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Abstract: Background: Warehousing operations, crucial to logistics and supply chain management,
often seek innovative technologies to boost efficiency and reduce costs. For instance, AR devices
have shown the potential to significantly reduce operational costs by up to 20% in similar industries.
Therefore, this paper delves into the pivotal role of smart glasses in revolutionising warehouse
effectiveness and efficiency, recognising their transformative potential. However, challenges such
as employee resistance and health concerns highlight the need for a balanced trade-off between
operational effectiveness and human acceptance. Methods: This study uses scenario and regression
analyses to examine data from a German logistics service provider (LSP). Additionally, structured
interviews with employees from various LSPs provide valuable insights into human acceptance.
Results: The findings reveal that smart glasses convert dead time into value-added time, significantly
enhancing the efficiency of order picking processes. Despite the economic benefits, including higher
profits and competitive advantages, the lack of employee acceptance due to health concerns still needs
to be addressed. Conclusions: After weighing the financial advantages against health impairments, the
study recommends implementing smart glass technology in picking processes, given the current state
of technical development. This study’s practical implications include guiding LSPs in technology
adoption strategies, while theoretically, it adds to the body of knowledge on the human-technology
interface in logistics.

Keywords: order picking; smart glasses; smart warehouse; digitalisation; warehouse operations;
logistics performance; warehouse performance; smart logistics; innovation

1. Introduction

In today’s global supply chains, the demand for speed and agility in logistical processes
is imperative, particularly within warehouse operations, where efficiency is a crucial
determinant of success [1]. Order picking is a part of the warehousing logistical processes
in a company that has a vital impact on performance in terms of efficiency, quality, cost,
and time [2]. Order picking as an essential part of the material flow is a value-intensive
activity with great potential for optimisation [3]. Recognising this potential for optimisation,
pursuing efficiency in this process becomes crucial to reduce operational costs and enhance
picking speed [4]. To do so, new methods, products, and services are required to meet the
demands of highly dynamic logistics markets and the increasing complexity of logistics
networks. Flexibility, adaptability, and proactivity are becoming increasingly important
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and can be achieved by incorporating new technologies [5]. While problem-orientated
approaches lead to incremental improvements, technology-orientated approaches can bring
more significant changes [6]. Employees still manually carry out many logistics processes
according to the receipt-based pick-by-paper or the receipt-less variant pick-by-scan [7].

Securing competitive advantages by improving order picking performance is crucial
for a warehouse operation’s competitive positioning. Innovative technologies such as
augmented reality (AR) are proving particularly promising for logistics in warehousing.
AR can reduce warehouse operations costs while significantly increasing efficiency and
productivity [8].

Employees must perform information-intensive activities within order picking while
keeping their hands free to carry out picking activities. In the form of smart glasses, AR
can display context-sensitive information in the user’s field of vision and guide them
through work steps [9]. Smart glasses thus extend current picking scenarios through so-
called pick-by-vision systems [10]. As a result, the employees engaged in transport and
logistics operations, equipped with smart glasses, are provided with real-time operational
information, such as delivery orders and picking status, without interrupting the actual
work process to improve performance [9,11]. The glasses offer a novel aspect of current
picking situations, providing employees with instant operational information without
unduly interrupting their work process.

In an experiment, DHL tested two commercial smart glasses, Google Glass and Vuzix®

M100, at a warehouse and discovered a 25% boost in efficiency [12]. Similarly, Boeing
investigated using Google Glass to help in wire bundle assembly; they observed a 30%
boost in productivity and a favourable response from employees [13]. In another case study,
a head-worn display (HWD) was implemented in two warehouses in Belgium, where one
was successful while the other was not. The prime reason was the employees’ involvement
in improving the device’s functionality and usage conditions [14]. Another study reported
four cases of implementing AR-enabled vision-picking at DHL, Samsung, Coca-Cola, and
Intel. At DHL, productivity and speed increased by 15% and 25%, respectively, while
at Samsung, productivity increased by 12–22%. Similarly, at Coca-Cola, performance
increased by 6–8%, while at Intel, speed increased by 29% [15].

Although the literature focusses on the potential of smart glasses in warehousing,
scientific case studies still need to be developed, leading to a gap in understanding their
efficiency and effectiveness [16–18]. Despite its maturity, the use of AR systems in ware-
housing, especially in the order picking process, is still an active area of research [19]. The
authors of [20] emphasised that there is a need to share selected use cases to resolve any
uncertainties in logistics regarding the use of AR-enabled smart glasses. The literature
further stressed assessing the impact of smart glasses via well-documented case studies
experimenting with various digital technologies and software and rigorous comparisons
with existing solutions [20,21]. Comfort and cleanliness in reusing these glasses across
multiple shifts require further testing, posing significant barriers to user acceptance and
adoption [22].

The gap that this study plans to fill is to determine the productivity benefits of smart
glasses over traditional picking methods along with their human acceptance. To fill this
identified gap, a research question is posed: Can smart glasses be more effective, efficient, and
acceptable than conventional order picking methods for logistics processes? In answering this
question, the paper aims to investigate the effects of smart glasses in terms of effectiveness
and efficiency increase and acceptance compared to conventional picking methods in
a case study in cooperation with a German 3PL service provider, as well as to evaluate the
employee acceptance of smart glasses.

The study seeks to understand smart glasses’ potential for transformative capabilities
by applying scenario analysis, regression analyses, and structured interviews of employees.
The research question is further explained by creating the research objectives, which will
be presented in the next section.
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2. Literature Review

Picking is one of the core activities of a warehousing operation. As per [23], it is the
most time-consuming and error-prone activity among all the warehousing tasks. Today,
there are multiple ways in which orders are picked in warehouses, namely: pick-by-paper,
pick-by-vision, pick-by-light, pick-by-voice, pick-by-gesture, cart-mounted display, and
pick-by-scan [21]. Most warehouses still use paper-based picking approaches. However,
any paper-based approach could be faster and more accurate. In addition, picking is often
performed by temporary workers, who usually require costly training to ensure efficient
and error-free picking [23]. In this section, we will first discuss the key performance indica-
tors (KPIs) involved in assessing the performance of a picking operation in a warehouse.
Subsequently, the role of human touch and smart glasses in pick-by-vision will be discussed.
This section will conclude with a discussion of the benefits of AR-enabled picking and the
research objectives of this study.

2.1. KPIs in Picking Operation

Efficiency is the improved ratio of (minimum) input to (maximum) output. Logistics’
primary and most important purpose is to connect supply and demand in a demand-
orientated and cost-efficient way [24]. To improve competitiveness, the efficiency of logistics
facilities (quantity, speed, and quality with the same resource input) must be increased [24].
To improve performance, reducing the amount of redundant resources is necessary [25].
The key performance indicators (KPI) are throughput times, picking performance, and the
associated error rates [26,27].

Throughput Time: Picking time can be defined as the throughput time of the picking
process [28,29]. The throughput time of an order is defined as the sum of the processing,
transport, and waiting times at all production stages [30], therefore, the sum of dead
times, picking times, and travel times across all items [31,32]. An order picking system’s
KPI “picking performance” is relevant to reflect its efficiency [33]. Usually, the picking
performance refers to the number of items regardless of the removal quantity per item [29].
The performance is always related to a time unit, which is always one hour. Following
Equation (1) is formulated to calculate the order picking performance.

Order picking per f ormance =
[

Pos
h

]
(1)

Picking Performance: Other variables influencing performance are the availability and
utilisation of order pickers. There are empirical values for the availability of human order
pickers [33] based on the working conditions and the load. In performance comparisons of
picking techniques, the number of positions “Pos” is kept constant so that the picking time
is multiplied by the same factor each time. The performance is thus directly proportional
to the picking time [30]. Depending on the throughput time and the number of positions,
the order picking performance can be determined with Equation (2) below, which is
increasingly applied in further processes.

Order picking per f ormance
[

Pos
h

]
=

Number o f positions
throughout time [min]

∗ 60 min/h (2)

Error Rate: One of the most critical factors in picking is avoiding or reducing errors.
Pick errors can directly impact customer relationships and satisfaction, as picking errors
are often noticed after delivery. Errors, therefore, result in a negative customer experience,
which can affect the customer-supplier relationship and result in financial damage [34].
According to [23,33], one error per 1000 items (0.1%) is desirable. The goal of zero error
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picking is currently not achievable due to human error susceptibility in a non-autonomous
picking system. The following Equation (3) is used to calculate the error rate:

Error rate [%] =
Number o f errored positions

Number o f positions
∗ 100% (3)

Out of the four methods (pick-by-scan, pick-by-voice, pick-by-light, and pick-by-
vision), only one picking method is below the desirable error rate of 0.1% (see Table 1),
and that is the pick-by-vision method having an average error rate of 0.08%. Although the
error rate in order picking today is meagre even with a pick-by-paper approach—experts
estimate the rate at 0.35% to 0.45%—every error must be avoided as it usually results in
high follow-up costs [35]. Table 1 establishes pick-by-vision as a candidate to be explored
further for wider application due to its potential to reduce error. In a lab test, an optimal
set of parameters were extracted for the best performance: the battery is to be positioned
on the side of the weight, the storage level of the racks should be high, discrete order mode
of picking should be used, a scanner should be used as the confirmation equipment, and
there should be a lower number of lines per order.

Table 1. Overview of Error Rates, compiled from various sources [1,29,36–39].

Method Error Rate Source Average Error Rate

Pick-by-Scan
0.36% (Günthner, et al., 2009)

0.39%0.46% (ten Hompel and Schmidt, 2010)
0.36% (Lolling, 2003)

Pick-by-Voice
0.25% (Reif, 2009)

0.14%0.08% (ten Hompel and Schmidt, 2010)
0.10% (Lolling, 2003)

Pick-by-Light
0.25% (Reif, 2009)

0.24%0.08% (ten Hompel and Schmidt, 2010)
0.40% (Lolling, 2003)

Pick-by-Vision
0.0075% (Guo, et al., 2014)

0.08%0.125% (Göpfert and Kersting, 2017)
0.12% (Günthner, et al., 2009)

2.2. Human Touch in Picking

Human flexibility in order picking is almost impossible to replace, despite many
automation concepts. Regardless of increasing requirements such as variable article ranges,
decreasing order sizes, and increased flexibility, rationalisation potentials can be tapped
if the order picker is optimally supported in their core task, considering both ergonomic
and informational aspects, and is relieved of time-consuming and distracting secondary
activities [29]. AR can improve information visualisation if employees in picking systems
are equipped with data glasses [40]. Ref. [14] identified a need to document cases where
companies have successfully maintained and extended employee interest and participation
while implementing smart glasses in picking operations.

2.3. Smart Glasses for Pick-by-Vision

‘Smart glasses’ refers to peripheral devices with integrated small computers worn
on or at the head. Things, plants, animals, people, situations, and processes are regis-
tered, analysed, and enriched with virtual information [41]. Mobile devices attached to
the user’s body are called wearables [42]. A wearer of smart glasses, or more broadly,
an augmented reality head-worn display HWD (AR HWD), can access various informa-
tional types, such as text, graphics, and video. Information can be overlayed onto the
real world (augmented vision) or perceptually placed next to real-world objects of interest
(conformal augmented reality) so that users do not have to look down to access it, unlike
when they access manuals, hand-held devices, or other reference materials [12]. Typically,
the aim is to support real-world action by offering data, assessments, and directions [43,44].
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AR-enabled smart glasses can merge the actual world with virtual data in the user’s field of
vision. These AR devices must be distinguished from their virtual reality (VR) equivalents,
which have an opaque screen. They do not support the overlay of virtual and physical
reality but rather conceal the user’s perspective within the device and protect them from
any exterior visual input [45].

