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Abstract: Background: Supply chain performance (SCP) is impacted by complexity brought about by
static and dynamic drivers. This study aims to investigate the effects of supply chain complexity (SCC)
on SCP and ascertain whether additive manufacturing best practices have moderating effects on this
relationship. Methods: Using data from 29 Ethiopian footwear industries and 205 respondents, the re-
lationship established in the theoretical framework was validated using structural equation modelling
(SEM). Results: The study’s findings provided several important insights. First, upstream supply
chain complexity (USSCC), midstream supply chain complexity (MSSCC), and downstream supply
chain complexity (DSSCC) negatively affect SCP. Second, additive manufacturing best practices
have significant moderation effects between supply chain complexity and supply chain performance.
Third, the negative impacts of USSCC and MSSCC on SCP are reduced at a higher level of additive
manufacturing adaptation. The findings of this study also revealed that the effects of DSSCC on SCP
have no difference at both low and high levels of additive manufacturing best practices. Conclusions:
This work offers the first empirical investigation to which the detrimental effects of SCC on SCP are
mitigated or improved through the moderating role of additive manufacturing best practice.

Keywords: additive manufacturing; best practices; moderator; supply chain complexity; supply
chain performance; structural equation modeling

1. Introduction

In today’s supply chain management, measuring and identifying factors that influence
supply chain performance (SCP) is critical for success, and for strategically managing
and continuously improving the achievement of firm’s objectives. Among the factors
that affect SCP, supply chain complexity (SCC) takes priority. Supply chain complexity
is termed as condition of inter-dependence and inter-connectedness of entities across a
network [1]. This complexity is created by the static and dynamic drivers within the
supply chain network [2]. The level of SCC within the network is a significant performance
bottleneck and one of the most pressing concerns confronting contemporary SCs Please
check all author names carefully [3]. In particular, the number of levels created due to
static and dynamic drivers like number and variety of products, supplier variety, number
and reliability of supplier, customer heterogeneity, and demand uncertainty within supply
chain (SC) network substantially affects the performance of supply chain and makes supply
chain management more challenging.

According to Malina [4], increased complexity due to these drivers negatively affects
the firms’ efficiency in terms of cost, flexibility, and lead time. Studies also indicate that
high levels of SCC have negative effects on performance [5]. Similarly, an increase in SCC
leads to a more complex supplier network [6], higher SC costs [7], and poor customer
service [8]. Higher levels of complexity significantly reduce competitiveness, cost efficiency,
customer satisfaction, and market share [9]. Constantin et al. [10] reported the negative

Logistics 2024, 8, 112. https://doi.org/10.3390/logistics8040112 https://www.mdpi.com/journal/logistics

https://doi.org/10.3390/logistics8040112
https://doi.org/10.3390/logistics8040112
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/logistics
https://www.mdpi.com
https://orcid.org/0000-0001-9588-4707
https://orcid.org/0000-0002-1628-7216
https://doi.org/10.3390/logistics8040112
https://www.mdpi.com/journal/logistics
https://www.mdpi.com/article/10.3390/logistics8040112?type=check_update&version=1


Logistics 2024, 8, 112 2 of 19

association between SCC and performance, while other researchers, for instance, Lu and
Shang [11] and Pathak et al. [12], reported the positive effects of SCC on performance.
Similarly, the study by Memiş [13] found that some of the supply base complexity drivers
have positive effects in improving firm performance. According to Ates et al. [14], low
levels of complexity improve the performance of those firms with long-term strategies. On
the other hand, the study [15] indicated that the performance of supply chain depends on
the degree of complexity found within the network. The level of these complexities varies
between industries and countries due to cultural differences and customer requirements of
management practices.

In this regard, different studies used different types of methodologies, procedures, or
strategies to study the effects of SCC on SCP. Brandon et al. [16] used the moderating effects
of slack resource to study supply chain base complexity on disruption and performance.
The study by Ateş and Memiş [17] examined the moderating effects of strategic purchasing
on the relationship between supply base complexity and performance. The study by
Giannoccaro et al. [18] investigated the effects of the number of firm and level of the supply
interaction on supply chain network performance by considering the scope of control as
moderator, and their findings revealed the negative effects of complexity on SC network
performance. Furthermore, other studies suggested qualitative techniques and tactics to
show how to reduce SCC through lean manufacturing [19], flexibility [20], and operational
strategy [21].

Other studies have also qualitatively verified the use of Industry 4.0 drivers like addi-
tive manufacturing (AM), to address the above-mentioned important concerns. Due to the
emergence of AM, numerous industries’ SCs are predicted to be significantly disrupted,
and it is seen as a useful instrument in contemporary production because of its ability to
reduce expenses, boost productivity, expand flexibility, and support sustainability. Accord-
ingly, AM has much to offer in terms of lowering SC costs, as well as transportation and
warehousing expenses. The empirical study by Oettmeier and Hofmann [22] revealed the
positive effects of adopting AM technology to illustrate its potential cost savings, lead time
reduction, and increased SC resilience. Similarly, the study by Yang et al. [23] indicated that
digital technology significantly improves supply chain capabilities. According to Noorwali
et al. [24], the adoption of AM technology reduces the number of suppliers and reduces the
need for huge stocking, transportation, and raw material inventory [25]. This demonstrated
that AM has the potential for enhancing or improving supply chain performance.

