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Abstract

:

Background: This study explores the use of Mixed-Integer Linear Programming (MILP) models to optimize the collection and transportation of vineyard pruning biomass, a crucial resource for sustainable energy and material production. Efficient biomass logistics play a key role in supporting circular bioeconomy principles by improving resource utilization and reducing operational costs. Methods: Two optimization approaches are evaluated: a base MILP model designed for scenarios with single processing points and an advanced model that incorporates intermediate processing steps to enhance logistical efficiency. The models were tested using synthetic datasets simulating vineyard regions to assess their performance. Results: The models demonstrated significant improvements, achieving cost reductions of up to 30% while enhancing operational efficiency and resource utilization. The study highlights the scalability and real-world applicability of the proposed models. Conclusions: The findings underscore the potential of MILP models in optimizing biomass supply chains and advancing circular bioeconomy goals. However, key limitations, such as computational complexity and adaptability to dynamic environments, are noted. Future research should focus on real-time data integration, dynamic updates, and multi-objective optimization to improve model robustness and applicability across diverse supply chain scenarios.
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1. Introduction


The growing awareness of environmental issues and the urgent need to transition to a sustainable economy highlight the importance of reusing organic waste [1]. In particular, the valorization of agricultural residual biomass, such as vineyard pruning, offers notable potential, both environmentally and economically [2]. Despite its high energy and agronomic potential, this type of biomass often goes discarded or underused [3]. It serves as a renewable energy source and raw material for organic compound production, reducing our reliance on fossil fuels and minimizing waste elimination through on-site combustion, which otherwise contributes to carbon dioxide and particulate emissions [4,5,6,7]. However, collection and transportation present major hurdles to biomass valorization, due to scattered distribution across vast agricultural areas [8]. Factors influencing the efficiency and economic feasibility of the supply chain include the geographical distribution of collection points, transport vehicle capacity, covered distance, and collection time [9]. This study focuses on vineyard pruning biomass because it represents a significant source of residual biomass with specific logistical and environmental challenges. Vineyards produce substantial pruning residues annually, often dispersed across small, geographically scattered plots. Addressing these challenges provides a tailored case to demonstrate the applicability and benefits of optimization models for biomass supply chains.



Operational research models, using mathematical and computational techniques, can effectively address these complexities [10]. They assist in determining the optimal collection and transportation strategy by considering various constraints and objectives. The models may account for factors such as the collection points’ location, the available biomass at each point, the transport vehicle capacity, the distance to the processing center, and the collection time. By minimizing the total cost or maximizing the biomass quantity collected, they enhance supply chain efficiency and economic viability. The use of these models also promotes circular economy practices by valorizing materials previously deemed worthless [11]. The circular economy aims to minimize resource consumption and waste production through reusing and recycling materials [12]. This process transforms vineyard pruning waste into an energy source or raw material, encouraging resource circularity and endogenous resource valorization [13].



Recent studies on supply chain optimization, such as Florindo et al. [5], Alvarez and Ruiz-Puente [11], and Bhuvaneshwari et al. [8], have highlighted the importance of integrating circular economy principles into biomass recovery systems. This work builds on these foundations, specifically focusing on the wine sector’s residual biomass. The circular economy can augment industrial profitability while reducing natural resource dependence [14]. It can enhance resource productivity, generate substantial savings, and yield additional economic benefits. Circular economy practices include transitioning to renewable energy and materials, promoting product sharing or lifespan extension through maintenance and design, improving product efficiency, eliminating supply chain waste, maintaining materials in closed cycles through remanufacturing and recycling, virtually delivering goods and services, and replacing old materials with advanced renewable ones or applying novel technologies [15]. It can also transform waste into income streams, creating infrastructure to manage waste supply chains. However, sustainability challenges across the entire supply chain must be identified and addressed in order to effectively implement the circular economy [16]. Supply chains are estimated to account for 80% of a business’s greenhouse gas emissions and over 90% of its impact on air, land, water, and biodiversity [17]. Thus, companies should assist suppliers in managing their environmental impact, provide performance improvement incentives, share resource optimization technologies, and closely monitor their performance and promptly intervene when issues arise [18].



In the case of residual agricultural biomass valorization, operational research models can help to identify and implement the best circular economy practices [19]. They contribute to reducing the environmental impact, enhancing efficiency, and creating value from previously worthless materials. By promoting residual biomass valorization, these models support a more sustainable and resilient economy [20]. With the increasing urgency for sustainable resource usage in the current socioeconomic and environmental context, the valorization of residual agroforestry biomass, such as vineyard pruning, has emerged as an important opportunity due to the substantial volume of material produced and its typically low valorization [21]. Agriculture is a sector that can greatly benefit from supply chain optimization [22]. Digital and analytics technologies provide a way to create value by optimizing the agricultural supply chain [23]. Leading agricultural players are following the example of companies from other industries, building digital replicas (or “digital twins”) of their physical supply chains [24,25]. These virtual replicas allow companies to carry out simulations and optimizations, leading to potential significant savings in the cost of moving crops through the system [26].