AR offers the possibility of actively supporting work processes in logistics, such as the
warehouse picking process, thereby increasing employee efficiency, effectiveness, and satisfac-
tion [8,46]. Various cases and experiments have been reported in the literature [12–15,22,47].
The integrated scanning technology, usually in the form of a camera on the frame of the
glasses, meets the demand for integrating digitisation measures, such as optimising ware-
house management systems [29]. Different smart glasses and scanners are reported in
the literature for pick-by-vision, to name a few: Google Glass, Vuzix® M100 and M300XL,
RealWear HMT-1, Samsung Gear S2, and Intel Recon Jet Pro.

Picking is a skill-, rule-, and information-intensive activity, so this technical support for
using AR and smart glasses in the pick-by-vision process is one of the most critical success
factors [36]. Using a tracking system to recognise the position and direction of gaze, static
data such as text information can be displayed and data that is dynamically positioned
in space [29]. These 3D spatial geometries attractively highlight the picking or storage
location or show the optimal path throughout the warehouse [29]. This always gives the
user direct access to information and eliminates the need for disruptive activities to retrieve
information that interrupts the work process. Furthermore, when using smart glasses, the
user has both hands free through voice-based control [8,23]. Increased picking performance
in the work process is expected through the expansion of the natural environment. This is
because of the process guidance along the picking process, which promises cognitive relief
for the smart glasses user [48].

2.4. Benefits of Paperless Picking

The strict visual guidance of order pickers lets them complete their daily picking tasks
in a warehouse environment faster and more error-free than they would be able to do
without the support of data glasses [49]. According to [49], smart glasses make it possible to
use an ergonomic product that can be worn by the order picker and the cognitive superiority
of humans to design logistical processes efficiently. Previous studies in paperless picking
suggest that data glasses have great potential as a user-friendly and task-supporting tool
with good information display and design quality [50]. It was also found that the error
rate is significantly lower when using pick-by-vision compared to voice-controlled picking
support. This is due to the technically determined low error tolerance of data glasses [51].

Refs. [52,53] suggest that paperless picking methods have tremendous advantages.
Pick-by-vision leads to reduced search times, clean documentation, increased performance,
and reduced errors in the picking process. The use of smart glasses offers the opportunity to
actively support work processes in logistics, such as the picking process in the warehouse,
thereby increasing efficiency, effectiveness, and employee satisfaction [8,46]. Especially in
throughput time, pick-by-vision can achieve a competitive advantage. The authors of [20]
have defined the potential of AR smart glasses in logistics and supply chain management
around four facets: visualisation, interaction, user convenience, and navigation.

A faster process goes hand in hand with higher productivity, increasing profitability.
The faster an order is picked up, the cheaper the product delivery. Other goals are route
optimisation, increased picking performance based on short throughput times, and process
reliability in the form of little to no error susceptibility. The processing of the order volume
should require as little effort as possible and must accordingly be designed as efficiently as
possible [7,52]. In this context, the employee’s movement time plays a significant role at
50%, and the search time is 20% within the picking process (Figure 1) [54].



Logistics 2024, 8, 106 6 of 25Logistics 2024, 8, x FOR PEER REVIEW 6 of 27 
 

 
Figure 1. Order picking time overview [48]. 

2.5. Derivation of the Research Objectives 
Order picking takes several items from the warehouse to serve and fulfil several 

independent customer orders according to customer requirements. The aim is to make 
this process as practical (e.g., higher speed of picking) and efficient (e.g., reduced 
operational cost) as possible. This means that the basic operational costs should be 
reduced, but at the same time, the order picking speed should be increased [4]. Minimising 
time for the picking process is necessary for any picking system [48,55]. By extending the 
natural environment, increased picking performance in the work process is expected. 
Pick-by-vision can be used efficiently, primarily for inexperienced employees or high 
temporary worker rates in a company. The reason for this is, among other things, the 
guidance along the picking process, which promises cognitive relief for the smart glasses 
user [48]. These should be provided to the employee intuitively and ergonomically while 
aiming for an effective and efficient picking process, i.e., maximising performance while 
minimising the potential for errors [46]. The strict visual guidance of order pickers lets 
them complete their daily picking tasks in a warehouse environment faster and more 
error-free than they would be able to do without the support of data glasses [49]. 

The following research objective is derived to make the theory tangible and create a 
possibility of verification. 

RO1: To assess the impact of smart glasses in increasing the effectiveness and efficiency of the 
picking processes compared to conventional picking methods. 

It emphasises exploring the improvement in logistics processes with the use of smart 
glasses and eventually offers the possibility of a competitive advantage. 

Humans will continue to play a crucial role in production and logistics operations 
due to their adaptability and sensorimotor abilities in an increasingly digitalised world. 
Thus, ergonomics, flexibility, and occupational safety should be improved [56]. The goal 
is to design logistics operations processes so people and machines can operate, interact, 
and integrate easily [57]. 

Several strategies aim to increase user friendliness and acceptance by deliberately 
minimising the number of necessary contacts between humans and the system. This 
allows the user to concentrate more on their task, increasing productivity and reducing 
the susceptibility to workplace errors. Intelligent devices are designed to be as invisible as 
possible to the user and to support him in his activity by providing him with the 
appropriate contextual information [57]. 

For pick-by-vision and the associated process optimisations to result in actual 
human-added value, it is crucial to consider factors influencing the acceptance and 
usability of the information system [23,58,59]. 

To increase user acceptance, it is essential to consider both the physical and 
psychological strain on the employee [57]. Ergonomics and mental stress are the most 
crucial requirements for accepting smart devices [58]. Employees must be aware of the 

0% 10% 20% 30% 40% 50% 60%

Travel

Search

Pick

Setup

Other

% of Order-Picker's Time

Figure 1. Order picking time overview [48].

2.5. Derivation of the Research Objectives

Order picking takes several items from the warehouse to serve and fulfil several
independent customer orders according to customer requirements. The aim is to make this
process as practical (e.g., higher speed of picking) and efficient (e.g., reduced operational
cost) as possible. This means that the basic operational costs should be reduced, but at the
same time, the order picking speed should be increased [4]. Minimising time for the picking
process is necessary for any picking system [48,55]. By extending the natural environment,
increased picking performance in the work process is expected. Pick-by-vision can be
used efficiently, primarily for inexperienced employees or high temporary worker rates
in a company. The reason for this is, among other things, the guidance along the picking
process, which promises cognitive relief for the smart glasses user [48]. These should be
provided to the employee intuitively and ergonomically while aiming for an effective and
efficient picking process, i.e., maximising performance while minimising the potential
for errors [46]. The strict visual guidance of order pickers lets them complete their daily
picking tasks in a warehouse environment faster and more error-free than they would be
able to do without the support of data glasses [49].

The following research objective is derived to make the theory tangible and create
a possibility of verification.

RO1: To assess the impact of smart glasses in increasing the effectiveness and efficiency of the
picking processes compared to conventional picking methods.

It emphasises exploring the improvement in logistics processes with the use of smart
glasses and eventually offers the possibility of a competitive advantage.

Humans will continue to play a crucial role in production and logistics operations due
to their adaptability and sensorimotor abilities in an increasingly digitalised world. Thus,
ergonomics, flexibility, and occupational safety should be improved [56]. The goal is to
design logistics operations processes so people and machines can operate, interact, and
integrate easily [57].

Several strategies aim to increase user friendliness and acceptance by deliberately
minimising the number of necessary contacts between humans and the system. This
allows the user to concentrate more on their task, increasing productivity and reducing
the susceptibility to workplace errors. Intelligent devices are designed to be as invisible as
possible to the user and to support him in his activity by providing him with the appropriate
contextual information [57].

For pick-by-vision and the associated process optimisations to result in actual human-
added value, it is crucial to consider factors influencing the acceptance and usability of the
information system [23,58,59].

To increase user acceptance, it is essential to consider both the physical and psycho-
logical strain on the employee [57]. Ergonomics and mental stress are the most crucial
requirements for accepting smart devices [58]. Employees must be aware of the advantages
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of wearable technology and incorporate it into their everyday work activities. Wearables
should offer quantifiable value, for instance, regarding mobility or weight. Ideally, they
should not be noticeable to the employee in the work process but should integrate natu-
rally [60]. However, ergonomics is not limited to the wearability of smart glasses but also
to the ergonomics of the user interface. It is possible that extended use of smart glasses in
workplaces can cause visual fatigue and impair attention [61]. Although AR helps lessen
head and neck motions while operating, workers may become distracted or confused by
the information [62].

In addition to ergonomics, an essential aspect of acceptance is privacy and the associ-
ated protection of that privacy [59]. The challenge is that indoor localisation and task and
error tracking are critical to the performance of such a system [63]. This exposes users to
increased surveillance by supervisors [59].

The following research objective is derived to make the theory tangible and to create
a possibility of assessing acceptability based on various criteria:

RO2: To assess the employees’ acceptance level of using smart glasses in the picking process
without concerns.

3. Methodology

As mentioned in previous sections, this study has one research question and two
objectives. A mixed-method study was conducted to achieve the objectives, and the
following steps were implemented.

3.1. Research Objective 1

a. The following methods were performed to assess the increase in efficiency of smart
glasses in picking operations.

i. Two test series (one was in a test environment while the other was in live
business operation) were conducted in the year 2022 in the warehousing
facilities of the case company, i.e., the German 3PL logistics service provider
(LSP). The data on the same picking process with and without using smart
glasses was collected for comparison. The process flow within the two tests
was defined in advance (Appendix A). During the data collection phase, the
employee is accompanied over one week to collect all the data. The same
selector performed the picking operation in both test series to reduce external
and human influences, such as picking and moving speeds.

ii. Based on the collected data, a regression analysis was conducted to deter-
mine the relationship strength between the dependent variable (throughput
time) and the independent variables (setup time, search time, and pick time).
Waiting time and travel time were kept constant.

iii. Ten scenarios were created using the collected data and historical data on
order picking from the case company for 2021. These scenarios were thor-
oughly evaluated to generalise the possible increase in efficiency considering
the number of picking locations and the number of picks per picking location.

b. The following method was performed to assess the increase in the effectiveness of
smart glasses.

i. A cost–benefit analysis (CBA) was performed to identify the savings the pick-
by-vision approach can achieve. This analysis used the data collected in the
test series and developed scenarios.

