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Abstract: Background: Container terminals are a pivotal part of global logistics networks,
influencing supply chain reliability and port competitiveness. Traditional performance
evaluation methods, such as KPI-based assessments or multi-criteria analyses, often fail in
dynamic operational conditions with inherent uncertainty and variability. Methods: This
study proposes a normalization-based framework to evaluate container terminal perfor-
mance by standardizing operational parameters, including availability, non-productive
operations, operation time, energy consumption, and throughput. The methodology in-
volves parameter definition, normalization, weight assignment, index calculation, and
performance classification. Results: The findings demonstrate that normalization ensures
a transparent and adaptable evaluation framework. Sample calculations show how pa-
rameter weights influence terminal assessments across varied scenarios, confirming the
robustness of the proposed method in capturing dynamic operational changes. Conclusions:
Normalization offers a practical tool for enhancing container terminal efficiency and com-
petitiveness. It enables decision-makers to adapt strategies to changing priorities, such
as throughput maximization or energy efficiency, ensuring comprehensive and reliable
performance assessments.

Keywords: container terminal performance; normalization-based evaluation; parametric
evaluation

1. Introduction
The efficiency of container terminals plays a crucial role in today’s global logistics net-

works and supply chains, where there is a growing demand for reliable, high-throughput,
and energy-efficient operations. The evaluation of terminal performance is based on
complex criteria such as system availability, productivity, and environmental impact. Tradi-
tional assessment models often rely on deterministic and linear approaches, which may not
fully account for the uncertainty and variability inherent in terminal operations, directly
affecting the quality of their performance. The inability to dynamically adapt assessments
to changing conditions, such as fluctuations in throughput or variations in the number of
unproductive operations, leads to inaccurate results and may result in erroneous opera-
tional decisions.

To date, the performance evaluation of container terminals has most commonly uti-
lized tools based on classical statistical methods and productivity indicators, such as Key
Performance Indicators (KPIs) [1]. While these indicators are significant, they cover only
selected operational aspects and are largely static, making them difficult to adapt to the
dynamically changing work conditions of terminals. More advanced applications have
included multi-criteria analysis methods, such as the Analytic Hierarchy Process (AHP)
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and Data Envelopment Analysis (DEA), which aid decision-making related to resource
allocation and operational efficiency [2]. However, these methods require precise input
data, and their effectiveness diminishes when data are characterized by high variability or
lack of precision.

For instance, in cases of sudden increases in container traffic, deterministic perfor-
mance indicators may fail to reflect rising downtime or increased energy consumption,
leading to an incorrect assessment of the terminal’s actual performance. Consequently,
the terminal may be unable to identify operational bottlenecks early and optimize them,
resulting in delays, increased operational costs, and a decline in the quality of services
provided to clients. These limitations highlight the need for alternative methods that can
effectively consider multiple parameters and inherent uncertainty.

A normalization-based approach has proven to be a robust and transparent method
for evaluating container terminal performance. By scaling operational parameters to a
common range, this approach ensures comparability and adaptability to dynamic changes
in terminal conditions [3].

The article presents a resource allocation optimization model for automated container
terminals, taking into account the dual-cycle operations of quay cranes. This model analyzes
the operational system’s efficiency and its asymptotic behavior under different resource
allocation schedules, enabling increased terminal efficiency.

Meanwhile, in paper [4], a comparison is presented between static and dynamic
performance parameters of major container terminals in China and Korea, utilizing a
Super-SBM model based on slack variables and the Malmquist index method. The findings
highlight the importance of normalizing operational parameters to ensure comparability
and adaptability to dynamic changes in terminal conditions.

The article employs a hybrid multi-criteria approach, combining Principal Component
Analysis (PCA) with the TOPSIS method, to evaluate and rank container terminals in Latin
America and the Caribbean. The analysis included various operational variables such as
quay length, depth, yard area, and the number of cranes, enabling the identification of
criteria impacting the operational efficiency of terminals.

This publication highlights the importance of multi-criteria data analysis in evaluating
and comparing container terminal performance, which is crucial for ensuring comparability
and adaptability to dynamic changes in terminal operational conditions.