The application of operational research models to the vineyard pruning supply chain can lead to the better organization and management of waste, enabling its valorization through energy production or other materials [27]. This approach would allow a reduction in dependence on natural resources and the promotion of a more sustainable and circular economy [28]. The following research in this work, therefore, aims to explore the possibilities and challenges of this approach, with the objective of contributing to the optimization of the vineyard pruning supply chain and promoting its valorization.




2. Materials and Methods


2.1. Framework


In this study, operations research (OR), a discipline that involves the use of advanced analytical methods for better decision making, has been employed to develop optimization models for the management of residual biomass supply chains [29]. The aim of these models is to optimize the collection and processing of residual biomass, considering various constraints.




2.2. Mixed-Integer Linear Programming (MILP) Model


The first model explored is a Mixed-Integer Linear Programming (MILP) Model [30]. This model aims to minimize the total transportation cost of residual biomass from various collection points to a single processing point. The MILP model is based on the formulation of the Traveling Salesman Problem, a classical problem in OR [31]. The model’s formulation includes several constraints, as follows:




	
Each collection point is visited no more than once;



	
The total quantity of biomass collected cannot exceed the transportation vehicle’s capacity;



	
The total distance covered by the transportation vehicle cannot exceed a predefined maximum distance;



	
If the final load of the transportation vehicle corresponds to more than one collection point, the total distance covered cannot exceed the maximum distance plus an additional distance corresponding to half the maximum distance.










3. Model Development


3.1. Scenario Presentation


Let us consider a scenario where rural extensions are covered with vineyards, generating residual woody biomass as a byproduct of pruning that occurs at a concentrated time of year. These agricultural biomass residues are scattered throughout the territory in small quantities at various dispersed points, as presented in Figure 1. Their collection and energy valorization, carried out at a single central processing point, represent an opportunity for sustainable resource management and energy production. In this context, the creation of a mathematical model based on the principles of MILP is proposed. This model aims to optimize the collection system for residual biomass by defining the best strategy to maximize the efficiency of the collection and transportation process to the processing point. Efficiency is defined in terms of minimizing transportation costs and environmental impact, measured as reductions in fuel consumption and greenhouse gas emissions.



The proposed mathematical model has a dynamic structure, allowing for an indefinite number of collection points. However, it maintains the premise of a single processing point, which presents an additional optimization challenge. The complexity of the model is accentuated by the imposed constraints. The complexity of this model refers to a multi-objective optimization model incorporating additional constraints, such as intermediate processing points and time-based variability, making it computationally intensive yet more applicable to real-world scenarios. The maximum capacity of the transport vehicle sets a limit on the amount of residual biomass that can be collected on each trip. Furthermore, the distance traveled between the collection points and the processing point cannot exceed a certain distance x. In cases where the final load of the vehicle corresponds to more than one collection point, the total distance traveled cannot exceed x plus the distance corresponding to      x   2     . The constraint that no vehicle load exceeds x/2 ensures equitable load distribution among the vehicles and reduces the operational costs by preventing overloading and unnecessary trips. Additionally, the model also considers a time constraint, as the collection of residual biomass cannot exceed the previously defined time t, ensuring the temporal efficiency of the process. Thus, by introducing this mathematical model, an analytical and quantitative approach to residual biomass management is provided, enabling the better planning and execution of collection and processing operations. This model offers the potential to maximize efficiency and minimize the associated costs, contributing to the more sustainable management of agricultural resources.



To illustrate the application of the proposed MILP model, we consider a vineyard region in Douro Valley, Portugal, which generates 500 tons of pruning biomass annually. This biomass is dispersed across 100 collection points, each producing an average of 5 tons of biomass. The collection points are scattered, with average distances ranging between 5 and 10 km from the central processing unit. The transport vehicles have a capacity of 10 tons, and the maximum distance that a vehicle can travel in a single trip is limited to 50 km. The following steps outline the application of the MILP model:



Parameter Definition:



	
Number of collection points (n): 100;



	
Biomass availability at each point (    b   i    ): 5 tons;



	
Vehicle capacity (C): 10 tons;



	
Maximum travel distance per trip (    D   m a x    ): 50 km;



	
Distance matrix (    d   i j    ): Euclidean distances between collection points and the processing unit.






Objective Function: The objective is to minimize the total transportation cost, represented as the total distance traveled by the collection vehicles, as follows:



Minimize


    ∑  i = 1   n      ∑  j = 1   n      d   i j     x   i j        



(1)




where     x   i j     is a binary variable indicating whether the route between collection points i and j is used.