3.2. Research Objective 2

a. This objective was achieved using a structured interview-based survey, the details of
which are presented as follows:
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i. An interview guide was prepared with 13 questions (10 closed-ended state-
ments and one open-ended question). These questions were divided into
the three essential attributes around human acceptance: ‘ergonomics’ (four
statements), ‘mental’ (three statements), and ‘privacy & social’ (three state-
ments). The ten closed-ended statements followed a seven-point Likert-type
scale from ‘not true at all’ to ‘true exactly’, with a ‘neutral’ in the centre,
and were considered quantitative data [64]. The answer that reflected 100%
acceptance is assigned a seven, while all the answers are then assigned values
in descending order.

ii. The only open-ended question was about possible concerns regarding the
technology. To analyse this question, the first-order codes were developed us-
ing direct responses, and similar responses were categorised into six concerns
as the second-order code.

iii. The interview questions were tested and validated as part of a pilot test
where ten employees of the case company were interviewed, and each gave
individual feedback. The interviews took 10–15 min per interviewee. The
phrasing was improved as an outcome of the pilot.

iv. The inclusion criteria required that the respondents be those who use smart
glasses technology daily or have worked with them in the last year.

v. To assess the broader acceptance of smart glasses, 86 respondents were in-
cluded. They were employees from different companies in the LSP sector.
The sample data were divided into 37% women and 63% men. The interviews
were conducted face-to-face.

The diversity of the mixed-method approach allowed for rich data collection, which
had the advantage of building a comprehensive view through enhanced triangulation.
These data collection and analysis methods were chosen to achieve the research objectives
effectively and objectively.

4. Findings and Discussion

The aim is to achieve the two research objectives in two steps: RO1 is achieved using
the tests performed, regression analysis, scenario analysis, and cost–benefit analysis (CBA),
while RO2 is realised by analysing the data collected through structured interviews.

4.1. RO1: To Assess the Impact of Smart Glasses in Increasing the Effectiveness and Efficiency of
the Picking Processes Compared to Conventional Picking Methods

RO1 is achieved in two parts: (a) first, the ‘efficiency’ part by two test series, regression
analysis, and scenario analysis, and (b) second, the ‘effectiveness’ part via CBA.

4.1.1. Assessing the ‘Efficiency’ of Smart Glasses

To make a scientifically relevant statement about achieving RO1, two different series
of tests were carried out. The first series of tests are based on a test environment outside
the daily business, while the second one is conducted during the live daily business. The
average pick quantity per day based on historical data for the period January–July 2022 is
10,754 picks per day. The average order size based on the total of all orders in 2021 is five
pick positions with three picks each. According to this, a picking activity must be carried
out 15 times per order.

Within the pick-by-vision method, the company does not use the option of visual
guidance in route optimisation through the warehouse but a direct location display in the
employee’s field of vision. The smart glasses provide visual information about the storage
location of the material to be picked, the order size, and the respective pick quantity of the
item. To reduce a possible source of error, the order picker confirms the location in advance.
Afterwards, the order picker is provided with the order’s picking information. The scan
confirmation is performed via a scanner integrated into the system, which maintains
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the advantage of “hands-free” order picking compared to the pick-by-scan method with
a hand-held scanner.

Test series 1—pick-by-scan vs. pick-by-vision in the test environment: Five picking
processes were carried out using the conventional pick-by-scan and pick-by-vision methods.
Accordingly, the exact picking locations were stored in the order for each test run and then
picked using the pick-by-scan and pick-by-vision methods. The measurement period for
the throughput time of a complete order with the respective predefined pick quantity starts
with the order acceptance. It ends with providing the wholly picked order in the goods
issue zone. This trial series aims to obtain a basic comparison of the technologies based on
throughput time. Due to the standardisation, it is then possible to make a statement about
a potential increase (or decrease) in efficiency.

Figure 2 visualises the throughput times of pick-by-scan and pick-by-vision for the
respective test series. It can be seen that the pick-by-vision method has a significantly
shorter throughput time in each test series compared to the conventional pick-by-scan
method. The average time per pick, including search times, picking times, travel times, etc.,
amounts to 39.76 s with the conventional pick-by-scan method. The pick-by-vision method
can be quantified here with an average of 31.81 s per pick. On average, the pick-by-vision
method is 7.95 s faster per pick than the conventional pick-by-scan method, corresponding
to a 25% increase in efficiency.
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The system’s performance can be evaluated based on the throughput times obtained
in the test environment and the respective pick quantity (Figure 3). The average order
picking performance within the test environment of the pick-by-scan method is 95.42 picks
per hour per employee. The pick-by-vision method achieves an average performance of
117.92 picks per hour per employee. The difference in the performance of the two systems
amounts to 23.58%. Based on a population of 7.48 h per shift, 713.75 picks per shift can be
achieved mathematically per order picker with the conventional pick-by-scan method. The
pick-by-vision method achieves 882.04 picks per shift.

Test series 2—pick-by-scan vs. pick-by-vision in day-to-day operations: The study is
conducted on a sample basis and is intended to represent the population of all orders in the
case company. A sample’s reliability, size, and representativeness play a significant role in
meaningful results [65,66]. The measurement basis of the trial series is based on a total of
10 orders with a total of 105 items and 256 picks of the pick-by-scan method and 12 orders
with 108 items and 367 picks of the pick-by-vision method. One position is equivalent to
one picking location.
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The two test series assist in achieving RO1 by concluding that a smart glasses-enabled
pick-by-vision approach increases the effectiveness and efficiency of the picking processes
compared to conventional picking methods.

Regression Analysis: The collected data are examined for normality using the Kolmogorov–
Smirnov test before further analysis. The test assumes in its null hypothesis that the tested
variable is normally distributed. The test is suitable for smaller samples (n < 30) [67].
The critical value for the maximum difference for a sample size (n = 22) at a significance
level of alpha 0.05 [68,69]. The values in Table 2 show that the null hypothesis, “a normal
distribution exists”, cannot be rejected.

Table 2. Kolmogorov-Smirnov test.

Kolmogorov-Smirnov Test
Test Statistics (p-Value) Critical Value (Quantile K)

Throughput Time 0.2016 0.2809
Setup Time 0.0977 0.2809
Travel Time 0.1002 0.2809
Search Time 0.1743 0.2809

Pick Time 0.1664 0.2809

The next step is identifying the relationship between the dependent and independent
variables through a regression analysis [70]. The dependent variable is the throughput
time of the picking process. The independent variables directly influencing the throughput
time are setup, travel, search, and picking times. Table 3 illustrates the results from
the regression analysis. Multiple R is 0.9873, indicating a robust linear relationship [71]
between the predictor (independent variables) and the response (dependent: throughput
time) variables. The quality of the relationships can be inferred from the R-square of 0.9747,
meaning that the variations in the dependent variable almost wholly explain the variation
in the throughput time. According to [71], 0.05 is a reliable F-value significance level, and
the regression table confirms its value at 0.025.

Regarding the coefficients, if all other predictor variables remain constant, each co-
efficient is viewed as the average increase in the response variable for each unit increase
in a particular predictor variable [72,73]. Looking at the coefficients, it becomes clear that
the travel time (1.1605) has the greatest positive correlation with the throughput time and
influences it significantly. However, because the value is above 1, a certain inaccuracy is
present due to multicollinearity. The dependent variables of travel time (p = 0.0000206),
search time (p = 0.04511), and picking time (p = 0.000000137) correlate with the dependent
variable of throughput time and are statistically significant as the p-values are less than
0.05 [74]. The variable “setup-time” (p = 0.8878 > 0.05) seems to have no significant influ-
ence on the throughput time of the process, and this is due to its smaller percentage of time
in the overall picking process.
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Table 3. Results of the regression analysis.

Regression ANOVA
Statistic Values Item df SS MS F Significance F

Multiple R 0.98725532 Regression 4 1,293,370.64 323,342.66 163.55553 2.50 × 10−13

R-Square 0.97467306 Residual 17 33,608.31 1976.96
Adjusted
R-Square 0.96871378 Total 21 1,326,978.96

Standard
Error (SE) 44.681535

Observations 22

Item Coefficients SE t-Stat p-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 44.3845662 132.177 0.335797 0.74113271 −234.484095 323.25323 −234.4841 323.253227

Setup Time −0.6422316 4.48306 −0.1432574 0.88777126 −10.1006624 8.8161991 −10.10066 8.81619914
Travel Time 1.16050165 0.19949 5.8173349 2.06 × 10−5 0.739614 1.5818391 0.739614 1.5818391
Search Time 0.53684887 0.69599 0.7713474 4.51 × 10−2 −0.93155842 2.0052562 −0.931558 2.00525615

Pick Time 1.07771193 0.10689 10.082293 1.37 × 10−8 0.85219048 1.3032334 0.8521905 1.30323338

The regression analysis further helps explain RO1, concluding that optimising the
independent variables can change the throughput time and increase efficiency. In continua-
tion, these same variables were influenced heavily by the pick-by-vision approach, thus
achieving higher efficiency.

Scenario Analysis: The data sets aggregated to a mean value, and the respective
standard deviation of the test series can be seen in Table 4. This data set serves as a basis for
further analyses. Based on the collected data and determined time elements in combination
with the historical data records from 2021, scenarios were created in which different orders
with different picking positions were estimated. In each case, the pick quantity is multiplied
by the pick position by a factor of 3 (average pick quantity per pick position in 2021). The
data sets of the scenarios can be found in Appendix B. The specific scenario for five picking
positions with three picks each can be taken from Table 5, where the efficiency is improved
by 10% for the pick-by-vision method.

Table 4. Results of the quantitative data collection.

Pick-by-Scan Pick-by-Vision

∑ Orders 10 ∑ Orders 12
∑ Pick Orders 105 ∑ Pick Orders 108
∑ Picks 256 ∑ Picks 367

[sec] [σ] [sec] [σ]
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Table 3. Results of the regression analysis. 

Regression  ANOVA 

Statistic Values  Item df SS MS F 
Significance 

F 
Multiple R 0.98725532  Regression 4 1,293,370.64 323,342.66 163.55553 2.50 × 10−13  

R-Square 0.97467306  Residual 17 33,608.31 1976.96   

Adjusted R-
Square 

0.96871378  Total 21 1,326,978.96    

Standard Error 
(SE) 44.681535        

Observations 22        

Item Coefficients SE t-Stat p-value Lower 95% Upper 95% Lower 
95.0% Upper 95.0% 

Intercept 44.3845662 132.177 0.335797 0.74113271 −234.484095 323.25323 −234.4841 323.253227 
Setup Time −0.6422316 4.48306 −0.1432574 0.88777126 −10.1006624 8.8161991 −10.10066 8.81619914 
Travel Time 1.16050165 0.19949 5.8173349 2.06 × 10−5 0.739614 1.5818391 0.739614 1.5818391 
Search Time 0.53684887 0.69599 0.7713474 4.51 × 10−2 −0.93155842 2.0052562 −0.931558 2.00525615 

Pick Time 1.07771193 0.10689 10.082293 1.37 × 10−8 0.85219048 1.3032334 0.8521905 1.30323338 

Regarding the coefficients, if all other predictor variables remain constant, each 
coefficient is viewed as the average increase in the response variable for each unit increase 
in a particular predictor variable [72,73]. Looking at the coefficients, it becomes clear that 
the travel time (1.1605) has the greatest positive correlation with the throughput time and 
influences it significantly. However, because the value is above 1, a certain inaccuracy is 
present due to multicollinearity. The dependent variables of travel time (p = 0.0000206), 
search time (p = 0.04511), and picking time (p = 0.000000137) correlate with the dependent 
variable of throughput time and are statistically significant as the p-values are less than 
0.05 [74]. The variable “setup-time” (p = 0.8878 > 0.05) seems to have no significant 
influence on the throughput time of the process, and this is due to its smaller percentage 
of time in the overall picking process. 