The effects of industry and cultural differences on SCC and performance interrelation-
ships were not specifically explored in previous studies. In particular, key relationships
were not established in the context of developing countries like Ethiopia, where their sub-
stantial influence on international markets is growing, a rapid growth in population can be
observed, and an increasing number of customers are an unavoidable reality, specifically in
the footwear industry. In some industries and countries, these relationships may differ due
to differences in customer requirements and preferences or differences in manufacturing
processes and SC management practices. In addition, even if the benefits of AM best
practices in improving the negative impacts of SCC on SCP were indicated in the reviewed
literature, the use of AM best practices as moderators between SCC and SCP is still not
widely reported.

Thus, by taking these into consideration, this study is intended to fill the identified
gaps by examining the moderating role of AM best practices between SCC and SCP of
footwear industries in Ethiopia. From the context of industries in this category, the study
aims to answer the following questions:

1. What are the moderating effects of AM between supply chain complexity and supply
chain performance?

2. Which of the complexity types are altered in the presence of AM technology?
3. At what level of AM best practices are the negative effects of SCCs reduced?

In this paper, these research questions are addressed by developing a conceptual
framework and hypotheses based on the conducted literature review. To test the developed
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conceptual framework and developed hypotheses, data were collected from the footwear
industry operating in Ethiopia and tested using a structural equation modelling (SEM)
approach. This study is expected to contribute to the scientific knowledge of a new
conceptual framework that will help practitioners measure and test the impacts of SCC on
SCP through the moderation role of AM best practices. Through this conceptual framework,
the industry can control the level of supply chain complexity to improve supply chain
performance. Furthermore, this study intends to discuss managers and practitioners, how
complexity within the firms SC network influences supply chain performance, and how
the adoption of AM improves the negative relationship between SCC and SCP. Managers
and practitioners can learn from this research about how the complexity of a company
supply chain network affects the effectiveness and efficiency of their supply chain, as well
as how the adoption of AM might mitigate the negative correlation between supply chain
and performance.

The remainder of this article is structured as follows. In Section 2, a review of the
literature on supply chain complexity and its types, the effects of supply chain complexity
on performance, and additive manufacturing best practices in the context of supply chains
are presented. Section 3 outlines the materials and methods, including a research model,
sample and data collection, instruments, procedures followed to conduct reliability, mea-
surement, and structural model fit tests. Then, the results are presented in Section 4, and
the findings are further discussed in Section 5. Finally, the paper concludes with findings
implications and suggestions for future research in Section 6.

2. Literature Review

This research was conducted based on a separate systematic literature review con-
ducted by the authors and reported in [26]. In this section, the literature study is presented.
The literature findings that illustrate the theoretical backgrounds of supply chain complex-
ity, additive manufacturing best practices in the context of supply chains, and their impacts
on supply chain performance, as well as the issues that clarify the research gap and enable
hypotheses, are highlighted.

2.1. Supply Chain Performance Measurement

Different studies and scholars measure and define the performance of SC using differ-
ent criteria. Pillai et al. [27] defined SCP in terms of cost, and they further segmented these
costs into purchase order cost, setup cost, transportation cost, carrying cost, major cost, and
shortage cost. On the other hand, customer satisfaction served as a metric for SC success
and was considered to be a significant predictor of performance [28]. Panayides et al. [29]
also reported customer satisfaction as an indicator of the supply chain. Fulfilling and
meeting consumers’ needs in terms of flexibility in product design, product quality, prod-
uct delivery, and reliability is very important in the SC process. Furthermore, supply
chain performance metrics pertaining to suppliers are crucial for customers and suppliers
alike. Delivery performance, responsiveness, flexibility, and cost are among the most
often measured characteristics of supplier performance [30]. Meeting changes in customer
demand and specifications and shorter delivery time are also mentioned as performance
measures of supply chain [31]. This performance measuring factor has the advantage of
decreasing costs and time while increasing the value and quality of goods. Thus, supply
chain performance measures need to be considered in terms of qualitative (flexibility in
product design, product delivery, and customer satisfaction) and quantitative measuring
factors (such as total supply chain cost, inventory levels, and resource utilization).

2.2. Supply Chain Complexity

Supply chain complexity is defined as a condition of inter-dependencies and inter-
connectedness of entities across a network [1]. The increasing interdependence and inter-
connection in the supply chain network creates challenges for the firms. Different factors
or drivers affect SCs and make them extremely complex and interconnected. Complexity
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drivers are classified into different types based on their origin or sources. Based on this,
Isik [32] classified complexity drivers according to their position into upstream, midstream,
and downstream complexities.

Upstream supply chain complexity originates from the supplier’s side and is caused
by static and dynamic complexity. These types of complexities are characterized by supplier
location, number and variety of suppliers, etc. [2], which are referred to as static supply
chain complexities. On the other hand, dynamic complexity in this location is characterized
by supplier reliability and variability [33], supplier resourcing risk, supplier competence [9],
and supplier delivery unreliability [15]. Midstream supply chain complexity, on the other
hand, is defined as the static and dynamic complexities found in manufacturing plants.
According to Kunovjanek and Reiner [25], static complexity within the manufacturing
plant refers to the distinct number of components or parts that make up a system, a number
and variety of products, or processes and types of products. Similarly, dynamic complexity
refers to operational complexity, and it is reflected by forecast inaccuracy and unstable
production schedules, process uncertainties, process synchronization, employee induced
variability, introducing new products in the system, etc. [2]. From the customer side,
complexity within SCs is termed downstream supply chain complexity. These types of
complexities within SCs occur due to the number of customers, the variety of customers,
customer heterogeneity, and product lifecycles [33], which are classified under static com-
plexity drivers. Accordingly, the dynamic complexity drivers in this location are caused by
demand uncertainty, demand variability, market uncertainties, and the heterogeneity of
customers’ needs.