Constraints:



	
Each collection point is visited exactly once, as follows:


    ∑  j = 1   n      x   i j   = 1 ,     ∀   i      



(2)







	
The vehicle capacity is not exceeded, as follows:


    ∑  i = 1   n        b   i   x   i j   ≤ C ,     ∀   j      



(3)







	
The total distance traveled per trip does not exceed     D   m a x    , as follows:


    ∑  i = 1   n      ∑  j = 1   n      d   i j     x   i j   ≤   D   m a x        



(4)










Implementation: The MILP model was implemented using Python (https://www.python.org/). The input data included the following:




	
The coordinates of each collection point and the processing unit;



	
Biomass quantities at each collection point;



	
Vehicle specifications (capacity and maximum travel distance).








Results: The optimization yielded the following outcomes:




	
Route optimization: The 100 collection points were grouped into 50 routes, each covering 2 points (10 tons per route);



	
Total distance traveled: The model reduced the total distance traveled to 2500 km compared to an estimated 3500 km for non-optimized routes;



	
Cost savings: Assuming a cost of EUR 0.50 per km, the optimized routing reduced the transportation costs from EUR 1750 to EUR 1250, representing a 30% cost reduction;



	
Environmental impact: The reduction in travel distance resulted in approximately 500 kg less CO2 emissions, assuming 0.2 kg CO2 per km.








The results demonstrate the operational feasibility and efficiency of the MILP model in optimizing biomass collection. The model ensures that vehicle capacity and distance constraints are respected, while minimizing the costs and environmental impacts. This approach can be scaled to larger or more complex supply chains by integrating additional constraints, such as intermediate processing points or dynamic updates.




3.2. Mathematical Approach


This problem can be approached as a variation of the Traveling Salesman Problem (TSP) or the Vehicle Routing Problem (VRP), both classical approaches in OR. In this case, it seems more appropriate to treat it as a variation of the VRP, as there are multiple collection locations (as in VRP) present, rather than just a single route to be traveled (as in TSP). The following is an example of how the optimization model can be formulated for this problem:



Parameters:



	
  n   is the set of collection points;



	
    d   i     is the amount of available biomass at collection point i;



	
m is the maximum capacity of the transport vehicle;



	
t is the maximum time allowed for collection;



	
    c   i , j     is the distance between collection point i and processing point j;



	
  x   is the maximum distance allowed between biomass collection and the processing point;



	
    p   j     is the processing point.






Decision variables:



	
    x   i , j     is a binary variable that equals 1 if the route between collection point i and processing point j is chosen, and 0 otherwise;



	
    q   i     is the amount of biomass collected at point i.






Model:



Minimize


    ∑      c   i , j   ·   x   i , j         for   all   i ∈ n   ,   j ∈ p   



(5)







Subject to the following:



	
   ∑      x   i , j         for all   j ∈ p     ≤   1 for all   i ∈ n   (each collection point is visited once at most);



	
   ∑      q   i   ·   x   i , j         for all   i ∈ n  ,   j ∈ p ≤   m (the collected biomass does not exceed the vehicle capacity);



	
   ∑      c   i , j   ·   x   i , j         for all   i ∈ n  ,   j ∈ p ≤ x +    x   2    ×  ∑      x   i , j         for all   i ∈ n  ,   j ∈ p   (the traveled distance does not exceed x plus an additional distance of      x   2      for each selected route);



	
   ∑      t   i , j   ×   x   i , j         for all   i ∈ n  ,   j ∈ p ≤   t (the collection time does not exceed t);



	
    x   i , j    in   { 0,1 }   for all   i ∈ n  ,   j ∈ p   (binary integrity constraint);



	
    q   i       ≥   0 for all   i ∈ n   (non-negativity constraint).






This formulation is an example of a MILP problem, where it is intended to optimize (minimize or maximize) a linear function subject to linear constraints, where some of the decision variables are constrained to be integers. In the context of OR, MILPs are a very common class of problems, and many real-world problems can be formulated as a MILP problem. In the case of this problem, the objective function is to minimize the total distance traveled by the collection vehicle, represented by expression    ∑      c   i , j   ·   x   i , j         for all   i ∈ n   and   j ∈ p  . This is a linear function, as it is a sum of the products of constants and variables. The constraints are also all linear. For example, constraint    ∑      x   i , j         for all   j ∈ p ≤   1 for all   i ∈ n   ensures that each collection point is visited once at most. Constraint    ∑      q   i   ×   x   i , j         for all   i ∈ n  ,   j ∈ p ≤   m ensures that the collected biomass does not exceed the vehicle capacity, and so on. Variables     x   i , j     are binary variables, meaning that they can only take values of 0 or 1. That is, if the route between collection point i and processing point j is chosen,     x   i , j     will be 1, otherwise, it will be 0. This is what makes the problem an integer programming problem.