The regression analysis further helps explain RO1, concluding that optimising the 
independent variables can change the throughput time and increase efficiency. In 
continuation, these same variables were influenced heavily by the pick-by-vision 
approach, thus achieving higher efficiency. 

Scenario Analysis: The data sets aggregated to a mean value, and the respective 
standard deviation of the test series can be seen in Table 4. This data set serves as a basis 
for further analyses. Based on the collected data and determined time elements in 
combination with the historical data records from 2021, scenarios were created in which 
different orders with different picking positions were estimated. In each case, the pick 
quantity is multiplied by the pick position by a factor of 3 (average pick quantity per pick 
position in 2021). The data sets of the scenarios can be found in Appendix B. The specific 
scenario for five picking positions with three picks each can be taken from Table 5, where 
the efficiency is improved by 10% for the pick-by-vision method. 

Table 4. Results of the quantitative data collection. 

Pick-by-Scan   Pick-by-Vision 
∑ Orders 10   ∑ Orders 12 
∑ Pick Orders 105   ∑ Pick Orders 108 
∑ Picks 256   ∑ Picks 367 

 [sec] [σ]    [sec] [σ] 
ᴓ Setup Time per Order 30.50 3.07   ᴓ Setup Time per Order 28.42 2.02 Search Time per Pick Location 3.05 1.19
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Table 3. Results of the regression analysis. 

Regression  ANOVA 

Statistic Values  Item df SS MS F 
Significance 

F 
Multiple R 0.98725532  Regression 4 1,293,370.64 323,342.66 163.55553 2.50 × 10−13  

R-Square 0.97467306  Residual 17 33,608.31 1976.96   

Adjusted R-
Square 

0.96871378  Total 21 1,326,978.96    

Standard Error 
(SE) 44.681535        

Observations 22        

Item Coefficients SE t-Stat p-value Lower 95% Upper 95% Lower 
95.0% Upper 95.0% 

Intercept 44.3845662 132.177 0.335797 0.74113271 −234.484095 323.25323 −234.4841 323.253227 
Setup Time −0.6422316 4.48306 −0.1432574 0.88777126 −10.1006624 8.8161991 −10.10066 8.81619914 
Travel Time 1.16050165 0.19949 5.8173349 2.06 × 10−5 0.739614 1.5818391 0.739614 1.5818391 
Search Time 0.53684887 0.69599 0.7713474 4.51 × 10−2 −0.93155842 2.0052562 −0.931558 2.00525615 

Pick Time 1.07771193 0.10689 10.082293 1.37 × 10−8 0.85219048 1.3032334 0.8521905 1.30323338 

Regarding the coefficients, if all other predictor variables remain constant, each 
coefficient is viewed as the average increase in the response variable for each unit increase 
in a particular predictor variable [72,73]. Looking at the coefficients, it becomes clear that 
the travel time (1.1605) has the greatest positive correlation with the throughput time and 
influences it significantly. However, because the value is above 1, a certain inaccuracy is 
present due to multicollinearity. The dependent variables of travel time (p = 0.0000206), 
search time (p = 0.04511), and picking time (p = 0.000000137) correlate with the dependent 
variable of throughput time and are statistically significant as the p-values are less than 
0.05 [74]. The variable “setup-time” (p = 0.8878 > 0.05) seems to have no significant 
influence on the throughput time of the process, and this is due to its smaller percentage 
of time in the overall picking process. 

The regression analysis further helps explain RO1, concluding that optimising the 
independent variables can change the throughput time and increase efficiency. In 
continuation, these same variables were influenced heavily by the pick-by-vision 
approach, thus achieving higher efficiency. 

Scenario Analysis: The data sets aggregated to a mean value, and the respective 
standard deviation of the test series can be seen in Table 4. This data set serves as a basis 
for further analyses. Based on the collected data and determined time elements in 
combination with the historical data records from 2021, scenarios were created in which 
different orders with different picking positions were estimated. In each case, the pick 
quantity is multiplied by the pick position by a factor of 3 (average pick quantity per pick 
position in 2021). The data sets of the scenarios can be found in Appendix B. The specific 
scenario for five picking positions with three picks each can be taken from Table 5, where 
the efficiency is improved by 10% for the pick-by-vision method. 

Table 4. Results of the quantitative data collection. 

Pick-by-Scan   Pick-by-Vision 
∑ Orders 10   ∑ Orders 12 
∑ Pick Orders 105   ∑ Pick Orders 108 
∑ Picks 256   ∑ Picks 367 

 [sec] [σ]    [sec] [σ] 
ᴓ Setup Time per Order 30.50 3.07   ᴓ Setup Time per Order 28.42 2.02 Picking Time per Pick 7.68 2.45
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Table 3. Results of the regression analysis. 

Regression  ANOVA 

Statistic Values  Item df SS MS F 
Significance 

F 
Multiple R 0.98725532  Regression 4 1,293,370.64 323,342.66 163.55553 2.50 × 10−13  

R-Square 0.97467306  Residual 17 33,608.31 1976.96   

Adjusted R-
Square 

0.96871378  Total 21 1,326,978.96    

Standard Error 
(SE) 44.681535        

Observations 22        

Item Coefficients SE t-Stat p-value Lower 95% Upper 95% Lower 
95.0% Upper 95.0% 

Intercept 44.3845662 132.177 0.335797 0.74113271 −234.484095 323.25323 −234.4841 323.253227 
Setup Time −0.6422316 4.48306 −0.1432574 0.88777126 −10.1006624 8.8161991 −10.10066 8.81619914 
Travel Time 1.16050165 0.19949 5.8173349 2.06 × 10−5 0.739614 1.5818391 0.739614 1.5818391 
Search Time 0.53684887 0.69599 0.7713474 4.51 × 10−2 −0.93155842 2.0052562 −0.931558 2.00525615 

Pick Time 1.07771193 0.10689 10.082293 1.37 × 10−8 0.85219048 1.3032334 0.8521905 1.30323338 

Regarding the coefficients, if all other predictor variables remain constant, each 
coefficient is viewed as the average increase in the response variable for each unit increase 
in a particular predictor variable [72,73]. Looking at the coefficients, it becomes clear that 
the travel time (1.1605) has the greatest positive correlation with the throughput time and 
influences it significantly. However, because the value is above 1, a certain inaccuracy is 
present due to multicollinearity. The dependent variables of travel time (p = 0.0000206), 
search time (p = 0.04511), and picking time (p = 0.000000137) correlate with the dependent 
variable of throughput time and are statistically significant as the p-values are less than 
0.05 [74]. The variable “setup-time” (p = 0.8878 > 0.05) seems to have no significant 
influence on the throughput time of the process, and this is due to its smaller percentage 
of time in the overall picking process. 

The regression analysis further helps explain RO1, concluding that optimising the 
independent variables can change the throughput time and increase efficiency. In 
continuation, these same variables were influenced heavily by the pick-by-vision 
approach, thus achieving higher efficiency. 

Scenario Analysis: The data sets aggregated to a mean value, and the respective 
standard deviation of the test series can be seen in Table 4. This data set serves as a basis 
for further analyses. Based on the collected data and determined time elements in 
combination with the historical data records from 2021, scenarios were created in which 
different orders with different picking positions were estimated. In each case, the pick 
quantity is multiplied by the pick position by a factor of 3 (average pick quantity per pick 
position in 2021). The data sets of the scenarios can be found in Appendix B. The specific 
scenario for five picking positions with three picks each can be taken from Table 5, where 
the efficiency is improved by 10% for the pick-by-vision method. 

Table 4. Results of the quantitative data collection. 

Pick-by-Scan   Pick-by-Vision 
∑ Orders 10   ∑ Orders 12 
∑ Pick Orders 105   ∑ Pick Orders 108 
∑ Picks 256   ∑ Picks 367 

 [sec] [σ]    [sec] [σ] 
ᴓ Setup Time per Order 30.50 3.07   ᴓ Setup Time per Order 28.42 2.02 Picking Time per Pick 6.52 2.06
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Table 3. Results of the regression analysis. 

Regression  ANOVA 

Statistic Values  Item df SS MS F 
Significance 

F 
Multiple R 0.98725532  Regression 4 1,293,370.64 323,342.66 163.55553 2.50 × 10−13  

R-Square 0.97467306  Residual 17 33,608.31 1976.96   

Adjusted R-
Square 

0.96871378  Total 21 1,326,978.96    

Standard Error 
(SE) 44.681535        

Observations 22        

Item Coefficients SE t-Stat p-value Lower 95% Upper 95% Lower 
95.0% Upper 95.0% 

Intercept 44.3845662 132.177 0.335797 0.74113271 −234.484095 323.25323 −234.4841 323.253227 
Setup Time −0.6422316 4.48306 −0.1432574 0.88777126 −10.1006624 8.8161991 −10.10066 8.81619914 
Travel Time 1.16050165 0.19949 5.8173349 2.06 × 10−5 0.739614 1.5818391 0.739614 1.5818391 
Search Time 0.53684887 0.69599 0.7713474 4.51 × 10−2 −0.93155842 2.0052562 −0.931558 2.00525615 

Pick Time 1.07771193 0.10689 10.082293 1.37 × 10−8 0.85219048 1.3032334 0.8521905 1.30323338 

Regarding the coefficients, if all other predictor variables remain constant, each 
coefficient is viewed as the average increase in the response variable for each unit increase 
in a particular predictor variable [72,73]. Looking at the coefficients, it becomes clear that 
the travel time (1.1605) has the greatest positive correlation with the throughput time and 
influences it significantly. However, because the value is above 1, a certain inaccuracy is 
present due to multicollinearity. The dependent variables of travel time (p = 0.0000206), 
search time (p = 0.04511), and picking time (p = 0.000000137) correlate with the dependent 
variable of throughput time and are statistically significant as the p-values are less than 
0.05 [74]. The variable “setup-time” (p = 0.8878 > 0.05) seems to have no significant 
influence on the throughput time of the process, and this is due to its smaller percentage 
of time in the overall picking process. 

The regression analysis further helps explain RO1, concluding that optimising the 
independent variables can change the throughput time and increase efficiency. In 
continuation, these same variables were influenced heavily by the pick-by-vision 
approach, thus achieving higher efficiency. 

Scenario Analysis: The data sets aggregated to a mean value, and the respective 
standard deviation of the test series can be seen in Table 4. This data set serves as a basis 
for further analyses. Based on the collected data and determined time elements in 
combination with the historical data records from 2021, scenarios were created in which 
different orders with different picking positions were estimated. In each case, the pick 
quantity is multiplied by the pick position by a factor of 3 (average pick quantity per pick 
position in 2021). The data sets of the scenarios can be found in Appendix B. The specific 
scenario for five picking positions with three picks each can be taken from Table 5, where 
the efficiency is improved by 10% for the pick-by-vision method. 

Table 4. Results of the quantitative data collection. 

Pick-by-Scan   Pick-by-Vision 
∑ Orders 10   ∑ Orders 12 
∑ Pick Orders 105   ∑ Pick Orders 108 
∑ Picks 256   ∑ Picks 367 

 [sec] [σ]    [sec] [σ] 
ᴓ Setup Time per Order 30.50 3.07   ᴓ Setup Time per Order 28.42 2.02 Outbound Travel Time per Order 40.77 10.01
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Table 3. Results of the regression analysis. 

