of products such as vaccines, injectables, tinctures, oral drugs, drugs for
external use, and biological products can be described as pharmaceutical cold chain logistics.
However, a low-temperature environment may not be sufficient for some drugs, which
must be kept in cold conditions [8,9].

Thermal route mapping is a tool that gathers information and analyzes it by collecting
data from the actual distribution routes [10]. Thermal mapping involves identifying the
temperature range in which a pharmaceutical product must be transported and stored to
maintain its efficacy and safety [11,12]. Companies operating in cold chain logistics protect
consumers and improve security and reliability by performing real-time monitoring and
implementing security management systems [13].

Previous studies have aimed to mitigate the departure from optimum temperature
during the drug cold chain. Paul et al. (2020) [14] proposed the application of the Bayesian
Belief Network (BBN) to effectively assess transportation disruption risks in supply chains,
thereby assisting managers in predicting and formulating resilient strategies to address these
risks. Zhou et al. [15] found that the spatial fuzzy multi-criteria evaluation approach effi-
ciently assesses and maps maritime transportation risks, assisting authorities in developing
practical plans to enhance navigation strategies in the international cold chain distribution.

With the development of information technology (IT), there have been at-
tempts to incorporate digital-era solutions into pharmaceutical distribution systems.
Faghih-Roohi et al. [16] proposed a group risk assessment approach for selecting pharma-
ceutical product shipping lanes using intuitionistic fuzzy numbers and Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) built on Failure Modes and Effects
Analysis (FMEA) to aggregate risk assessments from different experts and prioritize risks
efficiently. At the same time, Shashi [17] developed a model for digitalizing pharmaceutical
cold chain systems using IoT Digital Enabler. IoT-based digital enablers can improve
pharmaceutical cold chain systems by addressing known and unknown constraints and en-
hancing temperature monitoring, transport, and storage. Moreover, Yang et al. [18] applied
game theory to develop a reasonable revenue-sharing contract between medical institutions
and logistics service providers to encourage decreased risk in cold chain transportation.

Another approach to minimize the risk of quality reduction is the combination of envi-
ronmental sensor modules and wireless technology in transport vehicles for real-time data
transmission, thus integrating the Internet of Things (IoT) and building intelligent systems
for pharmaceutical logistics [19–21]. When a product leaves the supplier and enters the cold
supply chain, checking and controlling its environment becomes challenging. Even though
developed technologies, such as the Internet of Things (IoT), can effectively address this is-
sue, IoT devices are vulnerable to data manipulation. To mitigate this risk, Bapatla et al. [22]
employ IoT and blockchain technologies to effectively and steadily monitor and control the
ambient parameters of cold chain shipments, thereby enhancing the reliability and safety
of pharmaceuticals for consumers. However, the current literature does not provide an
approach to forecast the risk in thermal mapping transport terrestrial routes.

Data mining is composed of the predictive modeling technique. Previous studies have
proposed an intelligent supply chain management system for vaccine distribution using
machine learning [20]. The technique extracts implicit database information, identifying and
classifying new patterns [21–23]. The results obtained from data mining can be used in infor-
mation management, information request processing, decision-making, and process control.
The data contained in the databases are used to learn a particular target concept [23–26].

In predictive modeling and data analysis, three commonly employed algorithms are
(1) Classification and Regression Trees (CART), (2) Naive Bayes (NB), and (3) Multilayer
Perceptron (MP). These algorithms have distinct principles and procedures that make them
suitable for various data types and predictive tasks. (1) CART is a decision tree algorithm
for classification and regression tasks [27]. It works by recursively splitting the data into
subsets based on the values of the input features, creating a tree-like structure of decisions.
The algorithm selects the best split at each node based on a criterion for classification or
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mean squared error for regression. The tree is built until the data is sufficiently divided
or a stopping criterion is met, such as a maximum tree depth or minimum node size. The
final model is easy to interpret, as it can be visualized as a tree, with branches representing
decision rules and leaves representing outcomes. (2) NB is a probabilistic algorithm based
on Bayes’ theorem, which calculates the probability of a class given a set of features [28].
The “naive” assumption is that all features are conditionally independent given the class
label, simplifying the probability computation. The algorithm estimates the probability
distribution of the features within each class and then applies Bayes’ theorem to classify new
data points based on these distributions. (3) MP is an artificial neural network consisting
of multiple layers of neurons: an input layer, one or more hidden layers, and an output
layer [29]. Each neuron in a layer is connected to neurons in the subsequent layer through
weighted connections. The network learns to map inputs to outputs by adjusting these
weights using backpropagation, which minimizes the error between the predicted and
actual outputs. MP can capture complex non-linear relationships in data and is widely
used in tasks such as image recognition, speech processing, and other areas requiring deep
learning models. These three algorithms offer powerful predictive modeling tools, making
them suitable for different data types and applications in scientific research.