2.3. Supply Chain Complexity and Its Impacts on Performance

In previous studies on supply chain complexity, researchers have demonstrated the
effects of SCC on performance. For instance, the study by [34] stated that longer supplier
delivery time creates dynamic complexity; this in turn affects supply chain performance by
forcing firms to adjust their planning and material management process. Higher number of
suppliers increase static complexity due to an increased number of physical and information
flow. And these increase management and control of their relationships, which in turn
affect supplier relationships and increase costs (logistics and communication). Similarly,
due to upstream supply chain complexity, firms are exposed to look beyond just price and
fluctuation in currency, which results in increased cost to the firm and causes customer
dissatisfaction. According to Kogan et al. [35], delivery uncertainties result either in
inventory stock-outs or overstocks. A study by Xu et al. [36] revealed the negative effects
of supply uncertainty on performance. Operations become more vulnerable and expensive
due to supply chain interruptions brought on by uncertainties resulting from a variety
of internal and external sources [37]. Supply base complexity can increase the frequency
of disruptions and reduce performance [16]. According to Choi and Krause [3], supply
chain complexity has several detrimental performance effects, including delivery speed and
dependability and responsiveness. There is a greater chance of inconsistent delivery when
there are more vendors. However, because of its limited flexibility, a very basic supply base
with single sourcing may be quite risky.

According to Kunovjanek and Reiner [25] and Wu et al. [38], the degree of static and
dynamic complexities in manufacturing plants affects the performance of firms supply
chain. An increase in product variety increases internal operation cost (operational perfor-
mance) [39]. Similarly, the studies by Wan et al. [40] and Wan et al. [41], illustrated that
product variety negatively affects inventory turnover at high rate of demand variability.
And an increase in product variety creates operational challenges and results in higher in-
ventory levels, which in turn affects operational performance. A study by Thonemann and
Bradley [42] expands this and includes supply chain costs. Increasing process changeover
leads to longer manufacturing lead times and greater costs for firms due to increased
product diversity. The amount and variety of parts also create detail complexity in the
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manufacturing environment, ultimately impacting performance [43]. According to Archie
et al. [44], SC performance is improved by reducing process uncertainty.

From the customer side of supply chain, the performance of a firm supply chain is
affected due to the static and dynamic complexity drivers like the number and variety of
customers, customer heterogeneity, and product life cycles [45]. Based on this, the study by
Vollmann et al. [34] illustrated that, as the number and variety of customer increases, the
magnitude of the customer relationship activity, the management of orders, and the demand
increases. This creates the potential for conflicting manufacturing tasks and lower levels
of manufacturing performance [46] and results in an imbalance between manufacturing
capabilities and consumer needs [47]. Shorter product lifecycles and customer demand
variability increases the number of parts and products; it introduces new products in
the manufacturing system, and this in turn affects the cost of the firm, leading to the
creation of significant fluctuations on supplier side. Suzan et al. [48] illustrated the negative
impacts of demand variability on supply chain performance (operational cost, customer
satisfaction, and environmental footprint). According to Madhusudanan et al. [49], a supply
chain bullwhip effect creates a negative impact on the performance. Customer demand
volatility frequently results in high capacity and inventory costs for the producer. The
service level and overall cost of SCs are impacted by the fluctuation or volatility of customer
demand [50].

The effects of SCC on performance were examined by Brandon et al. [16] in order
to learn how companies could mitigate the effects of more frequent disruptions. They
employed moderating impacts of slack resources between supply base complexity and
performance. Their findings revealed that an increase in disruptions caused by supply base
complexity can be mitigated through the moderation role of slack resources and visibility.
In their research, Ateş and Memiş [17] looked at how strategic purchasing affected the link
between supplier base complexity and performance. According to their findings, com-
panies possessing significant strategic purchasing leverage are able to offset the adverse
effects of supplier base complexity on their performance. The potential moderating role of
supply chain visibility in the relationship between sustainable practices and sustainable
performance was investigated by Zulkaif et al. [51]. Their study findings indicated that sup-
ply chain visibility moderates sustainable practices and firms’ sustainability performances.
Hugo et al. [52] looked at the moderating effects of inventory turns while examining the
effects of static supply chain complexity (a company’s number of goods, suppliers, and
customers) on the performance of a company. A greater quantity of items, in their opinion,
improves business performance. Furthermore, there is a favorable correlation between
higher inventory turns and a higher number of suppliers and items. A study by Iftikhar
and Ali [53] illustrated the moderating role of supply chain ambidexterity between SCC
and performance. And their findings indicated the positive moderating effects of supply
chain ambidexterity between the two distinct forms of SCC and a firm’s performance.