Regression  ANOVA 

Statistic Values  Item df SS MS F 
Significance 

F 
Multiple R 0.98725532  Regression 4 1,293,370.64 323,342.66 163.55553 2.50 × 10−13  

R-Square 0.97467306  Residual 17 33,608.31 1976.96   

Adjusted R-
Square 

0.96871378  Total 21 1,326,978.96    

Standard Error 
(SE) 44.681535        

Observations 22        

Item Coefficients SE t-Stat p-value Lower 95% Upper 95% Lower 
95.0% Upper 95.0% 

Intercept 44.3845662 132.177 0.335797 0.74113271 −234.484095 323.25323 −234.4841 323.253227 
Setup Time −0.6422316 4.48306 −0.1432574 0.88777126 −10.1006624 8.8161991 −10.10066 8.81619914 
Travel Time 1.16050165 0.19949 5.8173349 2.06 × 10−5 0.739614 1.5818391 0.739614 1.5818391 
Search Time 0.53684887 0.69599 0.7713474 4.51 × 10−2 −0.93155842 2.0052562 −0.931558 2.00525615 

Pick Time 1.07771193 0.10689 10.082293 1.37 × 10−8 0.85219048 1.3032334 0.8521905 1.30323338 

Regarding the coefficients, if all other predictor variables remain constant, each 
coefficient is viewed as the average increase in the response variable for each unit increase 
in a particular predictor variable [72,73]. Looking at the coefficients, it becomes clear that 
the travel time (1.1605) has the greatest positive correlation with the throughput time and 
influences it significantly. However, because the value is above 1, a certain inaccuracy is 
present due to multicollinearity. The dependent variables of travel time (p = 0.0000206), 
search time (p = 0.04511), and picking time (p = 0.000000137) correlate with the dependent 
variable of throughput time and are statistically significant as the p-values are less than 
0.05 [74]. The variable “setup-time” (p = 0.8878 > 0.05) seems to have no significant 
influence on the throughput time of the process, and this is due to its smaller percentage 
of time in the overall picking process. 

The regression analysis further helps explain RO1, concluding that optimising the 
independent variables can change the throughput time and increase efficiency. In 
continuation, these same variables were influenced heavily by the pick-by-vision 
approach, thus achieving higher efficiency. 

Scenario Analysis: The data sets aggregated to a mean value, and the respective 
standard deviation of the test series can be seen in Table 4. This data set serves as a basis 
for further analyses. Based on the collected data and determined time elements in 
combination with the historical data records from 2021, scenarios were created in which 
different orders with different picking positions were estimated. In each case, the pick 
quantity is multiplied by the pick position by a factor of 3 (average pick quantity per pick 
position in 2021). The data sets of the scenarios can be found in Appendix B. The specific 
scenario for five picking positions with three picks each can be taken from Table 5, where 
the efficiency is improved by 10% for the pick-by-vision method. 

Table 4. Results of the quantitative data collection. 

Pick-by-Scan   Pick-by-Vision 
∑ Orders 10   ∑ Orders 12 
∑ Pick Orders 105   ∑ Pick Orders 108 
∑ Picks 256   ∑ Picks 367 

 [sec] [σ]    [sec] [σ] 
ᴓ Setup Time per Order 30.50 3.07   ᴓ Setup Time per Order 28.42 2.02 Outbound Travel Time per Order 40.77 10.01
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Table 3. Results of the regression analysis. 

Regression  ANOVA 

Statistic Values  Item df SS MS F 
Significance 

F 
Multiple R 0.98725532  Regression 4 1,293,370.64 323,342.66 163.55553 2.50 × 10−13  

R-Square 0.97467306  Residual 17 33,608.31 1976.96   

Adjusted R-
Square 

0.96871378  Total 21 1,326,978.96    

Standard Error 
(SE) 44.681535        

Observations 22        

Item Coefficients SE t-Stat p-value Lower 95% Upper 95% Lower 
95.0% Upper 95.0% 

Intercept 44.3845662 132.177 0.335797 0.74113271 −234.484095 323.25323 −234.4841 323.253227 
Setup Time −0.6422316 4.48306 −0.1432574 0.88777126 −10.1006624 8.8161991 −10.10066 8.81619914 
Travel Time 1.16050165 0.19949 5.8173349 2.06 × 10−5 0.739614 1.5818391 0.739614 1.5818391 
Search Time 0.53684887 0.69599 0.7713474 4.51 × 10−2 −0.93155842 2.0052562 −0.931558 2.00525615 

Pick Time 1.07771193 0.10689 10.082293 1.37 × 10−8 0.85219048 1.3032334 0.8521905 1.30323338 

Regarding the coefficients, if all other predictor variables remain constant, each 
coefficient is viewed as the average increase in the response variable for each unit increase 
in a particular predictor variable [72,73]. Looking at the coefficients, it becomes clear that 
the travel time (1.1605) has the greatest positive correlation with the throughput time and 
influences it significantly. However, because the value is above 1, a certain inaccuracy is 
present due to multicollinearity. The dependent variables of travel time (p = 0.0000206), 
search time (p = 0.04511), and picking time (p = 0.000000137) correlate with the dependent 
variable of throughput time and are statistically significant as the p-values are less than 
0.05 [74]. The variable “setup-time” (p = 0.8878 > 0.05) seems to have no significant 
influence on the throughput time of the process, and this is due to its smaller percentage 
of time in the overall picking process. 

The regression analysis further helps explain RO1, concluding that optimising the 
independent variables can change the throughput time and increase efficiency. In 
continuation, these same variables were influenced heavily by the pick-by-vision 
approach, thus achieving higher efficiency. 

Scenario Analysis: The data sets aggregated to a mean value, and the respective 
standard deviation of the test series can be seen in Table 4. This data set serves as a basis 
for further analyses. Based on the collected data and determined time elements in 
combination with the historical data records from 2021, scenarios were created in which 
different orders with different picking positions were estimated. In each case, the pick 
quantity is multiplied by the pick position by a factor of 3 (average pick quantity per pick 
position in 2021). The data sets of the scenarios can be found in Appendix B. The specific 
scenario for five picking positions with three picks each can be taken from Table 5, where 
the efficiency is improved by 10% for the pick-by-vision method. 

Table 4. Results of the quantitative data collection. 

Pick-by-Scan   Pick-by-Vision 
∑ Orders 10   ∑ Orders 12 
∑ Pick Orders 105   ∑ Pick Orders 108 
∑ Picks 256   ∑ Picks 367 

 [sec] [σ]    [sec] [σ] 
ᴓ Setup Time per Order 30.50 3.07   ᴓ Setup Time per Order 28.42 2.02 Waiting Time per Order 34.27 43.39
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Table 3. Results of the regression analysis. 

Regression  ANOVA 

Statistic Values  Item df SS MS F 
Significance 

F 
Multiple R 0.98725532  Regression 4 1,293,370.64 323,342.66 163.55553 2.50 × 10−13  

R-Square 0.97467306  Residual 17 33,608.31 1976.96   

Adjusted R-
Square 

0.96871378  Total 21 1,326,978.96    

Standard Error 
(SE) 44.681535        

Observations 22        

Item Coefficients SE t-Stat p-value Lower 95% Upper 95% Lower 
95.0% Upper 95.0% 

Intercept 44.3845662 132.177 0.335797 0.74113271 −234.484095 323.25323 −234.4841 323.253227 
Setup Time −0.6422316 4.48306 −0.1432574 0.88777126 −10.1006624 8.8161991 −10.10066 8.81619914 
Travel Time 1.16050165 0.19949 5.8173349 2.06 × 10−5 0.739614 1.5818391 0.739614 1.5818391 
Search Time 0.53684887 0.69599 0.7713474 4.51 × 10−2 −0.93155842 2.0052562 −0.931558 2.00525615 

Pick Time 1.07771193 0.10689 10.082293 1.37 × 10−8 0.85219048 1.3032334 0.8521905 1.30323338 

Regarding the coefficients, if all other predictor variables remain constant, each 
coefficient is viewed as the average increase in the response variable for each unit increase 
in a particular predictor variable [72,73]. Looking at the coefficients, it becomes clear that 
the travel time (1.1605) has the greatest positive correlation with the throughput time and 
influences it significantly. However, because the value is above 1, a certain inaccuracy is 
present due to multicollinearity. The dependent variables of travel time (p = 0.0000206), 
search time (p = 0.04511), and picking time (p = 0.000000137) correlate with the dependent 
variable of throughput time and are statistically significant as the p-values are less than 
0.05 [74]. The variable “setup-time” (p = 0.8878 > 0.05) seems to have no significant 
influence on the throughput time of the process, and this is due to its smaller percentage 
of time in the overall picking process. 

The regression analysis further helps explain RO1, concluding that optimising the 
independent variables can change the throughput time and increase efficiency. In 
continuation, these same variables were influenced heavily by the pick-by-vision 
approach, thus achieving higher efficiency. 

Scenario Analysis: The data sets aggregated to a mean value, and the respective 
standard deviation of the test series can be seen in Table 4. This data set serves as a basis 
for further analyses. Based on the collected data and determined time elements in 
combination with the historical data records from 2021, scenarios were created in which 
different orders with different picking positions were estimated. In each case, the pick 
quantity is multiplied by the pick position by a factor of 3 (average pick quantity per pick 
position in 2021). The data sets of the scenarios can be found in Appendix B. The specific 
scenario for five picking positions with three picks each can be taken from Table 5, where 
the efficiency is improved by 10% for the pick-by-vision method. 

Table 4. Results of the quantitative data collection. 

Pick-by-Scan   Pick-by-Vision 
∑ Orders 10   ∑ Orders 12 
∑ Pick Orders 105   ∑ Pick Orders 108 
∑ Picks 256   ∑ Picks 367 

 [sec] [σ]    [sec] [σ] 
ᴓ Setup Time per Order 30.50 3.07   ᴓ Setup Time per Order 28.42 2.02 Waiting Time per Order 34.27 43.39

It must be noted that the shorter the paths in the warehouse and the more frequent
the picking, the more the pick-by-vision process can contribute to an increase in efficiency.
To transfer the experiences and results from the actual measurements to other warehouses
and their specific situations, the structure of the warehouse processes must be compared.
As a contribution of this work, the results should assess the efficiency increase potential of
the pick-by-vision method by a structured comparison based on a diagram (Figure 4) and
thus support an economic decision.
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Table 5. Cost–benefit calculation.

Pick-by-Scan Pick-by-Vision

Acquisition costs per device € 5000.00 € 8500.00
Annual operating costs per device € 500.00 € 500.00

Lifetime (years) 8 8
Annual balance sheet depreciation € 625.00 € 1062.50

Annual cost per device € 1125.00 € 1562.50

Process Savings
Hours saved per day (8.4%) 0.650

Hours saved per day (11.0%) 0.799
Hourly wage per employee € 21.00 € 21.00

Working days per year 230 230

Annual Savings
Annual savings (8.4%) € 3137.18

Annual savings (11.0%) € 3860.63

Annual savings minus additional system costs
Annual savings minus additional system costs (8.4%) € 2699.68
Annual savings minus additional system costs (11.0%) € 3423.13

Net Present Value over 8 years
Net present value over 8 years (8.4%) € 21,597.45
Net present value over 8 years (11.0%) € 27,385.04
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Figure 4. Simulation model—increasing efficiency through pick-by-vision. 