According to Pezzola and Sweet [30], in the field of pharmaceutical regulation, most
cross-national empirical studies have concentrated on intellectual property rights, often
neglecting to examine the state’s capacity to regulate the pharmaceutical market and the
differences in regulatory practices between countries, leading to difficulties in ensuring
compliance during transport [1,2,30]. On the other hand, poor infrastructure, such as
unreliable road networks and inadequate storage facilities, hampers the efficient transport
of pharmaceuticals, especially temperature-sensitive products [31]. Brazil has uneven
regional infrastructure development and relies heavily on trucks for freight [32]; therefore,
particular focus should be applied to the road transportation of pharmaceuticals to ensure
quality at the destination [33].

Automating risk analysis of temperature route specifications in the transport of phar-
maceuticals allows temperature range at critical limits during the route to decision making.
This automation can be done by applying machine learning training algorithms to classify
the risk during thermal mapping routes. Therefore, the present study aimed to use the
thermal mapping history of land freight transport routes to obtain a model for predicting
the optimal temperature excursion. A risk assessment score was developed to predict
different levels of risk in thermal mapping transport routes. Our study addresses a gap in
pharmaceutical logistics by considering temperature excursion for packaging specifications
on long drug distribution routes.

2. Materials and Methods

The present study was carried out with drugs with storage and transport specifications
between 15 and 30 ◦C. Pharmacopeias and the thresholds for applicable ambient drug
temperature ranges were used according to their temperature profile (Table 1).

Table 1. Pharmacopeias and determine applicable ambient drug temperature ranges according to the
temperature profile.

Reference Norms

[34]
Normal storage conditions. Storage in dry, well-ventilated places at temperatures of

15–25 ◦C or, depending on climate conditions, until reaches 30 ◦C. Do not store
above 30 ◦C (from +2 to +30 ◦C). Do not store above 25 ◦C (from +2 to +25 ◦C).

[35]
Ambient temperature: The temperature that prevails in a working environment.
Controlled ambient temperature: The temperature is maintained with the aid of

thermostats in an ambient of 20–25 ◦C.

[36]
Storage at a continuous temperature of 25 ◦C during real-time stability studies, i.e.,
covers the temperature likely to be encountered in ambient conditions throughout

Europe, including real-time tours from 25 ◦C.
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Table 1. Cont.

Reference Norms

[37] Standard temperature, normal temperature, room temperature, and warm are
defined as 20 ◦C, 15–25 ◦C, 1–30 ◦C, and 30–40 ◦C, respectively.

[38] Ambient temperature; 15 ◦C to 25 ◦C.

2.1. Estimation of Optimal Temperature Occurrence as a Function of Thermal Mapping

A machine-learning model was developed to estimate the optimal temperature ex-
cursion. The study also compared the performance of all algorithms concerning their
prediction abilities and model quality. The data was divided into the training and testing
subsets in evaluating the models. For machine learning operations, 7078 data were split
into 75% for training and 25% for exam sets. The flowchart (Figure 1) was used to identify
the best training algorithm.
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Figure 1. Machine learning training and testing process flowchart (Adapted from [38]).

The pharmaceuticals were conditioned in thermal packs under suitable environmental
conditions and transported in a dry cargo-box truck to Brazil’s northeast (within 100 km
range of GPS coordinates Latitude −3◦46′25.32′′ S Longitude −38◦34′29.28′′ W) and south
(within 100 km range of GPS coordinates 30◦1′59.00′′ S and 51◦13′48.00′′ W) regions by
road. The parameters included in the tests to determine the optimal temperature excursion
were that (1) for a temperature within 15 to 30 ◦C, there is an optimal temperature deviation
(yes), and (2) for a temperature below <15 ◦C or >30 ◦C, there is not an optimal temperature
deviation (no) [34].

2.2. Dataset Features and Data Mining Approach

The attributes utilized to construct the predictive model using the classification tech-
nique (modeling classification) comprise attributes on the route specification, including
five attributes and 7078 instances, including the training set 5308 and the test set 1770
(Tables 2 and 3).

Table 2. Criteria for temperature excursion test.

Temperature (◦C) Optimal Temperature Deviation

15 to 30 yes
<5 to >30 no

Source: [34].
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Table 3. Attributes that make up the model training dataset.

Training Set (75% of the Total Dataset)
Attributes Label Count Type Total Instances *

Seasons
winter 2590 nominal 5308

summer 2718

Period

evening 1339 nominal 5308
night 1349
dawn 1342

morning 1278

Destination region Northeast Region 2590 nominal 5308
South Region 2718

Temperature

minimum 6.30 numeric 5308
maximum 41.80

mean 20.71
StdDev 6.09

Optimal temperature excursion
(Target)

yes 4023 nominal 5308
no 1285

* The training set is 75% of the total dataset. StdDev = standard deviation.

The data set was divided into two parts (75% for training and 25% for testing) to avoid
overlapping results or excessive adjustments when using the whole data set. The model was
built using the training dataset (75%) and then validated using the testing dataset (25%). Data
analysis included preprocessing steps such as normalization, noise removal, class balancing,
and data transformation. To stratify the data set, the filter “stratified remove folds” was used
to separate the data set between training and testing. The training and test data sets were
loaded, stored, and transformed. After this preprocessing stage, a predictive model was
inferred through training (75% of the dataset). The model was validated with the test set
(25% of the data set) and subsequent application of NB and MP classification algorithms.