The objective of this study is to develop a container terminal performance evaluation
model using a normalization-based framework, focusing on key operational factors such as
availability, the number of unproductive operations, and energy efficiency. By integrating
these variables into a single model, this study aims to provide a detailed evaluation method
that overcomes the limitations of traditional assessment systems. The following research
hypotheses are proposed:

“normalization ensures a consistent and transparent evaluation framework by stan-
dardizing operational parameters, enabling accurate performance assessments across vary-
ing operational scenarios.”

2. Literature Review
The purpose of this literature review is to present existing research, methods, and

models used in the evaluation of container terminal efficiency and to demonstrate how
the application of fuzzy logic can enhance the process of operational assessment. This
analysis includes tools used in container terminals, highlighting their limitations and
applications in dynamically changing operational environments. The review is structured
into several main sections, covering traditional and multi-criteria evaluation methods for
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container terminals and their limitations, the application of artificial intelligence in terminal
assessment, and fuzzy logic as a decision-support tool.

Traditional and Multi-Criteria Methods for Evaluating Container Terminals
The evaluation of container terminals primarily relies on operational efficiency in-

dicators known as Key Performance Indicators (KPIs), which include metrics such as
average container handling time, equipment availability, and the number of operations
per unit of time. KPIs serve as fundamental, easy-to-implement tools that provide a quick
overview of a terminal’s operational performance [5]. However, their main limitation is
their static nature, which means they do not account for dynamic operational changes
such as seasonal surges in container traffic or fluctuations in resource availability. Studies
have shown that KPIs are useful in stable operational conditions but can lead to inaccurate
assessments under high variability, which limits their value in more complex operational
environments [6,7].

Article [8] reviews the latest methods for optimizing terminal operations, emphasizing
traffic management efficiency and handling performance. This study indicates that stan-
dard KPIs, despite their widespread use, are often insufficient under dynamic operating
conditions. The authors recommend integrated approaches that better account for seasonal
traffic variations and resource variability, supporting decision-making processes. The
article also suggests the development of more adaptive evaluation tools, including the use
of predictive analytics.

In publication [9], the limitations of KPIs in assessing dynamic operational environ-
ments are analyzed. The authors critically examine traditional indicators, such as handling
time and resource availability, arguing that they are static and fail to reflect operational
fluctuations and seasonal demand peaks. The article contrasts earlier works [6,10], where
KPIs were presented as sufficient performance measures under stable conditions.

More advanced cases of container terminal assessment employ multi-criteria analysis
methods such as Analytic Hierarchy Process (AHP) and Data Envelopment Analysis (DEA).
AHP allows for a hierarchical decomposition of problems into smaller criteria, which is
particularly useful for strategic decision-making. DEA, on the other hand, enables the
comparison of the performance of different units (e.g., container terminals) by evaluating
efficiency based on input and output data, providing comprehensive results for unified
performance assessments [10]. AHP is beneficial for the hierarchical assessment of strategic
decisions in container terminals, supporting the evaluation and comparison of criteria essen-
tial for operational efficiency and resource management, such as equipment availability and
port throughput [11]. DEA facilitates comparisons across multiple units, such as different
terminals, allowing for the assessment of operational efficiency and resource allocation.

Research suggests that combining these methods, such as in a hybrid AHP-DEA
model, offers a more flexible approach to multi-criteria evaluation, enabling more accurate
assessments by leveraging the complementary features of both methods. AHP allows the
assignment of weights to criteria, while DEA does not require prior assumptions regard-
ing the relationships between inputs and outputs, making it advantageous in dynamic
operational environments [8,12]. Furthermore, hybrid AHP-DEA approaches have proven
effective in more complex analyses, such as the selection of transshipment ports, where
various factors must be evaluated for their relative weight and importance [13].

Practical examples show that DEA is more effective when comparing multiple opera-
tional units with uniform data, while AHP supports decision-making in scenarios where
qualitative assessment plays a crucial role. Ultimately, hybrid models like DEA-AHP can
not only enhance the accuracy of assessments but also mitigate the limitations of using a
single multi-criteria analysis method [14].
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Traditional evaluation methods, while valuable under stable operational conditions,
fall short in dynamic situations where operational parameters such as service time or
the number of unproductive operations can fluctuate significantly. In rapidly developing
container terminals, typical static approaches cannot keep pace with the need for flexibility
and adaptation to changing conditions. For instance, when a terminal becomes more heavily
loaded, traditional evaluation models do not provide adequate precision or accuracy in
estimating actual operational performance, which can lead to ineffective resource allocation
and capacity constraints [15,16].