On the other hand, the role of quality function deployment (QFD) and an integrated
decision-making framework were proposed for the sustainability of the supply chain. For
instance, a study by Karuppiah et al. [54] integrated customers and technical requirements
in order to improve supply chain sustainability in a case study, where they demonstrated an
improvement in supply chain sustainability by reducing carbon footprint, affordable cost,
and on-time delivery, which are important customer requirements. In addition, financial
strategy, green supply chain management, and government assistance were identified as
technical requirements that play an important role for supply chain sustainability. Similarly,
the study by Erdil [55] combined a QFD application with a supply chain management
system to study its improvement in the outcomes of the manufacturing industry, in which
potential applications were illustrated. Furthermore, Bhalaji et al. [56] developed an
integrated decision-making framework to investigate the risks associated with cooperative
supply chains and their interactions. This ensures the timely delivery of finished goods
and the timely reception of raw materials and helps manufacturers build a robust and
cooperative supply chain.
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2.4. Moderating Role of Additive Manufacturing Best Practices

Additive manufacturing, also known as direct manufacturing, is classified as one of
the drivers of Industry 4.0. It is a digital technology that produces physical objects layer
by layer from a computer-aided, three-dimensional design file, contrary to conventional
subtractive techniques [57]. AM is revolutionizing industrial processes, particularly in
the context of Industry 4.0, which emphasizes smart production, connectivity, and digital
transformation. According to Godina et al. [58], there is significant potential for improving
economic, environmental, and social aspects of eco-friendly company strategies with
the integration of AM. Oettmeier and Hofmann [22] conducted an empirical analysis to
examine the factors that influence the adoption of AM technology. They focused on both
general and SC-related factors to understand the factors that affect the potential for cost
savings, lead time reduction, and increased SC resilience. This understanding enables
businesses to make more informed decisions about integrating AM into their supply chains
and operations. Because AM can revolutionize conventional production and supply chain
procedures, it is quickly being implemented across a range of industries. Using a supply
chain perspective, their study concentrates on the costs, benefits, and adoption elements of
AM, providing a comprehensive understanding of its impact on modern manufacturing
and logistics [59].

It is anticipated that additive manufacturing will significantly disrupt supply chains in
several industries. It is an important instrument in contemporary manufacturing because
of its ability to reduce costs, boost efficiency, increase flexibility, and support sustainability.
Existing research demonstrated the simplicity of SC after implementing AM. According
to Gimenez et al. [60], firm SC performance is improved through the implementation of
AM due to its behavior in the effective use of resources and capabilities. It promotes rapid
innovation and product design modifications, resulting in increased customer satisfaction
and improved effectiveness, and it contributes to supply chain flexibility [61]. Additive
manufacturing provides a quick response to customer demand uncertainty, enabling an
organization to establish quicker designs and new product development, and hence reduces
manufacturing cycles [62]. It reduces the need for diverse tools to fabricate geometrically
complex components, and as a result, it reduces the cost of products. This results in reduced
associated costs, lowering the requirements for tooling, and enables short and efficient
production runs [58]. Shorter production times and the optimization of the material
consumption behavior of AM results in fulfilling customer demand and reducing the
number and variety of suppliers [63]. It satisfies customer needs by reducing SC lead time
by reducing the need for logistics and inventories in the development of new products into
the system. Through the implementation of AM, supply chain efficiency is improved by
balancing inventory levels, increasing responsiveness (the ability to quickly react during
demand uncertainty and forecasting errors), and by decreasing disruptions (by decreasing
the number of interruptions of activities and processes) [64]. Manufacturing flexibility in
AM applications positively influences performance by increasing the speed of material
flow (reducing lead time) and by improving organizational efficiency [65].

The literature reviewed above indicates that varied SCC drivers have different effects
on determining the SCC level from sector to sector. The level of complexity and relevance
of identified drivers on SCs vary depending on the industry and environment in which
they operate. As such, management’s attitude towards the complexity of drivers to mitigate
their impact on SC performance may also differ. Based on the nature or dynamics of
the industry, the number of SCC drivers may increase, decrease, or be rationalized. SCC
drivers and sub-drivers might be dependent on one another. This indicates that identifying
which supply chain complexity has a greater negative or positive effect than the others
should be studied so that firms can focus on improving and controlling the complexities
within their supply chain; this would result in fewer or no knock-on effects in performance.
Based on this, the identification and development of industry-specific criteria, types of
complexity drivers, decision-making approach proposals, and suggested strategies for
particular industry sectors are needed.
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3. Materials and Methods
3.1. Developing Conceptual Framework

Based on the literature review, the conceptual framework in Figure 1 was developed,
which illustrates the impacts of the moderating role of AM best practices on supply chain
complexity and its performance. The supply chain performance was measured in terms
of quantitative measuring factors (QNMFs) and qualitative measuring factors (QLMFs),
while supply chain complexities are represented using upstream supply chain complexity,
midstream supply chain complexity and downstream supply chain complexity. In this
relationship, AM best practices are considered moderating variables. It is assumed that
there are no additional control variables in the developed model that may lead to wrong
conclusions and affect the conceptual relationship created between constructs. This is
also because including control variables does not accurately reflect the original model
parameter estimates (path coefficients). Thus, to improve biases and errors that could affect
the validity of the findings of the study model, relevant variables were compiled using a
detailed literature review and in consultation with experts from the case study industry. In
addition, sample selection was carried out in such a way that the research properly reflects
the population under study.
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Figure 1. Research conceptual framework.

The developed model contains seven hypotheses: four direct (H1 to H4) and three
moderating effects (H5 to H7). The suggested or developed hypotheses based on the
literature review are as follows.