The following mining steps were performed from the dataset obtained in a commercial
pharmaceutical logistics company: data selection, preprocessing, transformation, mining,
analysis, and assimilation of results. The following attributes were discretized in the prepro-
cessing stage: time/period (afternoon, night, dawn, and morning) and optimal temperature
excursion (yes and no). Discretization reduces and simplifies data, making learning faster
and providing more robust results [25]. Data preprocessing was performed in spreadsheets
for further processing in the Weka data mining software version 3.8.3 [39–43]. After the pre-
processing stage, a predictive model was inferred through training. The model was validated
with the test set and subsequent application of NB and MP classification algorithms.

The NB and MP classification algorithms were applied to the training and test dataset
to build a rule model for predicting the temperature excursion as a function of the route
(northeast, south), period (dawn, morning, afternoon, night), and the season of the year
(summer, winter). The technique employed was predictive modeling, a form of supervised
learning where the class label for each training sample is provided. Test samples are ran-
domly selected and are independent of training samples. Model validation was conducted
using the cross-validation technique applied to the training set, ensuring that each record
was used the same number of times for training and exactly once for testing.

2.3. Temperature Route Specification and Analysis

The criteria for the risk assessment in thermal route mapping considered the following:
(1) whether the transported product entered a temperature variation and (2) the time it
remained on the specified change on the transport route in the thermal mapping. When
the temperature is between 15 and 30 ◦C, there is no temperature variation, and the risk is
“low”. The risk is “moderate” when the temperature is lower than 15 or higher than 30 ◦C
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for more than or equal to 1 h. The risk is “high” when the temperature excursion exceeds
30 ◦C for over 1 h.

Data from a cold chain solutions company for pharmaceutical logistics was analyzed
for two years by specifying temperature routes. The following data analysis steps were
performed: data selection, preprocessing, transformation, mining, analysis, and interpreta-
tion of results. The preprocessing also included discretizing the attributes in classes that
reduce and simplify the data, making the learning faster and the results denser [17,34]. The
CART, NB, and MP classification algorithms were used to build a training and test dataset
rules model. The performance of the algorithms in mitigating temperature excursions
was evaluated using a range of assessment metrics: confusion matrix, sensitivity, accuracy,
precision, the Matthews correlation coefficient (MCC), and the F value. The algorithm’s
learning ability was assessed using the Kappa statistic, which measures the reliability of
the classifications [44–46].

The following four terms are employed in the computation of metrics to gauge the
model’s performance [46], and these terms are summarized in the confusion matrix: (1) True
Positives (TP) are the positive values correctly labeled by the classifier; (2) True negatives
(TN) refer to the negative tuples that the classifier has correctly identified; (3) False positives
(FP) are the negative tuples wrongly labeled positive; and (4) False Negatives (FN) are the
positive tuples erroneously labeled as negative. Equations (1) to (6) were used to evaluate
the performance of the algorithms for accuracy, precision, sensitivity, Matthews Correlation
Coefficient (MCC), and F value [43,46]:

False Positive Rate = 1 − (TN)

(FP + FN)
(1)

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(2)

Precision =
(TP)

(TP + FP)
(3)

Sensitivity =
(TP)

(TP + FN)
(4)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(5)

F value = 2 ×
⌊
(Precision × Sensitivity)
(Precision + Sensitivity)

⌋
(6)

where TP = true positive; TN = true negative; FP = false positive; FN = false negative.

3. Results
3.1. Optimal Temperature Occurrence

The models designed to predict optimal temperature excursions during pharmaceuti-
cal transport demonstrated an enhanced overall performance for the MP model compared
to Naive Bayes for training and testing (Table 4).

Table 4. Attributes that make up the dataset in the test of models.

Test Set (25% of the Total Dataset)
Attributes Label Count Type Total Instances *

Seasons
winter 2590 nominal 5308

summer 2718

Period

evening 440 nominal 1770
night 450
dawn 452

morning 428
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Table 4. Cont.

Test Set (25% of the Total Dataset)
Attributes Label Count Type Total Instances *

Destination region Northeast Region 866 nominal 1770
South Region 904

Temperature

minimum 6.30 numeric 1770
maximum 41.30

mean 20.65
StdDev 6.11

Optimal temperature excursion
(Target)

yes 1342 nominal 1770
no 428

* The training set is 25% of the total dataset. StdDev = standard deviation.

The MP model’s accuracy for the test subset was 93.7%, and the rates of incorrectly
classified instances (5.2–6.3%, respectively) were lower and higher for the Kappa (85–81.9%,
respectively). However, when applied to the test subset, the MP model slightly reduced
performance. The two classification algorithms can be applied to estimate the optimal
temperature excursion, as they presented performance above 90% (Figure 2).
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The NB and MP models’ overall performance was superior to training, indicating
greater learning in the test phase (Figure 2). These results indicate that the classes (yes and
no) presented higher metrics results than the NB model (Table 5). The performance of the
MP model also showed a lower rate of positive, false positive, and higher values in all the
evaluated metrics (Table 6) compared to the NB model. The false-positive rate decreased
by 3.7% in the “yes” class and 8.2% in the “no” class for the MP model.