The constraints in a MILP model define the feasible solution space and represent the bounds within which the solution must lie. Without constraints, the solution to an optimization problem would trivially be the one that maximizes or minimizes the objective function to infinity. However, real-life situations face limitations and restrictions that make the problem more complex and interesting. In this way, let us consider the following constraints defined in the proposed model:



	
   ∑      x   i , j         for all   j ∈ p ≤   1 for all   i ∈ n  : This constraint ensures that each collection point is visited once at most. That is, we cannot collect biomass from the same location more than once. This represents the practical reality of biomass collection;



	
   ∑      q   i   ·   x   i , j         for all   i ∈ n  ,   j ∈ p ≤   m: This constraint ensures that the total amount of collected biomass does not exceed the maximum capacity of the transport vehicle. This reflects the physical limitation of the vehicle’s capacity;



	
   ∑      c   i , j   ·   x   i , j         for all   i ∈ n  ,   j ∈ p ≤ x +    x   2    ·  ∑      x   i , j         for all   i ∈ n  ,   j ∈ p  : This constraint limits the total distance traveled by the collection vehicle. If the vehicle collects biomass from multiple points, the total distance cannot exceed x plus an additional distance corresponding to      x   2      for each selected route. This ensures that the vehicle does not travel more than a viable distance;



	
   ∑      t   i , j   ·   x   i , j         for all   i ∈ n  ,   j ∈ p ≤   t: This constraint ensures that the total collection time does not exceed the maximum time t. This may be important if there are, for example, working time constraints.






The proposed model offers an approach to the problem at hand, yet there are several enhancements and optimizations that could be implemented to bring the model closer to reality. Starting with vehicle capacity, the current model assumes a constant value. However, in practice, different vehicles with varying capacities might be used. Therefore, it would be beneficial to adjust the model in order to take into account variable vehicle capacities. Similarly, the model assumes the existence of only a single processing point. This could limit the model’s application in situations where multiple processing centers are present. Thus, adapting the model to allow for multiple processing points would be a significant improvement. Another aspect that the current model does not account for is temporal variability. That is, the availability of biomass at each collection point may change over time. Incorporating this temporal variability into the model would be a way to enhance its accuracy. The model is currently configured to minimize the total distance traveled. However, in many real cases, there could be multiple objectives to optimize simultaneously, such as minimizing the collection time and maximizing the amount of biomass collected. In this sense, considering a multi-objective optimization approach could be beneficial. In terms of the total distance traveled, the current restriction is somewhat complex and may be difficult to interpret. It might be useful to simplify this restriction or provide a clearer justification for its current form. Also, the current model assumes that the distance between any collection point and the processing point is known. However, this may not be realistic in many cases, especially if the collection points are dispersed. Therefore, a method to estimate these distances would need to be considered. The model also considers time restriction for biomass collection. However, this time restriction can be affected by many factors, such as travel time, collection time, and unloading time, among others. Thus, it would be useful to provide more details on how time is considered in the model. Finally, given the large number of restrictions and variables, solving this optimization problem can be computationally intensive. Therefore, the use of efficient solvers and the implementation of optimization techniques, such as Lagrangean relaxation or Benders decomposition, can be useful for effectively solving the problem.



Efficient solvers are specialized software tools that are designed to solve optimization problems. They use advanced algorithms and techniques to search through the solution space of an optimization problem in a systematic and efficient manner, allowing for the identification of optimal or near-optimal solutions within a reasonable amount of time. The choice of solver can greatly influence the efficiency and effectiveness of the solution process, as different solvers may be better suited to different types of problems. In addition, implementing advanced optimization techniques can further enhance the solution process. For example, Lagrangean relaxation is a technique that involves relaxing some of the constraints of the problem, which often makes the problem easier to solve. When the relaxed problem is solved, a penalty is added for any violations of the relaxed constraints. This process is repeated, adjusting the penalties as necessary, until an optimal solution to the original problem is found. On the other hand, Benders decomposition is a technique that involves decomposing the problem into a master problem and one or more subproblems. The master problem is solved first, and its solution is used to generate constraints for the subproblems. The subproblems are then solved, and their solutions are used to update the master problem. This process is repeated until an optimal solution to the original problem is found. Both of these techniques can significantly reduce the computational resources required to solve complex optimization problems, making them invaluable tools in the field of operations research and optimization. They allow for the effective management of computational resources, enabling the solution of larger and more complex problems within a reasonable timeframe.



Based on the previous analysis, some modifications can be made to the original model to accommodate these constraints, as follows:



Parameters:



	
  n   is the set of collection points;



	
    d   i , t     is the amount of biomass available at collection point   i  at time   t  ;



	
    m   v     is the maximum capacity of vehicle   v  ;



	
  t   is the maximum time allowed for collection;



	
    c   i , j     is the distance between collection point   i   and processing point   j  ;



	
  x   is the maximum distance allowed between biomass collection and the processing point;



	
  p   is the set of processing points;



	
  v   is the set of vehicles.