In response to these challenges, more dynamic algorithms have been developed, such
as the Monte Carlo-based container space allocation model, which optimizes terminal
resource use and minimizes downtime [17]. Innovative approaches, including dynamic
resource allocation algorithms, are essential to enhance efficiency and flexibility in highly
variable operational conditions.

Despite their flexibility, dynamic algorithms encounter significant limitations. One
major challenge is their high computational complexity, especially under large-scale opera-
tions, which can lead to prolonged processing times. Another limitation is their reliance on
precise and up-to-date input data, which can be difficult to obtain in dynamic environments.
The literature also highlights potential real-time optimization issues, limiting their effective-
ness in rapidly changing operational conditions [16]. Dynamic algorithms used in container
terminals, such as Ant Colony Optimization and machine learning-based models, present
advanced solutions for resource allocation and scheduling but come with constraints. First,
algorithms applied to berth allocation, for example, face challenges related to computa-
tional complexity, translating into long processing times for high-throughput terminals. An
example is the Enhanced Ant Colony algorithm used for berth allocation, which improves
efficiency but may require significant computational resources as the number of ships and
containers increases [18]. Second, dynamic algorithms depend on accurate and current
data, which is challenging to maintain in real operational environments. In automated
terminals utilizing multi-vehicle systems (AGVs) and deep reinforcement learning for
traffic management, the absence of precise data can lead to suboptimal decisions, reducing
operational efficiency [19]. Another challenge is the need for adaptation to unforeseen
events, such as vessel delays or equipment failures, which impact scheduling effectiveness
and can result in increased downtime and inefficient resource use [20]. These challenges
indicate the need for further development of dynamic algorithms to make them more
resilient to variable operational conditions.

Application of Artificial Intelligence in Solving Operator Challenges
A new approach involves the application of artificial intelligence (AI) to solve chal-

lenges faced by container terminal operators. In [21], research on the optimization of
automatic guided vehicle (AGV) routes using Q-learning is presented. It demonstrates how
AI can be applied to reduce waiting times caused by vehicle interference on routes. The
route matrix constructed with the Q-learning technique assists in planning optimal paths
while considering the positioning of quay cranes.

Publication [22] introduces the OnPL (Online Preference Learning) algorithm, which
allows for the dynamic adaptation of AGV task allocation policies to changing operational
conditions. This algorithm employs a pairwise preference function, enabling the ranking
and selection of the best tasks to minimize external vehicle waiting times at container
terminals. OnPL ensures flexibility and efficiency in highly variable operational environ-
ments. In studies [18] on AGV scheduling in container terminals, various rules such as
“first-come-first-serve” (FCFS), “shortest travel distance” (STD), and “longest waiting time”
(LWT) were applied. Angeloudis and Bell’s research showed that using a combination
of different rules can improve scheduling performance more than applying a single rule.
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This approach highlights that complex AI algorithms can address task allocation issues
under the uncertainty and complexity of container terminals. Despite the benefits of AI,
including flexibility and increased efficiency, the publication notes performance and learn-
ing efficiency problems as the complexity of the operational environment increases. A
high number of variables and diverse operational conditions can elevate computational
complexity, necessitating more sophisticated algorithmic solutions.

The literature review justifies the need for further research and development of evalua-
tion methods that not only consider the specifics of dynamic operational conditions but also
combine the flexibility of fuzzy tools with the precision of multi-criteria evaluation models.
Summarizing the assessment methods for container terminals, it is evident that existing
tools, such as KPIs, AHP, and DEA, although useful in stable operational conditions, have
significant limitations in dynamic and variable environments. KPIs serve as basic metrics,
but their static nature does not account for operational fluctuations and seasonal traffic
surges, potentially leading to inaccurate performance evaluations under increased load
conditions. In more advanced cases, multi-criteria analysis methods like AHP and DEA
support strategic management and comparison of different terminals’ efficiencies. While
AHP facilitates the hierarchical evaluation of complex decisions and DEA is effective in
analyzing operational efficiency, both methods require precise input data, which poses
a challenge in dynamic conditions. Hybrid models, such as AHP-DEA, help overcome
some of these limitations but are not free from difficulties related to data integration and
real-time analysis constraints.