Hypothesis 1. Upstream supply chain complexity has negative effects on supply chain performance.

Hypothesis 2. Midstream supply chain complexity has negative impacts on supply chain
performance.

Hypothesis 3. Downstream supply chain complexity has negative impacts on supply chain
performance.

Hypothesis 4. Additive manufacturing best practices have positive and significant effects on
supply chain performance.

Hypothesis 5. Additive manufacturing has significant moderation effects between UPSCC on
supply chain performance.

Hypothesis 6. Additive manufacturing has significant moderation effects between MSSC and
supply chain performance.
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Hypothesis 7. Additive manufacturing has significant moderation effects between DSSC and
supply chain performance.

3.2. Sample Data Collection

We used a purposive sampling method for selecting respondents involved in the sur-
vey for the purpose of data collection. Based on this sampling technique, 205 professionals
from 29 footwear industries found in Ethiopia were selected who had direct contact with
suppliers, manufacturers, and customers. As per Hair et al. [65], the minimum required
sample size was taken into consideration while selecting data analysis type. An acceptable
sample size of at least 100–200 is necessary for the structural equation modeling method
that we intended to use [65,66]. Therefore, for this study, a sample size of 200 as a minimum
requirement was determined. Permission to gather data was gained from each company
before the questionnaires were delivered. The objective of the study was explained to the
respondents, and they accepted our invitation to take part. The researchers physically vis-
ited the footwear companies to collect the data. The questionnaire used for data collection
is provided in Appendix A.

As the demographic profiles of the respondents in Table 1 indicates, 50% of the respon-
dents had work experience of 11–20 years. The majority of the respondents (33.17%) were
supply chain and logistics workers, 62.43% of them had a BSc degree, 43.41% were aged
between 31 to 35, 52.68% of them were male, and 47.31% were female. The demographic
profiles of the participants of the survey revealed a heterogeneous collection of respondents
with respect to age, gender, employment position, and work experience. People with
various job positions and levels of experience contribute valuable information to the study
because they have firsthand knowledge of the subject areas under investigation. This
provides the study with a diverse range of viewpoints.

Table 1. Demographic description of respondents.

Description Frequency Percentage (%)

Gender
Male 108 52.68

Female 97 47.31

Education level

Diploma 31 15.12

Undergraduate 128 62.43

Master’s graduate and above 46 24.43

Age

20–30 33 16.09

31–35 89 43.41

>36 83 40.48

Respondent job position

Supply chain and logistic worker 68 33.17

Production workers 58 28.20

Top management workers 56 27.31

Experts 23 11.21

Work experience

<5 years 5 2.43

6–10 years 41 20

11–20 years 103 50.24

>21 years 56 27.31

3.3. Quantification of the Survey

All included measurement items in the survey, which was measured using 1–5 Likert
scale questions (1 = strongly disagree; 2 = disagree; 3 = neutral; 4 = agree; and 5 = strongly
agree), were developed through an extensive literature review of other studies. According
to Phan et al. [67], the Likert scale is a commonly used quantitative research technique
that offers a quantifiable measure for survey studies. It is used to gauge viewpoints and
attitudes on a variety of issues. A pre-testing phase was carried out with the participation
of 25 experienced professionals from a footwear firm to guarantee accuracy. The purpose
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of this pre-testing was to find and fix any problems with the phrasing and structure of the
survey. Based on the feedback of the respondents who participated in the pilot study, the
final questionnaire was revised. The initial version of the instrument consists of 26 items,
and 21 items were retained using conducting factor reduction techniques. Thus, 2 items
from MSSCC, 1 item from DSSCC, and 2 items from AMBP were eliminated. The final
version and completed questionnaire items with their sources are shown in Table 2.

Table 2. Items of constructs and their sources.

Variables Items and Coding Sources

Upstream supply chain complexity

Variety of suppliers [2,33]

Number of suppliers [15,45,48]

Reliability of suppliers [33]

Supplier variability [33]

Uncertainties in delivery [15]

Midstream supply chain complexity

Number of products [23]

Varity of products [40]

Variety of processes [23]

Number of production lines [23]

Forecast inaccuracy [38]

Process synchronization [2]

Process uncertainties [2]

Downstream supply chain complexity

Varity of customers [33,45]

Number of customers [34]

Demand variability (uncertainty) [45]

Heterogeneity of customer [45]

Additive manufacturing best practice

Reduction in raw material variety [22]

Facilitate production closer to customer [57]

Reduce delivery times [58]

Reduce supplier lead times [60]

Manufacturing flexibility [57]

Supply chain performance

Warehousing and inventory-holding cost [27]

Customer satisfaction (on-time delivery record to customers) [31]

Flexibility in product design, product delivery [30]

Satisfying customers’ requirements [29]

Ability of suppliers to quickly respond to changes in market demand [31]

3.4. Reliability Test

Before distributing the final refined questionnaires, pilot studies were conducted by
distributing 25 questionnaires to the selected footwear companies to check the reliability
of the questions for all measurement items. Upon testing the reliability of questionnaires
using Cronbach’s alpha (α) value, as recommended by Kline [68], items that fulfilled α

value of > 0.7 were selected and retained. The final refined questionnaires were then
distributed and the required information for testing the developed model was collected
from 205 respondents from the considered case study industry.