The confusion matrix of the developed models (Tables 7 and 8) showed that the
NB model presented FP and FN numbers higher than those found for the MP model in
training. In the test, there was an improvement in the results’ performance in the confusion
matrix, showing fewer instances classified as FP and FN. There was a proportional increase
in TP and TN. These values are related to the model’s precision, sensitivity, specificity,
and quality.
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Table 5. Performance of temperature excursion classification models in the training subset.

Naive Bayes Model Multilayer Perceptron Model

Training Detailed Accuracy by Class Detailed Accuracy by Class

Metrics Yes (%) No (%) WA (%) Yes (%) No (%) WA (%)

True Positive Rate 90.5 74.7 86.7 98.8 82.1 94.8
False Positive Rate 25.3 09.5 21.5 17.9 1.2 13.9

Precision 91.8 71.5 86.9 94.5 95.6 94.8
Recall 90.5 74.7 86.7 98.8 82.1 94.8

F-Measure 91.1 73.1 86.8 96.6 88.4 94.6
MCC 64.2 64.2 64.2 85.4 85.4 85.4

MCC = Matthews correlation coefficient; WA = weighted average.

Table 6. Performance of temperature excursion classification models in the test subset.

Naive Bayes Model Multilayer Perceptron Model

Training Detailed Accuracy by Class Detailed Accuracy by Class

Metrics Yes (%) No (%) WA (%) Yes (%) No (%) WA (%)

True Positive Rate 90.5 74.7 86.7 98.8 82.1 94.8
False Positive Rate 25.3 90.2 75.5 86.6 98.4 79.2

Precision 91.8 24.5 9.8 21.0 20.8 1.6
Recall 90.5 92.0 71.0 86.9 93.7 93.9

F-Measure 91.1 90.2 75.5 86.6 98.4 79.2
MCC 64.2 91.1 73.2 86.7 96.0 85.9

MCC = Matthews correlation coefficient; WA = weighted average.

Table 7. Naive Bayes model classification confusion matrix for training.

Naive Bayes Model—Training
Yes (n) No (n) Total (n) Classified as

3640 (TP) 383 (FP) 4023 yes
325 (FN) 960 (TN) 1285 no

3965 1343 5308

Multilayer Perceptron Model—Training
Yes (n) No (n) Total (n) Classified as

3975 (TP) 48 (FP) 4023 yes
230 (FN) 1055 (TN) 1285 no

4205 1103 5308

Table 8. Multilayer Perceptron model classification confusion matrix for testing.

Naive Bayes Model—Training
Yes (n) No (n) Total (n) Classified as

1210 (TP) 132 (FP) 1342 yes
105 (FN) 323 (TN) 428 no

1315 455 1770

Multilayer Perceptron Model—Training
Yes (n) No (n) Total (n) Classified as

1320 (TP) 22 (FP) 1342 yes
89 (FN) 339 (TN) 428 no

1409 361 1770
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3.2. Prediction and Risk Score

The performance of the CART, NB, and MP models were similar when analyzing
accuracy, misclassified instances, and Kappa, with values between 91.1 and 99.3%, 0.7 and
0.9%, 95.3 and 96.2%, respectively (Table 9). The MP model presented better performance
results by class when compared to the CART and NB models.

Table 9. The general performance of prediction models for risk assessment in thermal mapping.

Classifier Model CART Decision Tree Naive Bayes Multilayer Perceptron

Accuracy (%) 99.3 99.1 99.3
Instances classified incorrectly (%) 0.7 0.9 0.7

Kappa Statistics (%) 96.2 95.3 96.2

The higher hits can explain this result for the intermediate class “moderate risk” in
precision (50%), sensitivity (12.3%), F value (19.7%), MCC (24.6%), and higher true-positive
rate (12.3%) when compared to the results of the CART and NB models (Table 10).

Table 10. Performance of detailed prediction models by class of risk levels in temperature pathways.

Model CART Decision Tree

Performance Metrics Low Risk Moderate Risk High Risk

True Positive Rate (%) 99.8 0.8 99.8
False Positive Rate (%) 0.0 0.0 0.80
Precision (%) 100.0 20.0 93.4
Sensitivity (%) 99.8 0.8 99.8
F value (%) 99.9 1.6 96.5
MCC (%) 99.3 3.9 96.1

Model Naive Bayes

Performance Metrics Low Risk Moderate Risk High Risk

True Positive Rate (%) 99.6 0 100.0
False Positive Rate (%) 0 0 1
Precision (%) 100.0 0 91.8
Sensitivity (%) 99.6 0 100.0
F value (%) 99.8 0 95.7
MCC (%) 98.4 0.1 95.3

Model Multilayer Perceptron

Performance Metrics Low Risk Moderate Risk High Risk

True Positive Rate (%) 99.9 12.3 99.1
False Positive Rate (%) 0.3 0.1 0.7
Precision (%) 100.0 50.0 94.0
Sensitivity (%) 99.9 12.3 99.1
F value (%) 99.9 19.7 96.5
MCC (%) 99.2 24.6 96.1

MCC: Matthews correlation coefficient.