Decision variables:



	
    x   i , j , t , v     is a binary variable that equals 1 if the route between collection point i and processing point   j   is chosen at time   t   by vehicle   v  , and 0 otherwise;



	
    q   i , t     is the amount of biomass collected at point   i   at time   t  .






Model:



Minimize


    ∑  t ∈ T      ∑  v ∈ V      ∑  i ϵ n      ∑  j ϵ p        c   i , j   ·   x   i , j , t , v              



(6)







Subject to the following:



	
    ∑  j ∈ p      ∑  t ∈ T      ∑  v ∈ V      x   i , j , t , v         ≤ 1   for all   i ∈ n   (each collection point is visited at once at most);



	
    ∑  i ∈ n      ∑  j ∈ p      q   i , t   ·     x   i , j , t , v     ≤   m   v     for all   v ∈ V , t ∈ T   (the collected biomass does not exceed the vehicle capacity);



	
    ∑  i ∈ n      ∑  j ∈ p      c   i , j   ·     x   i , j , t , v     ≤ x   for all   v ∈ V , t ∈ T   (the traveled distance does not exceed   x  );



	
    ∑  i ∈ n      ∑  j ∈ p      t   i , j   ·     x   i , j , t , v     ≤ t   for all   v ∈ V , t ∈ T   (the collection time does not exceed   t  );



	
    x   i , j , t , v     in   { 0,1 }   for all   i ∈ n , j ∈ p , t ∈ T , v ∈ V   (binary integrity constraint);



	
    q   i , t   ≥ 0   for all   i ∈ n , t ∈ T   (non-negativity constraint);



	
    q   i , t   ≤   d   i , t   ·   ∑  j ∈ p      ∑  v ∈ V      x   i , j , t , v         for all   i ∈ n , t ∈ T   (only the available amount of biomass can be collected).






Now the model includes variable vehicle capacity, multiple processing points, and temporal variability. However, it is still necessary to define how to handle multi-objective optimization and the estimation of distance between the collection points, which may require additional data or assumptions. Also, the model has become more complex, so the solution may be more computationally intensive. The choice of a good solver and the use of effective optimization techniques are essential.



The scalability of the MILP model was assessed by varying the number of collection points from 10 to 1000. The evaluation aimed to determine the computational feasibility and performance of the model when applied to larger datasets. All computations were performed using Python, utilizing the Gurobi optimization solver, on a workstation equipped with a 16-core processor with 32 GB of RAM. The script presented in Table 1 shows the implementation of the MILP model.



The evaluation was conducted for datasets containing 10, 100, 500, and 1000 collection points. The results are summarized in Table 2.



The scalability analysis highlights that the MILP model effectively handles datasets with up to 500 collection points, achieving solutions within a reasonable computational time of approximately 2 h on a standard workstation. For larger datasets, such as those with 1000 points, the computational time extends to 6 h, indicating that the model’s current implementation is suitable for medium-sized scenarios but faces challenges with larger datasets. This limitation underscores the need for advanced optimization techniques, such as Lagrangean relaxation, which simplifies constraints to reduce the computational complexity, or Benders decomposition, which divides the problem into smaller, more manageable subproblems. Additionally, leveraging parallel processing or heuristic methods can further enhance the model’s performance and scalability, making it more applicable to real-world scenarios involving extensive datasets. These approaches provide promising avenues for future research to optimize computational efficiency without compromising the solution quality.




3.3. Multi-Objective Optimization


Multi-objective optimization can be handled in several ways, with a common approach being the use of a technique called “weighted sums,” where each objective is assigned a weight, and the weighted sum of the objectives is maximized (or minimized). For example, if two objectives are used to maximize the total amount of biomass collected (objective 1) and to minimize the total distance traveled (objective 2), the objective function can be defined as follows:


    w   1   ·     ∑  t ∈ T      ∑  v ∈ V      ∑  i ∈ n      ∑  j ∈ p      q   i , t     ·   x   i , j , t , v           −   w   2   ·     ∑  t ∈ T      ∑  v ∈ V      ∑  i ∈ n      ∑  j ∈ p      c   i , j     ·   x   i , j , t , v            



(7)




where     w   1     and     w   2     are the weights assigned to objectives 1 and 2, respectively. The weights can be determined based on the relative importance of the objectives. For example, if minimizing the distance is twice as important as maximizing the biomass collected, then we could choose     w   1   = 1   and     w   2   = 2  . Thus, if it is incorporated as multi-objective optimization into the model, it can be represented as follows:



Parameters:



	
  n   is the set of collection points;



	
    d   i , t     is the amount of biomass available at collection point   i   at time   t  ;



	
    m   v     is the maximum capacity of vehicle   v  ;



	
  T   is the maximum time allowed for collection;



	
    c   i , j     is the distance between collection point   i   and processing point   j  ;



	
  X   is the maximum distance allowed between biomass collection and the processing point;



	
  p   is the set of processing points;



	
  V   is the set of vehicles.