To make a reliable statement, specifications are made supported by literature sources; 
for example, the travel time in the warehouse is fixed at an average share of 50%, according 
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To make a reliable statement, specifications are made supported by literature sources;
for example, the travel time in the warehouse is fixed at an average share of 50%, according
to [48]. In special warehouse situations, deviating constellations must be taken into account
accordingly. A 5% labour share for waiting times and other inefficiencies is also fixed
according to the model of [48]. Based on the case company’s data, 45 orders per employee
per day were determined, which may differ in other companies. However, this does
not affect the trend statement regarding the increase in efficiency when extracting the
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number of picks per warehouse location or the number of warehouse locations approached
per order.

The three-dimensional data model (Figure 4) shows all possible combinations or
scenarios feasible in a warehouse worker’s standard daily working time based on the set
parameters (scenario-based data model in Appendix B). Based on the indicators from the
literature reviewed and the test series, the data model is based on the formula derived
below (Equation (4)). The formula refers to one employee, the number of orders per day
per employee and their working time per day. The number of picking stations and picks is
also measured per order.

Setup time per day = orders ∗ setup time

Travel time per day = 0.5 ∗ working time

Search time per day = number o f picking locations ∗ Search time ∗ orders

Picking time per day = number o f picking locations ∗ picking time ∗ number o f picks ∗ orders

Waiting time per day = 0.05 ∗ working time

This subsequently results in the following Equation (4):

Throughput time =
setup time + travel time + search time + picking time + waiting time

(4)

The central statement is that the more picks are completed, the more efficient the
process becomes. This also clearly shows again which factor the pick-by-vision method
optimises most intensively. Not so prominent is the finding that an increase in the number
of items in an order leads to increased efficiency. In the scenario-based model, this is solely
because travel time in the warehouse is fixed at 50%. If the model is transferred to an actual
warehouse situation, this supposed deviation does not apply.

4.1.2. Assessing the ‘Effectiveness’ of Smart Glasses

Cost–Benefit Analysis (CBA): The finding that the pick-by-vision approach leads to
significant increases in efficiency seems insufficient as a basis for decision-making since the
acquisition of the system requires a considerable investment of 8500 € per pair of glasses
plus annual operating costs of 500 €, as per the case company’s data. To determine whether
this investment is worth the related increase in efficiency, it is necessary to determine
(a) where the specific warehouse is located in the scenario-based data model (Appendix C)
in terms of the number of pick locations and the number of picks per order, and (b) how
many shifts per day are operational in the warehouse. However, this would presuppose
several employees sharing the glasses, raising ergonomic and hygienic concerns, which
purely depend on human acceptance.

The CBA in Table 6 illustrates two scenarios, starting with the lowest savings through
the data model and the highest possible savings. Depending on efficiency, different
daily hours can be gained, resulting in different financial savings. Based on a balance
sheet depreciation over eight years, 2699.68 € to 3423.13 € per year per workplace can be
saved. This corresponds to a profit generated per workplace over 8 years of 21,597.45 € to
27,385.04 €. With 20 workplaces, according to the data model, an annual profit of at least
431,948.93 € can be assumed. This conclusion manifests the effectiveness of using smart
glasses for the picking process.
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Table 6. Simulation results (5 picking positions, 15 picks).

Picking Positions: 5 Pick-by-Scan (PbS) Pick-by-Vision
(PbV)

Difference PbS vs.
PbV Efficiency Increase

Picking Quantity: 15 [sec] [sec] [sec] [%]
Setup Time per Order 30.5 28.42 −2.08 7%

Travel Time per Pick Location 115.23 115.23 0 0%
Search Time per Pick Location 28.76 18.28 −13.53 89%

Picking Time per Pick 115.20 117.36 −17.40 18%
Outbound Travel Time per

Order 40.77 40.77 0 0%

Waiting Time per Order 34.27 34.27 0 0%
Throughput time 364.74 333.73 −33.01 10%

4.1.3. Discussion of the Empirical Results

The test series clearly showed that smart glasses can increase order picking efficiency.
Using regression analysis, the correlations between throughput time and the independent
variables of setup time, picking time, and search time can be statistically proved.

The information shown on the display of the smart glasses guides the employee
through the entire picking order. The internal system guides him directly to the storage
location, and the visual display shows the article and pick number. Finally, the picking
process is confirmed and completed with the scanner integrated into the smart glasses.
With AR, the user’s normal field of vision is extended by helpful, virtually generated
information. Pick-by-vision thus clearly combines the advantages of pick-by-voice and
pick-by-light.

Barcodes must be scanned at various work steps to ensure traceability and achieve
transparency in order picking for, on the one hand, the customer, and on the other hand,
internal control. When carrying out manual activities, the hand-held scanner must generally
be put aside within the pick-by-scan method to carry out the activities with both hands.
Afterwards, the hand-held scanner must be picked up again to confirm the respective
work step with a barcode on the system side. Due to the integrated scanning system in the
pick-by-vision method, the advantage of “hands-free” working plays a significant role and
ensures more efficient work processes.

Eliminating the required picking times for the use of the hand-held scanner and the
respective putting away of the hand-held scanner to fulfil the picking order increases the
effect linearly. A scanner integrated into the system eliminates dead time and optimises
time elements such as setup, search, and picking times. In practical tests, the setup time
was reduced by 7%, the search time by 89%, and the picking time by 18%. Pick-by-vision
makes it possible to transform non-value-added times into value-added times. This ensures
an increase in efficiency in the order picking system and simultaneously provides the
opportunity to process one’s order volume better, thus achieving a competitive advantage.
The virtual data preparation also creates a high degree of flexibility for the employees.
To avoid system failures, complete WLAN coverage in the warehouse environment is
a mandatory prerequisite to avoid waiting times due to a lack of connectivity. External
battery packs are also required, as the smart glasses’ battery life is insufficient to cover an
entire work shift.

An increase in efficiency using smart glasses technology can be demonstrated using
the designed scenario-based data model through a combination of literature and the results
of the test series as well as the regression analysis. This result of a 25% increase in efficiency
is in line with previous studies by [12,15]. However, to what extent do the employees
accept this technology? To take this crucial additional aspect into account, in addition to
the demonstrated increase in efficiency and realisation of RO1, RO2 must also be attained.
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4.2. RO2: To Assess the Employees’ Acceptance Level of Using Smart Glasses in the Picking
Process Without Concerns
4.2.1. Assessing the ‘Employee Acceptance Level’ of Using Smart Glasses

Interviews were conducted to explore human acceptance of smart glasses in order
picking. Wearables should offer measurable value, for instance, regarding mobility or
weight. Ideally, they should be imperceptible to the employee in the work process and
integrate naturally [60]. However, ergonomics is not limited to the wearability of smart
glasses but also to the ergonomics of the user interface. In addition to ergonomics, privacy
protection and psychological stress [59] also play a significant role.

The general acceptance level of the sample is 77.56%. Within the category “er-
gonomics”, the acceptance is 67.07%, the category “mental” comes to an acceptance of
78.74%, and “Privacy & Social” comes to 86.88%. Within the three categories, women
generally accept smart glasses less than men (Figure 5). The difference between female and
male acceptance in the mean value amounts to 6.98%.
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Figure 5. Acceptance of smart glasses—gender-wise preferences.

To obtain a more detailed insight into the human acceptance of smart glasses, the
sample was divided according to five predefined age groups and analysed in combination
with gender. In addition, the gender-dependent mean value was inserted (Figure 6). Within
the category “ergonomics”, a contrasting tendency within the age groups is noticeable.
A higher level of acceptance can be identified among the male participants in the interview
than the female participants. Among men, the acceptance level decreases with increasing
age. An outlier is the age group 46–55 years, which surprisingly shows the highest accep-
tance. Among women, the acceptance of smart glasses increases with age. For both men
and women, acceptance in ergonomics is significantly below the average acceptance level
of the sample, almost across all age groups. It becomes clear that the main problem of both
genders and across almost all age groups lies within the category “ergonomics”. Women
experience more problems, such as disorientation, due to the change between the real and
virtual worlds.
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4.2.2. Discussion of the Interview Results

The core problem of the low human acceptance of smart glasses is ergonomics. The
fact that the interviews were conducted directly with the employees made it possible to
unearth the reasons for a firm rejection of the technology. By asking the ‘why’ question,
various causes of rejection were identified (Figure 7). To interpret the graph correctly, it
should be noted that the percentage refers to the sum of the problems mentioned and their
frequency and is not related to the number of participants.
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The main reasons for the lack of acceptance of smart glasses are physical, as wearing
discomfort plays a vital role in the acceptance of smart glasses. The main ergonomic
problem is the setup of the smart glasses. For all test persons, the smart glasses require
an external power supply, in which the interface to the warehouse management system
(WMS) is also integrated. On the one hand, this additional device adds weight; on the
other hand, a cable connection is required, which the employees perceive as annoying. In
addition, when order picking is performed with a vehicle, a problem often arises when the
cable becomes caught on the vehicle.

Many employees complain about the one-sided weight load of the smart glasses
resulting from the additional accumulator integrated into the glasses’ frame. Subsequently,
this leads to earaches and headaches after an 8 h shift. Focussing on the same spot (display)
and restricting head movement lead to fatigue, headaches, and stress [75]. In addition, it is
often mentioned that while working with smart glasses, the eye behind the screen dries
out quickly. A light spot is often perceived in the eye after taking off the smart glasses.
This phenomenon also occurs in eye health studies concerning smart glasses, where vision
and visual field sensitivity are reduced [76,77]. However, sickness cannot be proven in the
interviews conducted. Nevertheless, health impairments, especially regarding the eye, are
a decisive factor in the human acceptance and use of smart glasses.

Due to the multitude of health problems resulting from smart glasses and an accep-
tance level of 77.56%, RO2 is realised with a conclusion that smart glasses do not experience
high acceptance by employees and cannot be used in the picking process without concerns.
These results comply with the findings of [14,22].

5. Conclusions

This research investigates the question: Can smart glasses be more effective and
efficient than conventional order picking methods for logistics processes? To respond to
this research question, two research objectives were defined in the study. These objectives
were divided into ‘efficiency’, ‘economic viability or profitability’, and ‘human acceptance’.

5.1. Efficiency

Both the series of trials within a test environment and the series of trials within daily
operations show a significant increase in efficiency. Reducing the throughput time of



Logistics 2024, 8, 106 17 of 25

a picking order using pick-by-vision technology increases the picking system’s perfor-
mance. Using smart glasses has resulted in a 23.3% increase in performance within the
test environment. Evaluating the data from the daily business amounts to a 10% increase
in performance.

The performance increase is due to a significant shortening of elementary process
steps within order picking. The setup time is reduced by 7%, the search time by 89%,
and the picking time by 18%. Accordingly, dead times due to the use of the hand-held
scanner, such as reaching for the hand-held scanner or similar activities, are converted
into value-adding times. A linear influence of the throughput time, primarily through the
time elements search time and picking time, results in a more significant scale effect in
pick-heavy environments. As a result of a statistical investigation through a regression
analysis, a dependency of the throughput time on the variables “travel time”, “search time”,
and “picking time” can be established, which further helped in the realisation of RO1.