The hits for the “low risk” and “high risk” classes were generally more efficient and
better, which can be justified by the Kappa. However, the “moderate risk” class still needs
adjustments and training with higher instances. The MP model (Table 11) presented fewer
wrongly classified instances for “moderate risk,” classified 106 as “high risk” compared to
121 instances for CART and 122 for NB. It presented the highest number of hits of instances
correctly classified as “moderate risk” for the MP. All models had similar success rates in
the “low risk” and “high risk” classes.
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Table 11. Confusion matrix of models for predicting risk levels in temperature routes.

CART Decision Tree
Low Risk (n) Moderate Risk (n) High Risk (n) Total (n) Classified as

19,038 0 29 19,067 Low risk
0 1 121 122 Moderate risk
1 4 2122 2127 High risk

19,039 5 2272 21,316

Naive Bayes
Low Risk (n) Moderate Risk (n) High Risk (n) Total (n) Classified as

19,000 0 67 19,067 Low risk
0 0 122 122 Moderate risk
0 1 2126 2127 High risk

19,000 1 2315 21,316

Multilayer Perceptron
Low Risk (n) Moderate Risk (n) High Risk (n) Total (n) Classified as

19,039 0 28 19,067 Low risk
1 15 106 122 Moderate risk
5 15 2107 2127 High risk

19,045 30 2241 21,316

4. Final Remarks

We propose an assessment score to predict risk in the thermal mapping of pharmaceu-
tical transport routes in Brazilian conditions. Similar to the present study, previous research
indicates that machine learning models may reduce logistics operation costs [2,47,48]. The
cold chain literature typically pertains to transporting perishable products using thermal
and refrigerated packaging methods, alongside logistics planning, to ensure the integrity
of shipments is maintained [4,49–51]. Perishable products maintain chemical reactions
attenuated due to low temperatures; however, delays and problems in transportation can
have negative consequences [52,53].

Temperature route specification protocols are used for the thermal mapping of routes
to ensure quality throughout the supply chain and predict risks during the transporta-
tion process [54]. However, it is challenging in developing countries due to poor road
infrastructure, mainly in rural areas. The temperature data outside the acceptance range
needs electronic monitoring [55]. This study might contribute to the automation of this risk
prediction through machine learning to predict models and evaluate their performance for
application in new data. Three models were tested to predict risk during thermal mapping,
including CART, NB, and MP. The MP model was superior to the CART and NB algorithms
because it performed better in the sensitivity metric or true positive rate, especially for
intermediate classes in the risk classification task in route specification. In practice, this
means that predicting risk with greater sensitivity at an intermediate level would help to
avoid high-risk thermal mapping routes.

The infrastructure required to transport pharmaceuticals is a huge challenge. Vio-
lations of the cold chain may affect quality, making therapeutics harmful or ineffective.
Predicting the risk of departure from optimal medication transport in developing countries
requires careful consideration of each country’s unique challenges [56].

As a logistics solution, the MP model outperformed the three models tested. The hit
rates by class, mainly by higher hits in the intermediate class (moderate risk) prediction,
justify a better application probability. This solution may contribute to the automatic
prediction of risk during transport in thermal mapping and, consequently, optimize time
and costs in the distribution of pharmaceutical products [4,49,51,52]. Solutions based
on algorithms can provide opportunities to optimize the pharmaceutical supply chain’s
complex processes.
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The assessment score to predict risk in the thermal mapping of pharmaceutical trans-
port routes is essential for risk management in specifying temperature routes and phar-
maceutical logistics; consequently, it contributes to improving the chain. The MP model
has great application potential and presents more accurate results in modeling. It ensures
learning about risk management while transporting pharmaceutical products. The strategic
and managerial bias, based on data analysis in machine learning, guides decision-making
and manages risks during the transport routes of pharmaceutical products.

Predictive modeling leverages historical data to forecast future outcomes, assess
whether the temperature of pharmaceuticals during transportation remained within speci-
fied limits, and identify and predict varying levels of risk in heat mapping along transport
routes. These models are applicable in classifying the routes of various cold chain products
based on tested specificity, enhancing predictive risk management analysis. These models
can support more informed decision-making by considering potential future scenarios,
reducing risk, and improving operational efficiency.
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20. Öcal, M.; Kaya, İ.A. Food Safety and GIS Applications. Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=7248098&casa_token=fo29ue4PzWQAAAAA:_c2SukQMiP91Bu45t9tyP1XOSjFbO-cAl8Uk4D1KhDiyOVH08rd_
kBe078YVuOY4vMlue0CP_vGqWw&tag=1 (accessed on 24 June 2023).

21. Hu, H.; Xu, J.; Liu, M.; Lim, M.K. Vaccine supply chain management: An intelligent system utilizing blockchain, IoT and machine
learning. J. Bus. Res. 2023, 156, 113480. [CrossRef] [PubMed]

22. Bapatla, A.; Mohanty, S.; Kougianos, E.; Puthal, D. PharmaChain 2.0: A Blockchain framework for secure remote monitoring of
drug environmental parameters in pharmaceutical cold supply chain. In Proceedings of the 2022 IEEE International Symposium
on Smart Electronic Systems (iSES), Warangal, India, 18–22 December 2022; pp. 185–190. [CrossRef]

23. Frank, E.; Hall, M.; Holmes, G.; Kirkby, R.; Pfahringer, B.; Witten, I.H.; Trigg, L. Weka: A machine learning workbench for data
mining. In Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers; Maimon, O., Rokach,
L., Eds.; Springer: Berlin, Germany, 2012.