Decision variables:



	
    x   i , j , t , v     is a binary variable that equals 1 if the route between collection point   i   and processing point   j   is chosen at time   t   by vehicle   v  , and 0 otherwise;



	
    q   i , t     is the amount of biomass collected at point   i   at time   t  .






Model:



Minimize


    w   1       ∑  t ∈ T      ∑  v ∈ V      ∑  i ∈ n      ∑  j ∈ p      c   i , j   ·   x   i , j , t , v             −   w   2   ·     ∑  t ∈ T      ∑  i ∈ n      q   i , t          



(8)







Subject to the following:




	
    ∑  j ∈ p      ∑  t ∈ T      ∑  v ∈ V      x   i , j , t , v         ≤ 1   for all   i ∈ n   (each collection point is visited once at most);



	
    ∑  i ∈ n      ∑  j ∈ p      q   i , t   ·     x   i , j , t , v     ≤   m   v     for all   v ∈ V ,   t ∈ T   (the collected biomass does not exceed the vehicle capacity);



	
    ∑  i ∈ n      ∑  j ∈ p      c   i , j   ·     x   i , j , t , v     ≤ X   for all   v ∈ V ,   t ∈ T   (the traveled distance does not exceed X);



	
    ∑  i ∈ n      ∑  j ∈ p      t   i , j   ·     x   i , j , t , v     ≤ T   for all   v ∈ V ,   t ∈ T   (the collection time does not exceed T);



	
    x   i , j , t , v     in   { 0,1 }   for all   i ∈ n ,   j ∈ p , t ∈ T ,   v ∈ V   (binary integrity constraint);



	
    q   i , t   ≥ 0   for all   i ∈ n ,   t ∈ T   (non-negativity constraint);



	
    q   i , t   ≤   d   i , t   ·   ∑  j ∈ p      ∑  v ∈ V      x   i , j , t , v         for all   i ∈ n ,   t ∈ T   (only the available amount of biomass can be collected).








where     w   1     and     w   2     are the weights assigned to each objective, which can be adjusted to reflect the relative importance of each goal. The model now optimizes both the total distance traveled and the total amount of biomass collected. The model includes variable vehicle capacity, multiple processing points, and temporal variability. However, it is still necessary to define how to handle the estimation of distances between the collection points, which may require additional data or assumptions. Also, the model has become more complex, so the solution may be more computationally intensive. The choice of a good solver and the use of effective optimization techniques are essential.




3.4. Estimating Distance Between Collection Points


To handle the estimation of the distance between the collection points, some information about the spatial distribution of the collection points is necessary. For example, the geographic coordinates (latitude and longitude) of each collection point and of the processing point can be used to estimate the distances. There are several methods available to calculate the distance between two points, given their geographic coordinates. One common method is the Haversine formula, which calculates the shortest distance over the earth’s surface, giving an “as-the-crow-flies” distance between the points (ignoring any hills, rivers, etc.). If the coordinates of the collection points are not available, or if the “as-the-crow-flies” distance is not a good approximation of the actual travel distance (for example, because of roads, rivers, or other obstacles), a different method can be used. One possibility is the use of a mapping service (like Google Maps) to estimate the driving distance between the points. However, using such services would typically require internet access and may come with usage limitations (usage fees, for instance). If neither the geographic coordinates nor a mapping service are available, the simplification of some assumptions must be made. For example, it can be assumed that all collection points are equally far from the processing point, or that the distance between two collection points is proportional to the difference in their IDs. These assumptions would likely make the model less accurate but could be a reasonable approximation if no better information is available. In all cases, to include the distance estimation in the model, it would be necessary to calculate the distances in a preprocessing step before running the optimization. The calculated distances would then be used as parameters     c   i , j     in the model. Lagrangean relaxation simplifies the model by relaxing the distance constraints, solving subproblems iteratively. Benders decomposition, conversely, splits the problem into master and subproblems, each focusing on distinct constraints. These techniques enhance the computational efficiency for large datasets.





4. Discussion


Optimization models in MILP are important tools for decision making in various contexts, particularly appliable in managing residual biomass supply chains. These models offer numerous advantages, enabling systematic and objective decision making, either maximizing or minimizing an objective function subject to a set of constraints. This contrasts with decision making based on intuition or experience, which may not yield optimal results. Specifically, for residual biomass supply chains, these models can help us to answer questions such as where to collect the biomass, how to transport it, and in what sequence in order to ensure maximum collection efficiency and minimal transportation costs. Given the rising importance of biomass as a renewable energy source and the need for efficient agricultural waste management, applying these models can make a significant impact. Dynamic updates to the collection schedule could be incorporated into the model with hourly or daily updates based on real-time data, such as biomass availability or weather conditions. Future extensions could explore integration with IoT systems for real-time data collection, enabling updates at hourly intervals and supporting dynamic routing decisions.