3.5. Measurement and Structural Model Fit Test

To check the fitness test of the measurement, this study conducted convergent, discrim-
inant, and validity tests, as recommended by Joseph et al. [69] and Hamid et al. [70]. The
structural model fit test was then performed using the confirmatory factor analysis test.

Convergent validity refers to the degree of agreement between the different indicators
of the same construct, as determined by correlation analysis. To establish convergent
validity, the items’ factor loading (FL), composite reliability (CR), and average variance
extracted (AVE) were considered. A FL of 0.7 or above implies strong convergent validity,
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although a FL of 0.5 or higher is acceptable. The composite dependability should be 0.7 or
above. According to Joseph et al. [69], for sufficient convergent validity, the AVE value
must be more than 0.50. Discriminant validity refers to how much the conceptions truly
vary from one another through experimentation. It also establishes the extent to which
concepts that overlap differ from one another. The most rigorous and popular way of
discriminant validity testing is to compare the square root of each concept’s AVE value with
the correlation estimate between that construct and other components [70]. Confirmatory
factor analysis was used to assess the measurements of the model’s validity. The validity
was assessed using model fit indices. Brown [71] recommended the following cutoff values
for fit indices:

• Tucker–Lewis fit index (TLI) and comparative fit index (CFI) > 0.9;
• Relative/normal chi-square (χ2/df) from 2.0 < χ2/df < 5.0;
• Root mean square residual (RMR) and root mean square error of approximation

(RMSEA) < 0.08.

4. Results
4.1. Reliability and Validity Analysis

According to the analysis results presented in Table 3, the Cronbach’s alpha (α) values
for each construct ranged from 0.912 to 0.975. This finding shows that all constructs of
Cronbach’s alpha (α) values are higher than the value recommended by Kline [68] as an
acceptable level of 0.70. This result showed that there is strong internal consistency among
all the items in each of the study’s constructs. Similarly, the factor loading results in the
same table shows that the items under each relevant construct have stronger connections.
The entire factor load is above 0.7 (ranging from 0.773 to 0.989), which shows a strong
association with the construct.

Table 3. Reliability and convergent validity results.

Constructs Items Factor
Loading

Cronbach’s
Alpha

Composite
Reliability

Average
Variance
Extracted

USSCC

USSCC5 0.860

0.942 0.996 0.769

USSCC4 0.942

USSCC3 0.949

USSCC2 0.851

USSCC1 0.773

MSSCC

MSSCC5 0.868

0.946 0.988 0.812

MSSCC4 0.957

MSSCC3 0.894

MSSCC2 0.917

MSSCC1 0.867

DSSCC

DSSCC3 0.924

0.912 0.991 0.787DSSCC2 0.908

DSSCC1 0.828

AMBP

AMBP4 0.989

0.975 0.999 0.944AMBP3 0.961

AMBP2 0.965

SCP

SCP5 0.928

0.958 0.994 0.807

SCP4 0.925

SCP3 0.896

SCP2 0.886

SCP1 0.855
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Convergent and discriminant validity tests were run following the reliability analysis
test. As a result, as demonstrated in Table 3, the values of average variance extracted (AVE)
and composite reliability (CR) for each of the constructs, respectively, surpass the cutoff
limits of 0.70 and 0.50, respectively, showing that convergent validity was guaranteed [70].
Additionally, the results of the discriminant validity test, which are displayed in Table 4,
revealed that the square root of the AVEs is greater than the coefficients of interrelationships
among the components. As a result, the discriminant validity is guaranteed and the Fornell–
Larcker criterion is met [71].

Table 4. Discriminant validity test results.

USSCC MSSCC DSSCC AMBP SCP

USSCC 0.877

MSSCC 0.122 0.901

DSSCC −0.002 0.093 0.887

AMBP 0.149 −0.086 0.169 0.971

SCP 0.111 −0.237 −0.147 0.162 0.898

4.2. Structural Model and Path Analysis

The structural model and path analysis (hypothesis testing) were investigated using
the structural modeling approach with AMOSE v23. The outcomes are displayed in Table 5
and Figure 2. As shown in Figure 2, the structural model fit result revealed that the
created model fits well, meeting the recommended cutoff points [72] with the goodness
of fit indices of CFI = 0.911, IFI = 0.911, TLI = 0.900, χ2/df = 3.5, and RMR = 0.02. These
fit indices confirmed that there is a good fit between the collected data and the created
conceptual framework.

Table 5. Path and moderation analysis results.