24. Ngai, E.W.T.; Xiu, L.; Chau, D.C.K. Application of data mining techniques in customer relationship management: A literature
review and classification. Expert Syst. Appl. 2009, 36, 2592–2602. [CrossRef]

25. Larose, D.T.; Larose, C.D. Data Mining and Predictive Analytics; John Wiley & Sons: Hoboken, NJ, USA, 2015.
26. Naik, A.; Samant, L. Correlation review of classification algorithm using Data Mining Tool: Weka, Rapidminer, Tanagra, Orange,

and Knime. Procedia Comput. Sci. 2016, 85, 662–668. [CrossRef]
27. Bar-Hen, A.; Gey, S.; Poggi, J.M. Influence measures for CART classification trees. J. Classif. 2015, 32, 21–45. [CrossRef]
28. Yang, Z.; Ren, J.; Zhang, Z.; Sun, Y.; Zhang, C.; Wang, M.; Wang, L. New three-way incremental Naive Bayes classifier. Electronics

2023, 12, 1730. [CrossRef]
29. Almeida, L.B. Multilayer perceptrons. In Handbook of Neural Computation; CRC Press: Boca Raton, FL, USA, 2020; pp. C1–C2.
30. Pezzola, A.; Sweet, C. Global pharmaceutical regulation: The challenge of integration for developing states. Glob. Health 2016,

12, 85. [CrossRef]
31. Njuguna, M.; Mairura, C.; Ombui, K. Influence of cold chain supply logistics on the safety of vaccines. A Case of Pharmaceutical

Distributors in Nairobi County. Dev. Ctry. Stud. 2015, 5, 91–108.
32. De Souza, F.L.U.; Larranaga, A.M.; Palma, D.; Pitombo, C.S. Modeling travel mode choice and characterizing freight transport in

a Brazilian context. Transp. Lett. 2022, 14, 983–996. [CrossRef]
33. da Silva, T.D.; dos Santos Macêdo, D.C.; dos Santos Lucena, J.N.; da Silva, R.M.F.; de Lira Soares, L.A.; Pereira, M.C.; Paulino,

S.J.S.; da Silva, B.P.; Lucena, M.L.C. Systematic assessment of the drugs cold chain in Brazil by pharmaceutical professionals. Res.
Soc. Dev. 2021, 10, e5010716144. [CrossRef]

34. WHO. World Health Organization Technical Report Series n◦ 908-2003-Annex 9. Guide to Good Storage Practices for
Pharmaceuticals—Appendix. Storage and Labeling Conditions. Available online: https://iris.who.int/bitstream/handle/10665/
42613/WHO_TRS_908.pdf?sequence=1 (accessed on 20 November 2023).

35. USPNF Packaging and Storage Requirements. Available online: https://www.uspnf.com/sites/default/files/usp_pdf/EN/
USPNF/revisions/659_rb_notice.pdf (accessed on 10 November 2023).

36. EMA Guideline CPMP/QWP/609/96/Rev2-Declaration of Storage Conditions in the Product Information of Medicinal Products-
2007. Available online: https://www.ema.europa.eu/en/declaration-storage-conditions-medicinal-products-particulars-and-
active-substances-annex-scientific-guideline (accessed on 10 January 2024).

37. Japanese Pharmacopeia. Edition XVII-General Notice Page 2-16. Available online: https://www.mhlw.go.jp/content/11120000
/000945683.pdf (accessed on 22 April 2024).