5.2. Profitability

To strengthen competitiveness, the efficiency of logistics facilities must be increased.
An increase in efficiency is based on increased quantity, speed, and quality with the
same use of resources. The study finds that smart glasses strengthen competitiveness by
increasing the possible processing volume. In addition, the throughput time is reduced,
which means increased speed. Finally, the study finds that using smart glasses reduces
the error rate, which leads to an increase in quality. Regarding CBA in the concrete
example, the investment made to purchase the smart glasses leads to a cost savings of at
least 2699.68 € per year and workplace according to the scenario-based data model. The
increase in performance in the day-to-day business of 10% offers the possibility of achieving
a competitive advantage, which further assisted in attaining RO1.

5.3. Human Acceptance

The study found that smart glasses achieved an acceptance level of 77.56% in the
interview. The result is more favourable here, as it is strongly influenced by the “privacy &
social” category. For men, the acceptance level decreases with increasing age. For women,
the acceptance of smart glasses increases with age. The main concern for both genders is
primarily in the category “ergonomics”, with an acceptance level of 67%.

The main reasons for not accepting smart glasses are physical aspects such as restricted
vision or wearing comfort. Although the work facilitation through pick-by-vision con-
tributes to increased efficiency, wearing comfort plays a vital role in accepting smart glasses.
The main ergonomic problem is the setup of the smart glasses. Many employees complain
about the one-sided weight load of the smart glasses, which leads to long-term earaches
and headaches. Furthermore, many employees complain about the lack of comfort of the
glasses, leading to physical problems such as ear pain, fatigue, or tension after an 8 h shift.
In addition, the eye behind the lens dries out quickly. A light spot is often perceived in the
eye after taking off the smart glasses. Health impairments, especially regarding the eye, are
a decisive factor in the human acceptance and use of smart glasses.

Due to the many health problems resulting from smart glasses and an acceptance
level of 77.56%, an alternative version of RO2: “Smart glasses experience a high acceptance
by employees and can be used in the picking process without further concerns” must
be rejected.

5.4. Contributions and Outlook

This work’s theoretical contribution is the documentation of a detailed scientific case
study highlighting the increase in picking effectiveness and efficiency due to smart glasses,
as mandated by [16–18]. Moreover, this study thoroughly compares pick-by-vision with
conventional pick-by-scan methods, highlighted as a gap by [20,21].

With the pick-by-vision solution for order picking, an innovative hybrid technology
was brought to market that incorporates people and their abilities into a warehouse environ-
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ment that is becoming more digital [78]. With their cognitive abilities and flexibility, they
are gaining a firm place in Industry 4.0 and thus remain an essential factor in successfully
implementing intralogistics, even in this networked world. Smart glasses make a significant
contribution to the digitalisation of logistics work processes.

However, giving a fundamental action recommendation is difficult for the following
reasons: There is an increase in efficiency and the associated economic added value versus
the employees’ lack of acceptance and health impairments. Smart glasses and hands-free
order picking are target-orientated concepts that make order picking more effective and
efficient; however, ergonomic adjustments are needed to reduce health impairments.

The basic idea of changing order picking so that existing dead times are transformed
into value-creating times is decisive to remain competitive in the long term and increase
competitiveness. To strengthen competitiveness, the efficiency of the logistics facilities
must, therefore, be increased in terms of quantity, speed, and quality with the same use of
resources. Currently, the use of smart glasses in order picking requires a trade-off between
efficiency and human acceptance. Human acceptance could be increased through moti-
vation, consultation, and monetary incentives such as offering profit sharing to the order
pickers in the generated added value and involving employees in improving the design and
functionality of smart glasses [14]. They further suggested encouraging employees with
high technology affinity to become champions for creating awareness regarding this new
technology [14]. However, it would be better to eliminate the criticisms of the technology
by exploring further development. Considering both economic advantages and health
impairments, implementing the smart glasses technology within order picking processes
can be recommended at the current state of technical development.

It is recommended that practitioners prioritise the collaboration between ergonomic
specialists and technology developers to improve the smart glasses’ comfort and design.
This partnership may result in more user-friendly designs that make it more pleasant for
employees to utilise them for extended periods [76]. Additionally, it is recommended
that organisations consider continuous improvement activities, utilising smart glasses to
boost competitiveness and optimise logistics procedures. Moreover, supply chain decision-
makers should develop practical and technical guidelines and procedures for smoothly
implementing this technology in their warehouses. The study’s findings regarding the ben-
eficial effects on profitability and efficiency point to the possibility of a broader application
in logistics operations.

5.5. Limitations and Further Research

The quantitative data collection of the picking process times in only one company is
a limitation of the work. An increase in the sample size, considering multiple companies,
can provide further insights into the influence of smart glasses on the order picking process.
A representative statement is nevertheless possible. However, an increase in the sample
size would provide a better overall picture of the population of all logistics companies with
smart glasses in use. Additionally, it is essential to mention that AR technology and smart
glasses paired with industrial environments are still in the early stages of development. On
the one hand, the glasses must still be sufficiently robust in many situations. On the other
hand, technologies such as WLAN and Bluetooth need to be more stable due to interactions,
bearing structures, and environmental influences.

For further investigations, an expansion of the study on human acceptance of smart
glasses is recommended via a suitable theoretical lens of TAM, UTAUT2, and technology
diffusion theory, in addition to an increase in the sample size. It may be possible to include
company doctors in the study to objectify the subjectivity of the statements. Future studies
should examine the use of smart glasses at real workplaces with the employees working
there to derive recommendations for action for the use of smart glasses at the workplace
and estimate long-term effects on efficiency and health through the use. Scholars are
urged to carry out comprehensive studies on the health risks related to smart glasses,
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with a particular emphasis on ergonomic issues. These investigations can offer insightful
information on possible improvements to the design or substitutions.
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Appendix B. Order Picking Scenarios

Picking Positions: 1
Pick-by-Scan

(PbS)
Pick-by-Vision

(PbV)
Difference PbS vs.

PbV
Efficiency Increase

Picking quantity: 3 [sec] [sec] [sec] [%]
Setup Time per Order 30.5 28.42 −2.08 7%

Travel Time per Pick Location 23.05 23.05 0 0%
Search Time per Pick Location 5.75 3.05 −2.71 89%

Picking Time per Pick 23.04 19.56 −3.48 18%
Outbound Travel Time per

Order
40.77 40.77 0 0%

Waiting Time per Order 34.27 34.27 0 0%
Throughput time 157.38 149.11 −8.27 6%

Picking positions: 2 Pick-by-Scan (PbS)
Pick-by-Vision

(PbV)
Difference PbS vs.

PbV
Efficiency increase

Picking quantity: 6 [sec] [sec] [sec] [%]
Setup Time per Order 30.5 28.42 −2.08 7%

Travel Time per Pick Location 46.09 46.09 0 0%
Search Time per Pick Location 11.50 6.09 −5.41 89%

Picking Time per Pick 46.08 39.12 −6.96 18%
Outbound Travel Time per

Order
40.77 40.77 0 0%

Waiting Time per Order 34.27 34.27 0 0%
Throughput time 209.22 194.77 −14.46 7%

Picking positions: 3 Pick-by-Scan (PbS)
Pick-by-Vision

(PbV)
Difference PbS vs.

PbV
Efficiency increase

Picking quantity: 9 [sec] [sec] [sec] [%]
Setup Time per Order 30.5 28.42 −2.08 7%

Travel Time per Pick Location 69.14 69.14 0 0%
Search Time per Pick Location 17.26 9.14 −8.12 89%

Picking Time per Pick 69.12 58.68 −10.44 18%
Outbound Travel Time per

Order
40.77 40.77 0 0%

Waiting Time per Order 34.27 34.27 0 0%
Throughput time 261.06 240.42 −20.64 9%

Picking positions: 4 Pick-by-Scan (PbS)
Pick-by-Vision

(PbV)
Difference PbS vs.

PbV
Efficiency increase

Picking quantity: 12 [sec] [sec] [sec] [%]
Setup Time per Order 30.5 28.42 −2.08 7%

Travel Time per Pick Location 92.19 92.19 0 0%
Search Time per Pick Location 23.01 12.19 −10.82 89%

Picking Time per Pick 92.16 78.24 −13.92 18%
Outbound Travel Time per

Order
40.77 40.77 0 0%

Waiting Time per Order 34.27 34.27 0 0%
Throughput time 312.90 286.07 −26.83 9%

Picking positions: 5 Pick-by-Scan (PbS)
Pick-by-Vision

(PbV)
Difference PbS vs.

PbV
Efficiency increase

Picking quantity: 15 [sec] [sec] [sec] [%]
Setup Time per Order 30.5 28.42 −2.08 7%

Travel Time per Pick Location 115.23 115.23 0 0%
Search Time per Pick Location 28.76 18.28 −13.53 89%

Picking Time per Pick 115.20 117.36 −17.40 18%
Outbound Travel Time per

Order
40.77 40.77 0 0%

Waiting Time per Order 34.27 34.27 0 0%
Throughput time 364.74 333.73 −33.01 10%
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Picking positions: 6 Pick-by-Scan (PbS)
Pick-by-Vision

(PbV)
Difference PbS vs.

PbV
Efficiency increase

Picking quantity: 18 [sec] [sec] [sec] [%]
Setup Time per Order 30.5 28.42 −2.08 7%

Travel Time per Pick Location 138.28 138.28 0 0%
Search Time per Pick Location 34.51 18.28 −16.24 89%

Picking Time per Pick 138.24 117.36 −20.88 18%
Outbound Travel Time per Order 40.77 40.77 0 0%

Waiting Time per Order 34.27 34.27 0 0%
Throughput time 416.58 377.38 −39.20 10%

Picking positions: 7 Pick-by-Scan (PbS)
Pick-by-Vision

(PbV)
Difference PbS vs.

PbV
Efficiency increase

Picking quantity: 21 [sec] [sec] [sec] [%]
Setup Time per Order 30.5 28.42 −2.08 7%

Travel Time per Pick Location 161.33 161.33 0 0%
Search Time per Pick Location 40.27 21.32 −18.94 89%

Picking Time per Pick 161.28 136.92 −24.36 18%
Outbound Travel Time per Order 40.77 40.77 0 0%

Waiting Time per Order 34.27 34.27 0 0%
Throughput time 468.42 423.03 −45.39 11%

Picking positions: 8 Pick-by-Scan (PbS)
Pick-by-Vision

(PbV)
Difference PbS vs.