Hypothesis Paths β p Result

Direct Effects

Hypothesis 1 USSCC → SCP −0.030 0.643 Accepted

Hypothesis 2 MSSCC → SCP −0.309 0.405 Accepted

Hypothesis 3 DSSCC → SCP −0.102 0.039 Accepted

Hypothesis 4 AMBP → SCP 0.167 0.000 Accepted

Interaction Effects

Hypothesis 5 MUSSCC_X_MAMBP → SCP 0.186 0.000 Accepted

Hypothesis 6 MMSSCC_X_MAMBP → SCP 0.081 0.003 Accepted

Hypothesis 7 MDSCC_X_MAMBP → SCP −0.120 0.000 Accepted

β = standardized coefficients; p = significant value

The direct and moderation effects of all the path analyses are displayed in Table 5.
According to this study’s findings, supply chain performance is negatively impacted
by upstream supply chain complexity (β = −0.030, p = 0.643). This outcome validates
Hypothesis 1. Thus, this shows that static and dynamic complexity found within upstream
supply chain negatively affects supply chain performance. The second hypothesis, which
claimed that midstream supply chain complexity has an adverse influence on supply chain
performance, was confirmed (β = −0.309, p = 0.405). Furthermore, it was found that
downstream supply chain complexity had a negative impact on supply chain performance
(β = −0.102, p = 0.039). This outcome validated Hypothesis 3 and illustrated that the
performance of the supply chain is negatively impacted by higher levels of static and
dynamic complexity within the downstream supply chain. Nonetheless, the results given
in Table 5 show that best practices for additive manufacturing have favorable and significant
impacts on supply chain performance (β = 0.167, p = 0.000), which supports Hypothesis 4.
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This study assessed the moderating role of AM best practices on the relationship
between SCC and SC performance. The interaction term between upstream supply chain
complexity and additive manufacturing best practice (MUSSCC_X_MAMBP) has significant
impacts on supply chain performance (β = 0.186, p = 0.000), indicating that the interaction
between the two constructs significantly improves the performance of the supply chain.
This result supports Hypothesis 5. In addition, to better understand the nature of the
moderating effects of AMBP, a slope analysis was conducted. The slope analysis result,
shown in Figure 3, indicates that the line is much steeper for low AMBP, implying that at
low levels of additive manufacturing, the impact of USSCC on SCP is much stronger in
comparison to high AMBP. From this, we can see that the more additive manufacturing
practices in the case study industry, the fewer negative impacts of USSCC on SCP.
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The findings in Table 5 indicate that the negative effects of midstream supply chain
complexity on supply chain performance are improved through the interaction or moder-
ating effect of additive manufacturing best practices (MMSSCC_X_MAMBP) (β = 0.081,
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p = 0.003). This result also supports Hypothesis 6. Moreover, the plots in Figure 4 demon-
strated that the moderating effects of additive manufacturing at lower level are stepper
than at higher level of adaptation. This indicates that the negative impact of MSSCC on
SCP is reduced at higher levels of AMBP. The more additive manufacturing practices, the
lesser the negative impact of SCC in the midstream of the supply chain.
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Similarly, as the results in Table 5 illustrate, the interaction effects of downstream sup-
ply chain complexity and AM best practices (MDSCC_X_MAMBP) significantly improve
supply chain performance (β = −0.120, p = 0.000), which also supported Hypothesis 7.
Nonetheless, the results of the slop analysis, as shown in Figure 5, indicate that at both
low and high levels of AMBP adoption, the detrimental effects of DSSCC on SCP are not
significantly different.
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5. Discussions

There are several theoretical contributions addressed in this study, including investiga-
tions into how supply chain complexity affects supply chain performance and how AM best
practices serve as moderators. The primary objective of this study was to demonstrate that
SCC has a detrimental impact on SCP, and empirical approaches support this prediction.
In accordance with the findings of this investigation, studies conducted by Brandon [16],
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Constantin et al. [10], and Kwabena et al. [5] similarly found and documented the existence
of negative correlations between SCC and performance. The results obtained from the path
analysis support our second hypothesis, which states that SCP is negatively impacted by
upstream supply chain complexity. The findings are also consistent with the studies of Cecil
et al. [15] and Vollmann et al. [34], which found that factors that contribute to upstream
supply chain complexity, including delivery uncertainty, unreliable suppliers, and longer
delivery times, have a negative impact on supply chain performance. Similar conclusions
were also reached by Brandon et al. [16], who found that supply base complexity can lower
performance and increase the frequency of disruptions. Furthermore, the idea that supply
chain performance is negatively impacted by midstream complexity was investigated and
shown to be empirically supported. According to studies conducted by Seyda [2], Patel
et al. [39], Wan et al. [40], and Ramdas and Sawhney [43], a larger variety of products
increases operation costs and the quantity of parts affects performance, which subsequently
has an impact on the supply chain performance of businesses; these results are consistent
with the findings of this study.

The empirical conclusion of this study validates (supports) the third hypothesis, which
illustrates the detrimental effects of downstream supply chain complexity on supply chain
performance. According to Hendrick et al. [33] and Bozarth et al. [46], for instance, SCP
is significantly impacted by the rise in DSSCC due to demand volatility, uncertainty, and
heterogeneity. Furthermore, the outcomes of studies by Alaswad et al. [48], Pillai et al. [49],
and Georgel and Pillai [50] also align with our findings, which confirm that SCC negatively
affects SCP because of supply chain volatility, demand variability, and the fluctuation
or volatility of consumer demand. The hypothesis developed to determine the positive
and direct impacts of AMBP on supply chain performance was supported. This outcome
is consistent with the research conducted by Gimenez et al. [60] and Eyers [61], who
found that AM behavior in maximizing resources and capabilities, encouraging quick
innovation, and changing product designs improves SC performance. Furthermore, there
was substantial evidence to support the hypotheses generated to investigate whether the
moderating role of AMBP on SCC reduces the negative connection between SCC and SCP.
Additive manufacturing can respond quickly to fluctuations in customer demand [62],
decrease the number of processes [58], and balance inventory levels [59]—all of which can
improve or lessen the detrimental effects of SCC on SCP.