https://www.researchgate.net/profile/Niranjan-Kulkarni-2/publication/266278288_Multi-echelon_Network_Optimization_of_Pharmaceutical_Cold_Chains/links/55c200c808aeb5e0c584d759/Multi-echelon-Network-Optimization-of-Pharmaceutical-Cold-Chains.pdf
https://www.researchgate.net/profile/Niranjan-Kulkarni-2/publication/266278288_Multi-echelon_Network_Optimization_of_Pharmaceutical_Cold_Chains/links/55c200c808aeb5e0c584d759/Multi-echelon-Network-Optimization-of-Pharmaceutical-Cold-Chains.pdf
https://www.researchgate.net/profile/Niranjan-Kulkarni-2/publication/266278288_Multi-echelon_Network_Optimization_of_Pharmaceutical_Cold_Chains/links/55c200c808aeb5e0c584d759/Multi-echelon-Network-Optimization-of-Pharmaceutical-Cold-Chains.pdf
https://doi.org/10.1007/s00542-017-3594-3
https://doi.org/10.1016/j.rtbm.2020.100485
https://doi.org/10.1016/j.oceaneng.2020.107403
https://doi.org/10.1016/j.ijpe.2020.107774
https://doi.org/10.35940/ijeat.E3622.0611522
https://doi.org/10.1155/2022/1555042
https://doi.org/10.1109/ICWITS.2012.6417745
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7248098&casa_token=fo29ue4PzWQAAAAA:_c2SukQMiP91Bu45t9tyP1XOSjFbO-cAl8Uk4D1KhDiyOVH08rd_kBe078YVuOY4vMlue0CP_vGqWw&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7248098&casa_token=fo29ue4PzWQAAAAA:_c2SukQMiP91Bu45t9tyP1XOSjFbO-cAl8Uk4D1KhDiyOVH08rd_kBe078YVuOY4vMlue0CP_vGqWw&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7248098&casa_token=fo29ue4PzWQAAAAA:_c2SukQMiP91Bu45t9tyP1XOSjFbO-cAl8Uk4D1KhDiyOVH08rd_kBe078YVuOY4vMlue0CP_vGqWw&tag=1
https://doi.org/10.1016/j.jbusres.2022.113480
https://www.ncbi.nlm.nih.gov/pubmed/36506475
https://doi.org/10.1109/iSES54909.2022.00046
https://doi.org/10.1016/j.eswa.2008.02.021
https://doi.org/10.1016/j.procs.2016.05.251
https://doi.org/10.1007/s00357-015-9172-4
https://doi.org/10.3390/electronics12071730
https://doi.org/10.1186/s12992-016-0208-2
https://doi.org/10.1080/19427867.2021.1976011
https://doi.org/10.33448/rsd-v10i7.16144
https://iris.who.int/bitstream/handle/10665/42613/WHO_TRS_908.pdf?sequence=1
https://iris.who.int/bitstream/handle/10665/42613/WHO_TRS_908.pdf?sequence=1
https://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/revisions/659_rb_notice.pdf
https://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/revisions/659_rb_notice.pdf
https://www.ema.europa.eu/en/declaration-storage-conditions-medicinal-products-particulars-and-active-substances-annex-scientific-guideline
https://www.ema.europa.eu/en/declaration-storage-conditions-medicinal-products-particulars-and-active-substances-annex-scientific-guideline
https://www.mhlw.go.jp/content/11120000/000945683.pdf
https://www.mhlw.go.jp/content/11120000/000945683.pdf


Logistics 2024, 8, 84 13 of 13

38. British Pharmacopeia Edition. General Notices. Part III under Temperature-2020. Available online: https://www.pharmacopoeia.
com/compliance.org/guidemgr/files/060996en.pdf (accessed on 22 April 2024).

39. Uçar, M.K.; Nour, M.; Sindi, H.; Polat, K. The effect of training and testing process on machine learning in biomedical datasets.
Math. Prob Eng. 2020, 2020, 2836236. [CrossRef]

40. Holmes, G.; Donkin, A.; Witten, I.H. Weka: A Machine Learning Workbench. Available online: https://researchcommons.
waikato.ac.nz/bitstream/handle/10289/1138/uow-cs-wp-1994-09.pdf?sequence=1 (accessed on 10 December 2023).

41. Witten, I.H.; Frank, E.; Trigg, L.E.; Hall, M.A.; Holmes, G.; Cunningham, S.J. Weka: Practical Machine Learning Tools and
Techniques with Java Implementations. Available online: https://researchcommons.waikato.ac.nz/items/30f20075-25f4-440b-
ad4a-4c95803d4391 (accessed on 12 November 2023).

42. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. ACM
SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]

43. Markov, Z.; Russell, I. An introduction to the WEKA data mining system. ACM SIGCSE Bull. 2006, 38, 367–368. [CrossRef]
44. Carletta, J. Assessing agreement on classification tasks: The Kappa statistic. Compu. Linguist. 1996, 22, 249–254.
45. Bowes, D.; Hall, T.; Gray, D. Comparing the Performance of Fault Prediction Models Which Report Multiple Performance Mea-

sures: Recomputing the Confusion Matrix. Available online: https://dl.acm.org/doi/abs/10.1145/2365324.2365338?casa_token=
e4w3hcKrPtQAAAAA:Cw9vh63aQAXZY2Cit9js7Inu37MpzSRiHG_eB9UFn6xWMu0OMzIVr9xkOdS7Av5ZmjhHYRIF3hIC9A
(accessed on 23 March 2024).

46. Han, J.; Kamber, M.; Pei, J. Classification: Basic Concepts. In The Morgan Kaufmann Series in Data Management Systems; Han, J.,
Kamber, M., Pei, J., Eds.; Elsevier Science Ltd.: Geneva, The Netherlands, 2012; pp. 327–391.