PbV
Efficiency increase

Picking quantity: 24 [sec] [sec] [sec] [%]
Setup Time per Order 30.5 28.42 −2.08 7%

Travel Time per Pick Location 184.38 184.38 0 0%
Search Time per Pick Location 46.02 24.37 −21.65 89%

Picking Time per Pick 184.32 156.48 −27.84 18%
Outbound Travel Time per Order 40.77 40.77 0 0%

Waiting Time per Order 34.27 34.27 0 0%
Throughput time 520.26 468.69 −51.57 11%
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Appendix C. Scenario-Based Data Model—Increasing Efficiency Through Pick-by-Vision

Number of Picks per Pick Location 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Pick
Loca-
tions

Throughput time (PBS)
in sec

1 16,787.51 17,133.11 17,478.71 17,824.31 18,169.91 18,515.51 18,861.11 19,206.71 19,552.31 19,897.91 20,243.51 20,589.11 20,934.71 21,280.31 21,625.91 21,971.51 22,317.11 22,662.71 23,008.31 23,353.91 23,699.51 24,045.11 24,390.71 24,736.31 25,081.91

Throughput time PBV
in sec

16,519.78 16,813.18 17,106.58 17,399.98 17,693.38 17,986.78 18,280.18 18,573.58 18,866.98 19,160.38 19,453.78 19,747.18 20,040.58 20,333.98 20,627.38 20,920.78 21,214.18 21,507.58 21,800.98 22,094.38 22,387.78 22,681.18 22,974.58 23,267.98 23,561.38

Difference in % 1.6% 1.9% 2.2% 2.4% 2.7% 2.9% 3.2% 3.4% 3.6% 3.8% 4.1% 4.3% 4.5% 4.7% 4.8% 5.0% 5.2% 5.4% 5.5% 5.7% 5.9% 6.0% 6.2% 6.3% 6.5%
Throughput time (PBS)

in sec
2 17,391.96 18,083.16 18,774.36 19,465.56 20,156.76 20,847.96 21,539.16 22,230.36 22,921.56 23,612.76 24,303.96 24,995.16 25,686.36 26,377.56 27,068.76 27,759.96 28,451.16 29,142.36 29,833.56 30,524.76 31,215.96 31,907.16 32,598.36 33,289.56 33,980.76

Throughput time PBV
in sec

16,950.27 17,537.07 18,123.87 18,710.67 19,297.47 19,884.27 20,471.07 21,057.87 21,644.67 22,231.47 22,818.27 23,405.07 23,991.87 24,578.67 25,165.47 25,752.27 26,339.07 26,925.87 27,512.67 28,099.47 28,686.27 29,273.07 29,859.87 30,446.67 31,033.47

Difference in % 2.6% 3.1% 3.6% 4.0% 4.5% 4.8% 5.2% 5.6% 5.9% 6.2% 6.5% 6.8% 7.1% 7.3% 7.6% 7.8% 8.0% 8.2% 8.4% 8.6% 8.8% 9.0% 9.2% 9.3% 9.5%
Throughput time (PBS)

in sec
3 17,996.42 19,033.22 20,070.02 21,106.82 22,143.62 23,180.42 24,217.22 25,254.02 26,290.82 27,327.62 28,364.42 29,401.22 30,438.02 31,474.82 32,511.62 33,548.42 34,585.22 35,622.02 36,658.82 37,695.62 38,732.42 39,769.22 40,806.02 41,842.82 42,879.62

Throughput time PBV
in sec

17,380.75 18,260.95 19,141.15 20,021.35 20,901.55 21,781.75 22,661.95 23,542.15 24,422.35 25,302.55 26,182.75 27,062.95 27,943.15 28,823.35 29,703.55 30,583.75 31,463.95 32,344.15 33,224.35 34,104.55 34,984.75 35,864.95 36,745.15 37,625.35 38,505.55

Difference in % 3.5% 4.2% 4.9% 5.4% 5.9% 6.4% 6.9% 7.3% 7.7% 8.0% 8.3% 8.6% 8.9% 9.2% 9.5% 9.7% 9.9% 10.1% 10.3% 10.5% 10.7% 10.9% 11.1% 11.2% 11.4%
Throughput time (PBS)

in sec
4 18,600.88 19,983.28 21,365.68 22,748.08 24,130.48 25,512.88 26,895.28 28,277.68 29,660.08 31,042.48 32,424.88 33,807.28 35,189.68 36,572.08 37,954.48 39,336.88 40,719.28 42,101.68 43,484.08 44,866.48 46,248.88 47,631.28 49,013.68 50,396.08 51,778.48

Throughput time PBV
in sec

17,811.23 18,984.83 20,158.43 21,332.03 22,505.63 23,679.23 24,852.83 26,026.43 27,200.03 28,373.63 29,547.23 30,720.83 31,894.43 33,068.03 34,241.63 35,415.23 36,588.83 37,762.43 38,936.03 40,109.63 41,283.23 42,456.83 43,630.43 44,804.03 45,977.63

Difference in % 4.4% 5.3% 6.0% 6.6% 7.2% 7.7% 8.2% 8.6% 9.0% 9.4% 9.7% 10.0% 10.3% 10.6% 10.8% 11.1% 11.3% 11.5% 11.7% 11.9% 12.0% 12.2% 12.3% 12.5% 12.6%
Throughput time (PBS)

in sec
5 19,205.34 20,933.34 22,661.34 24,389.34 26,117.34 27,845.34 29,573.34 31,301.34 33,029.34 34,757.34 36,485.34 38,213.34 39,941.34 41,669.34 43,397.34 45,125.34 46,853.34 48,581.34 50,309.34 52,037.34 53,765.34 55,493.34 57,221.34 58,949.34 60,677.34

Throughput time PBV
in sec

18,241.72 19,708.72 21,175.72 22,642.72 24,109.72 25,576.72 27,043.72 28,510.72 29,977.72 31,444.72 32,911.72 34,378.72 35,845.72 37,312.72 38,779.72 40,246.72 41,713.72 43,180.72 44,647.72 46,114.72 47,581.72 49,048.72 50,515.72 51,982.72 53,449.72

Difference in % 5.3% 6.2% 7.0% 7.7% 8.3% 8.9% 9.4% 9.8% 10.2% 10.5% 10.9% 11.2% 11.4% 11.7% 11.9% 12.1% 12.3% 12.5% 12.7% 12.8% 13.0% 13.1% 13.3% 13.4% 13.5%
Throughput time (PBS)

in sec
6 19,809.79 21,883.39 23,956.99 26,030.59 28,104.19 30,177.79 32,251.39 34,324.99 36,398.59 38,472.19 40,545.79 42,619.39 44,692.99 46,766.59 48,840.19 50,913.79 52,987.39 55,060.99 57,134.59 59,208.19 61,281.79 63,355.39 65,428.99 67,502.59 69,576.19

Throughput time PBV
in sec

18,672.20 20,432.60 22,193.00 23,953.40 25,713.80 27,474.20 29,234.60 30,995.00 32,755.40 34,515.80 36,276.20 38,036.60 39,797.00 41,557.40 43,317.80 45,078.20 46,838.60 48,599.00 50,359.40 52,119.80 53,880.20 55,640.60 57,401.00 59,161.40 60,921.80

Difference in % 6.1% 7.1% 7.9% 8.7% 9.3% 9.8% 10.3% 10.7% 11.1% 11.5% 11.8% 12.0% 12.3% 12.5% 12.7% 12.9% 13.1% 13.3% 13.5% 13.6% 13.7% 13.9% 14.0% 14.1% 14.2%
Throughput time (PBS)

in sec
7 20,414.25 22,833.45 25,252.65 27,671.85 30,091.05 32,510.25 34,929.45 37,348.65 39,767.85 42,187.05 44,606.25 47,025.45 49,444.65 51,863.85 54,283.05 56,702.25 59,121.45 61,540.65 63,959.85 66,379.05 68,798.25 71,217.45 73,636.65 76,055.85 78,475.05

Throughput time PBV
in sec

19,102.68 21,156.48 23,210.28 25,264.08 27,317.88 29,371.68 31,425.48 33,479.28 35,533.08 37,586.88 39,640.68 41,694.48 43,748.28 45,802.08 47,855.88 49,909.68 51,963.48 54,017.28 56,071.08 58,124.88 60,178.68 62,232.48 64,286.28 66,340.08 68,393.88

Difference in % 6.9% 7.9% 8.8% 9.5% 10.2% 10.7% 11.2% 11.6% 11.9% 12.2% 12.5% 12.8% 13.0% 13.2% 13.4% 13.6% 13.8% 13.9% 14.1% 14.2% 14.3% 14.4% 14.5% 14.6% 14.7%
Throughput time (PBS)

in sec
8 21,018.71 23,783.51 26,548.31 29,313.11 32,077.91 34,842.71 37,607.51 40,372.31 43,137.11 45,901.91 48,666.71 51,431.51 54,196.31 56,961.11 59,725.91 62,490.71 65,255.51 68,020.31 70,785.11 73,549.91 76,314.71 79,079.51 81,844.31 84,609.11 87,373.91

Throughput time PBV
in sec

19,533.17 21,880.37 24,227.57 26,574.77 28,921.97 31,269.17 33,616.37 35,963.57 38,310.77 40,657.97 43,005.17 45,352.37 47,699.57 50,046.77 52,393.97 54,741.17 57,088.37 59,435.57 61,782.77 64,129.97 66,477.17 68,824.37 71,171.57 73,518.77 75,865.97

Difference in % 7.6% 8.7% 9.6% 10.3% 10.9% 11.4% 11.9% 12.3% 12.6% 12.9% 13.2% 13.4% 13.6% 13.8% 14.0% 14.2% 14.3% 14.4% 14.6% 14.7% 14.8% 14.9% 15.0% 15.1% 15.2%
Throughput time (PBS)

in sec
9 21,623.16 24,733.56 27,843.96 30,954.36 34,064.76 37,175.16 40,285.56 43,395.96 46,506.36 49,616.76 52,727.16 55,837.56 58,947.96 62,058.36 65,168.76 68,279.16 71,389.56 74,499.96 77,610.36 80,720.76 83,831.16 86,941.56 90,051.96 93,162.36 96,272.76

Throughput time PBV
in sec

19,963.65 22,604.25 25,244.85 27,885.45 30,526.05 33,166.65 35,807.25 38,447.85 41,088.45 43,729.05 46,369.65 49,010.25 51,650.85 54,291.45 56,932.05 59,572.65 62,213.25 64,853.85 67,494.45 70,135.05 72,775.65 75,416.25 78,056.85 80,697.45 83,338.05

Difference in % 8.3% 9.4% 10.3% 11.0% 11.6% 12.1% 12.5% 12.9% 13.2% 13.5% 13.7% 13.9% 14.1% 14.3% 14.5% 14.6% 14.7% 14.9% 15.0% 15.1% 15.2% 15.3% 15.4% 15.4% 15.5%
Throughput time (PBS)

in sec
10 22,227.62 25,683.62 29,139.62 32,595.62 36,051.62 39,507.62 42,963.62 46,419.62 49,875.62 53,331.62 56,787.62 60,243.62 63,699.62 67,155.62 70,611.62 74,067.62 77,523.62 80,979.62 84,435.62 87,891.62 91,347.62 94,803.62 98,259.62 101,715.62 105,171.62

Throughput time PBV
in sec

20,394.13 23,328.13 26,262.13 29,196.13 32,130.13 35,064.13 37,998.13 40,932.13 43,866.13 46,800.13 49,734.13 52,668.13 55,602.13 58,536.13 61,470.13 64,404.13 67,338.13 70,272.13 73,206.13 76,140.13 79,074.13 82,008.13 84,942.13 87,876.13 90,810.13

Difference in % 9.0% 10.1% 11.0% 11.6% 12.2% 12.7% 13.1% 13.4% 13.7% 14.0% 14.2% 14.4% 14.6% 14.7% 14.9% 15.0% 15.1% 15.2% 15.3% 15.4% 15.5% 15.6% 15.7% 15.7% 15.8%
Notes: Working hours per day, 7.48; Working time in sec, 26,928; Working days per year, 230. Literature values: Travel time, 50%; Other, 5%; Orders per employee/day, 45.
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