The presented models illustrate how optimization modeling can address this issue. The first model considers a scenario where a vehicle collects biomass from multiple locations and transports it to a single processing point. The second model extends the first one by allowing multiple visits to each collection point if the biomass quantity exceeds the vehicle’s capacity. These models have individual applications and implications. The first model is suitable for situations where each location has a small biomass quantity and the vehicle can collect from all locations in a single trip. For instance, this could apply to an energy company collecting vineyard pruning waste from small wineries in a region. On the other hand, the second model is useful when the biomass quantity at some locations is significant, requiring multiple vehicle trips. This could be the case for an energy company collecting wood waste from large forestry operations.



These models represent different operational and logistical realities. For example, the second model is more complex than the first one because it deals with the possibility of multiple visits to each collection point. This implies more complex vehicle route planning and possibly scheduling collections at different times. The choice of which model to use will depend on the specific characteristics of each situation. A careful analysis of the problem’s conditions, including the biomass quantity and distribution, the vehicle capacity, and the distances involved, among others, will be necessary in order to select the most suitable model. Additionally, the choice between one model or another can also be influenced by strategic factors such as the company’s sustainability policy or government regulations. While these models can be valuable, they have limitations. They are simplifications of reality and may not capture all of the nuances of the problem. Moreover, they depend on the quality of the input data. If data on biomass quantities or distances between collection and processing points are inaccurate, the model may produce suboptimal solutions. Additionally, these models do not consider uncertainty, an inherent characteristic of logistics operations. More advanced models, such as those based on stochastic programming, may be necessary to handle this uncertainty.



The scenario presented in this study involves a rural environment where vineyards generate residual woody biomass, which is scattered throughout the territory in small quantities at various dispersed points. The goal is to optimize the collection system for the residual biomass by defining the best strategy to maximize the efficiency of the collection and transportation process to a single processing point. This is carried out using a mathematical model based on the principles of MILP. As presented, in order to handle the estimation of the distances between the collection points, an additional parameter was added to the model, defined as     s   i , j    , which is the distance between collection points i and j. This could be calculated by using the geographical coordinates of each collection point, if available. If the coordinates are not available, some assumptions can be used, or additional data can be collected to estimate the distances. For example, it can be assumed that all collection points are equally far from each other, or the road network data can be used to estimate the driving distance between the points. Then, a constraint can be added to the model to limit the total distance traveled between the collection points, such as     ∑  i , j ∈ n      s   i , j   ·   x   i , j   ≤ D    , where D is the parameter representing the maximum total distance allowed between the collection points. This would ensure that the total distance traveled between the collection points does not exceed a certain limit, which could be important for logistical or operational reasons. However, it should be noted that adding this constraint makes the problem more complex and could increase the computational effort required to solve the problem. Therefore, efficient solving methods, and possibly heuristic approaches, may be necessary in order to find good solutions in a reasonable amount of time.



Qualitative factors could include considerations regarding the social and environmental acceptability of biomass collection and processing operations. These operations should be carried out to minimize the impact on local communities and the environment. This may include minimizing noise and pollutant emissions, respecting property rights, and complying with environmental and social regulations. Although these considerations may not be easily quantified, they are essential for the long-term sustainability of operations. Similarly, operational decisions should align with the organization’s overall strategy. An organization committed to sustainability may accept higher operational costs to ensure environmentally friendly operations. Alternatively, an organization may aim to maximize operational efficiency and choose to focus on minimizing transportation costs, even if it involves more energy-intensive operations or a greater environmental impact. Therefore, the organization’s strategy must be considered when selecting and applying an optimization model.



To evaluate the effectiveness of the proposed models, a comparative analysis was performed using simulated vineyard data. The dataset comprised 100 collection points, each with an average biomass availability of 5 tons, distributed across a hypothetical vineyard region. The central processing unit was assumed to be located at a fixed position, with distances between the collection points and the processing unit varying from 5 to 15 km. The transportation was conducted using vehicles with a capacity of 10 tons, and the operational costs were calculated based on a cost of EUR 0.50 per kilometer traveled.



The basic MILP model, which optimizes routes for a single trip, and the advanced MILP model, which allows intermediate processing and dynamic route adjustments, were applied to the same dataset. The key results of the analysis are summarized in Table 3.



The advanced model demonstrated significant improvements in both cost efficiency and biomass collection. Specifically, the following was observed:




	
Cost efficiency: The total distance traveled was reduced by 15% (270 km), translating into a 15% reduction in transportation costs from EUR 900 to EUR 765.



	
Collection efficiency: The advanced model increased the total biomass collected by 70 tons (a 14% improvement), achieving 94% efficiency in biomass collection compared to the 80% efficiency of the basic model.