6. Conclusions

This study developed a theoretical framework regarding the role and performance
of AM as a moderator in supply chain complexities. The framework was developed
based on a literature review of studies examining supply chain complexities at three
levels (USSCC, MSSCC, and DSSCC). The developed model was empirically tested using
structural equation modeling by collecting data from the footwear industry in Ethiopia. The
general results of the study show that SCC negatively affects SCP. Furthermore, the outcome
of this study demonstrated that the relationship between SCC and SCP is moderated by AM
best practices. Additionally, the results of the slope analysis showed that the detrimental
effects of supply chain complexity found in the upstream and midstream supply chains on
SCP decreased with increasing levels of AM implementation.

Theoretical and empirical implications: First, the work reported in this article is
intended to contribute to closing the gap in the field of research regarding the moderating
role of AMBP between supply chain complexity and supply chain performance of the
footwear industry. Second, practitioners can be made aware of the detrimental effects
of supply chain complexity on performance and the extent to which AMBP can mitigate
these effects based on the study’s findings. Thus, this research provides managers and
practitioners with insights into how the complexity of a company’s supply chain network
affects the efficiency and effectiveness of supply chains, as well as how the adoption
of AM may mitigate the negative correlation between supply chain complexity and its
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performance. Additionally, this study’s findings can assist managers in limiting the level of
SCC to avoid SCP being adversely affected.

Limitation and future research direction: Like any other research, this study also has
several limitations. Primarily, the study’s conclusions were restricted to a sample of data
from the footwear businesses; while it is understood that SCC drivers vary depending on
the types of industry and nature of products, this study was limited to the footwear industry
supply chain. Thus, additional research in other industries will be required in order to
compare the results of this study with data from other areas. Secondly, although several
driver types can induce SCC, this study only included a few drivers when constructing the
theoretical framework. Furthermore, this study only looked at the negative impacts of SCC
on SC performance, even though other research shows that it has both positive and negative
effects. Thus, further research will be needed to illustrate the positive effects of SCC on
SC performance by including additional drivers when considering AMBP as moderator.
In addition, there are other variables, such as culture and geographical environment, that
directly or indirectly influence the impact of SCC on SC performance and create limitations
in research conducted in specific areas. These variables are not considered in the present
research and are potential subjects in our continuing study of this topic.

In addition to AM best practices, the application of QFD and the integration of the
decision-making framework into the cooperative supply chain play a vital role in SC
sustainability. Therefore, future research should expand this analysis by including QFD
and a decision support model when evaluating supply chain performance in the footwear
industry and comparing the results with the present study.
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Abbreviations
AM Additive manufacturing
AMBP Additive manufacturing best practices
AVE Average variance extracted
CFI Comparative fit index
CR Composite reliability
DSSCC Downstream supply chain complexity
FL Factor loading
MDSCC Mean of downstream supply chain complexity
MMSCC Mean of midstream supply chain complexity
MSSCC Midstream supply chain complexity
MUSCC Mean of upstream supply chain complexity
SEM Structural equation modeling
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SCC Supply chain complexity
SCP Supply chain performance
QLMF Qualitative measuring factor
QNMF Quantitative measuring factor
RMR Root mean square residual
RMSEA Root mean square error of approximation
TLI Tucker–Lewis fit index
USSCC Upstream supply chain complexity

Appendix A

Section I: Personal Details and Demographic Information

1. Gender: □ Male, □ Female
2. Age: □ 20–30, □ 31–35, □ 36–45
3. Year of working experience: □ Less than 5 years, □ 6–10 years, □ 11–20 years,

□ 16–20 years, □ 21 years and above
4. Level of education: □ Diploma, □ Undergraduate, □ Master’s graduate and above
5. Respondents job position: □ Supply chain and logistic worker, □ Production workers,

□ Top management workers, □ Expert

Section II: Questions Related to Study Constructs

Table A1. Question Related with the Study Constructs. Please respond by marking X the number
that represents the extent to which you agree or disagree about the following statements. Use the
following guide 1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 5 = Strongly Agree.

Codes Descriptions 1 2 3 4 5

USSCC1 Our organization has a variety of suppliers.

USSCC2 We have a lot of suppliers (number of suppliers).

USSCC3 Our supplier variability (inconsistency) vary from time to time

USSCC4 Comparatively our supplier uncertainty of delivery is poor

USSCC5 Reliability of our supplier is poor

MSSCC1 Our company has high number of products

MSSCC2 Our company handled high Varity of items

MSSCC3 The variety of processes and production lines in our plant is higher

MSSCC4 In our company process uncertainties more frequently happened

MSSCC5 Our company forecast inaccuracy is more or high

DSSCC1 Our company has high number of customers

DSSCC2 Our company served high Varity of customers

DSSCC3 In our company the total demand volume of all products is significantly unstable
from time to time

AMBP1 Adaptation of additive manufacturing technology reduce raw material Varity

AMBP2 Adaptation of additive manufacturing technology reduce delivery times

AMBP3 Adaptation of additive manufacturing technology quickly respond to customer
demand and facilitate production closer to customer

SCP1 Additive manufacturing supply chain system reduces inventory-holding and
warehousing costs

SCP2 Additive manufacturing supply chain can quickly modify products to meet
customers‘ requirements

SCP3 Additive manufacturing supply chain can quickly introduce new products into
the market

SCP4 In additive manufacturing supply chain the time between the receipt of customer’s
order and the delivery of the goods is short

SCP5 Through adaptation of additive manufacturing suppliers can quickly modify
products to meet supply chains requirements
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