47. Gessner, G.H.; Volonino, L.; Fish, L.A. One-up, one-back ERM in the food supply chain. Inf. Syst. Manag. 2007, 24, 213–222.
[CrossRef]

48. Lee, H.; Jo, S.K.; Lee, N.; Lee, H.W. A method for co-existing heterogeneous IoT environments based on compressive sensing.
In Proceedings of the 2016 18th International Conference on Advanced Communication Technology (ICACT), PyeongChang,
Republic of Korea, 31 January–3 February 2016; pp. 206–209. [CrossRef]

49. Raab, V.; Petersen, B.; Kreyenschmidt, J. Temperature monitoring in meat supply chains. Br. Food J. 2011, 113, 1267–1289.
[CrossRef]

50. Uthayakumkar, R.; Priyan, S. Pharmaceutical supply chain and inventory management strategies: Optimization for a pharmaceu-
tical company and a hospital. Oper. Res. Health Care 2013, 2, 52–64. [CrossRef]

51. Campos, Y.; Villa, J.L. Technologies Applied in the Monitoring and Control of the Temperature in the Cold Chain. Avail-
able online: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8588118&casa_token=Ldm0eQnWKRsAAAAA:mU4cza6
QxjsvQhe08iCpPDl3-LmtgGu8HJOmgrmzE2g4fqO6Zt3ZFS64lvv8Vdq22o0_JVrdX0ZYHA (accessed on 6 October 2023).

52. Montanari, R. Cold chain tracking: A managerial perspective. Trends Food Sci. Technol. 2008, 19, 425–431. [CrossRef]
53. Kumar, N.; Jha, A. Temperature excursion management: A novel approach of quality system in pharmaceutical industry. Saudi

Pharm. J. 2017, 25, 176–183. [CrossRef] [PubMed]
54. Bhatnagar, A.; Gupta, V.; Tandon, P.; Saksena, T.; Ranjan, A.; Gandhi, P.; Garcha, S.C.; Kapoor, A. Last Mile Delivery of Cold

Chain Medicines—Challenges and Recommendations. IJPBR 2018, 6, 34–41. [CrossRef]
55. Brazil. Collegiate Board Resolution—RDC no. 430 of October 2020. Available online: https://www.in.gov.br/en/web/dou/-/

resolucao-de-diretoria-colegiada-rdc-n-430-de-8-de-outubro-de-2020-282070593 (accessed on 10 September 2023).
56. De Boeck, K.; Decouttere, C.; Vandaele, N. Vaccine distribution chains in low- and middle-income countries: A literature review.

Omega 2020, 97, 102097. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.pharmacopoeia.com/compliance.org/guidemgr/files/060996en.pdf
https://www.pharmacopoeia.com/compliance.org/guidemgr/files/060996en.pdf
https://doi.org/10.1155/2020/2836236
https://researchcommons.waikato.ac.nz/bitstream/handle/10289/1138/uow-cs-wp-1994-09.pdf?sequence=1
https://researchcommons.waikato.ac.nz/bitstream/handle/10289/1138/uow-cs-wp-1994-09.pdf?sequence=1
https://researchcommons.waikato.ac.nz/items/30f20075-25f4-440b-ad4a-4c95803d4391
https://researchcommons.waikato.ac.nz/items/30f20075-25f4-440b-ad4a-4c95803d4391
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1145/1140123.1140127
https://dl.acm.org/doi/abs/10.1145/2365324.2365338?casa_token=e4w3hcKrPtQAAAAA:Cw9vh63aQAXZY2Cit9js7Inu37MpzSRiHG_eB9UFn6xWMu0OMzIVr9xkOdS7Av5ZmjhHYRIF3hIC9A
https://dl.acm.org/doi/abs/10.1145/2365324.2365338?casa_token=e4w3hcKrPtQAAAAA:Cw9vh63aQAXZY2Cit9js7Inu37MpzSRiHG_eB9UFn6xWMu0OMzIVr9xkOdS7Av5ZmjhHYRIF3hIC9A
https://doi.org/10.1080/10580530701404561
https://doi.org/10.1109/ICACT.2016.7423330
https://doi.org/10.1108/00070701111177683
https://doi.org/10.1016/j.orhc.2013.08.001
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8588118&casa_token=Ldm0eQnWKRsAAAAA:mU4cza6QxjsvQhe08iCpPDl3-LmtgGu8HJOmgrmzE2g4fqO6Zt3ZFS64lvv8Vdq22o0_JVrdX0ZYHA
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8588118&casa_token=Ldm0eQnWKRsAAAAA:mU4cza6QxjsvQhe08iCpPDl3-LmtgGu8HJOmgrmzE2g4fqO6Zt3ZFS64lvv8Vdq22o0_JVrdX0ZYHA
https://doi.org/10.1016/j.tifs.2008.03.009
https://doi.org/10.1016/j.jsps.2016.07.001
https://www.ncbi.nlm.nih.gov/pubmed/28344467
https://doi.org/10.30750/ijpbr.6.1.6
https://www.in.gov.br/en/web/dou/-/resolucao-de-diretoria-colegiada-rdc-n-430-de-8-de-outubro-de-2020-282070593
https://www.in.gov.br/en/web/dou/-/resolucao-de-diretoria-colegiada-rdc-n-430-de-8-de-outubro-de-2020-282070593
https://doi.org/10.1016/j.omega.2019.08.004

	Introduction 
	Materials and Methods 
	Estimation of Optimal Temperature Occurrence as a Function of Thermal Mapping 
	Dataset Features and Data Mining Approach 
	Temperature Route Specification and Analysis 

	Results 
	Optimal Temperature Occurrence 
	Prediction and Risk Score 

	Final Remarks 
	References