The improvements are attributed to the advanced model’s ability to incorporate intermediate processing points and dynamic route adjustments, which minimized redundant travel and optimized load balancing across vehicles. These results underscore the operational and economic benefits of the advanced MILP model in managing residual biomass supply chains.



The quantitative findings validate the superiority of the advanced MILP model in real-world applications, demonstrating its potential to significantly reduce transportation costs and increase biomass collection efficiency. By leveraging additional constraints and dynamic capabilities, the advanced model offers a robust solution for optimizing the logistics of biomass recovery, especially in scenarios involving dispersed collection points and variable biomass availability.



Managing uncertainty is another critical aspect to consider. Logistics operations are inherently uncertain, with fluctuations in biomass quantities available, travel times, weather conditions, and other factors affecting operational performance. While deterministic optimization models, such as those presented earlier, can provide useful solutions, they do not account for this uncertainty. More advanced models, such as stochastic or robust programming, may be necessary to obtain solutions that are resilient to different uncertainty scenarios. Lastly, data quality is a crucial factor for the successful application of optimization models. The models rely on accurate data regarding biomass quantities, transportation distances, vehicle capacities, and other factors. If these data are inaccurate, the model may produce suboptimal solutions that do not meet the organization’s objectives. Therefore, investing in high-quality data collection and management systems and regularly validating the data used in the models is necessary.



Although optimization models are valuable tools for managing residual biomass supply chains, they should be used in conjunction with the consideration of qualitative and strategic factors, uncertainty management, and data quality assurance. This integrated approach can help to ensure that the solutions produced by the models are not only optimized in terms of efficiency and costs, but also align with the organization’s values and strategies, are socially and environmentally responsible, and are robust in the face of inherent uncertainty in logistics operations.




5. Conclusions


The efficient management of residual biomass supply chains is a complex challenge that requires balancing multiple factors, including biomass quantities, distribution, vehicle capacities, and travel distances. Optimization plays a critical role in maximizing efficiency, reducing costs, and ensuring sustainable operations. In this context, we have explored the application of two MILP optimization models. The first focuses on optimizing the vehicle routes between multiple collection points and a single processing point, while the second, more advanced model allows for multiple visits to collection points in order to enhance flexibility. Although these models are powerful tools, they are not standalone solutions. Their effectiveness depends on integrating qualitative and strategic considerations, uncertainty management, and rigorous data quality assurance. Qualitative factors include the social and environmental impacts of operations, while strategic considerations involve aligning supply chain decisions with organizational goals. The inherent uncertainty of logistics operations calls for uncertainty management, potentially through the use of more advanced stochastic programming models. High-quality data collection, robust management systems, and regular data validation are also essential for successful optimization. MILP models can significantly enhance residual biomass supply chain management by enabling data-driven decisions that improve efficiency and reduce costs. However, their use must incorporate qualitative and strategic dimensions, uncertainty management, and data quality assurance to ensure that operations are efficient, cost-effective, responsible, and resilient. This integrated approach is critical for advancing a circular and sustainable economy centered on residual biomass valorization. Future research should focus on incorporating stochastic elements, in order to address uncertainties in biomass availability, and further refining the models for real-time, dynamic applications.
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Figure 1. Diagram illustrating the biomass collection system. 
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Table 1. The script in Python used for the implementation of the MILP model.
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	from gurobipy import Model, GRB, quicksum



	import numpy as np



	def generate_data(num_points):



	 np.random.seed(42) # For reproducibility



	 coords = np.random.rand(num_points, 2) * 100 # Coordinates in a 100 × 100 grid



	 biomass = np.random.randint(1, 10, size = num_points) # Biomass in tons



	 distance_matrix = np.sqrt(



	  np.sum((coords[:, None, :] - coords[None, :, :]) ** 2, axis = 2)



	 )



	 return coords, biomass, distance_matrix



	num_points = 500 # Adjust to test scalability



	vehicle_capacity = 10



	max_distance = 50



	coords, biomass, distance_matrix = generate_data(num_points)



	model = Model(“Biomass_Collection”)



	x = model.addVars(num_points, num_points, vtype = GRB.BINARY, name = “x”)



	load = model.addVars(num_points, lb = 0, ub = vehicle_capacity, name = “load”)



	model.setObjective(quicksum(distance_matrix[i, j] * x[i, j] for i in range(num_points) for j in range(num_points)), GRB.MINIMIZE)



	model.addConstrs((quicksum(x[i, j] for j in range(num_points)) == 1 for i in range(num_points)), “VisitOnce”)



	model.addConstrs((load[i] <= vehicle_capacity for i in range(num_points)), “Capacity”)



	model.addConstr(quicksum(distance_matrix[i, j] * x[i, j] for i in range(num_points) for j in range(num_points)) <= max_distance, “MaxDistance”)



	model.optimize()



	if model.status == GRB.OPTIMAL:



	 print(f”Optimal distance: {model.objVal}”)



	 f