On the other hand, dynamic algorithms like Enhanced Ant Colony or multi-AGV
systems using Deep Reinforcement Learning take a more flexible approach to operational
assessment. Their limitations, including high computational complexity and dependence
on current data, indicate that dynamic algorithms alone are not a universal solution. In this
context, there is a justified need to seek more adaptive and integrated methods, such as
fuzzy logic and Fuzzy TOPSIS, which better handle uncertainty and operational variability.

Application of Normalization as a Decision Support Tool
Normalization-based models are increasingly employed in risk analysis and opera-

tional efficiency evaluation for container terminals. Traditional risk assessment methods,
which rely on classical statistical techniques, often struggle to address the dynamic and
variable nature of terminal operations. Normalization offers a straightforward and trans-
parent approach to standardizing operational data, enabling consistent and adaptable
evaluation frameworks.

Examples in the literature highlight the use of normalization for evaluating and man-
aging operational performance in container terminals. These models integrate various
operational indicators, such as equipment availability, non-productive operations, and
energy consumption, allowing for a holistic assessment of terminal efficiency. For in-
stance, studies on seaport terminals have applied normalization techniques to standardize
performance metrics and analyze their interdependence [23,24].

One of the primary advantages of normalization is its ability to simplify complex
datasets by scaling parameters to a common range, typically [0, 1]. Unlike methods
that require qualitative data or complex statistical assumptions, normalization provides a
quantitative foundation that is both robust and easy to interpret. By normalizing variables
such as “equipment availability” or “average energy consumption,” terminal managers can
perform scenario analyses that reflect current operational conditions. This flexibility allows
normalization-based models to adapt to varying risk levels and operational priorities,
making them highly suitable for decision-making in dynamic environments [25–28].
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3. Method for Evaluating Container Terminal Performance Normalization
The objective of the research presented in this section is to propose a method for

evaluating the performance of a container terminal using normalization as an analytical tool.
This approach is chosen due to its ability to standardize diverse operational parameters,
ensuring comparability and consistency in dynamic and complex environments where
traditional evaluation methods, such as KPIs or multi-criteria analyses, may fall short.

This research aims to develop a model that enables a straightforward yet flexible
assessment of various operational parameters, including process availability, handling time,
energy consumption, energy efficiency, and the number of non-productive operations. The
normalization process ensures that all parameters are scaled to a common range, typically
[0, 1], allowing for the integration of diverse metrics into a unified evaluation framework.

First, the characteristics of the proposed normalization-based approach will be out-
lined, followed by an analysis of the mutual impact of individual parameters and their role
in determining overall terminal performance.

3.1. Characteristics of the Proposed Method

The procedure for determining the parametric evaluation of a terminal comprises the
following steps:

Step 1: Definition of performance parameters;
Step 2: Normalization of parameters;
Step 3: Assignment of weights to parameters;
Step 4: Calculation of the performance index (OPT);
Step 5: Classification of the evaluation.
A schematic representation of the method is shown in Figure 1.
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Step 1 involves defining the key performance parameters that will be used to analyze
the functioning of the container terminal. This step requires identifying the most significant
factors affecting operational efficiency, such as process quality, operational speed, and re-
source utilization. These parameters form the foundation for developing a comprehensive
terminal evaluation method. Step 2 includes the normalization of the collected parameters
to enable their comparison on a common scale ranging from 0 to 1. Normalization trans-
forms raw data so that values fall within the same range. This allows for an easy assessment
of how each parameter contributes to the overall terminal evaluation, which is essential for
calculating the performance index. Step 3 involves assigning weights to the normalized
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parameters according to their importance in the terminal’s evaluation. These weights reflect
the priority of each parameter in the overall assessment, and their total sum must equal 1.
Adjusting the weights enables customization of the evaluation method to meet the specific
needs and priorities of a terminal, allowing for a flexible analysis of its operations. Step 4
entails the calculation of the performance index (OPT) based on the normalized parameters
and their assigned weights. This index allows for the objective comparison of various
operational scenarios and forms the basis for the final classification of terminal efficiency.
The general solution for the method will be presented in the following section.

Step 1: Definition of Key Performance Parameters
Based on prior studies detailed in [29–31], the evaluation will be conducted using the

following five parameters:

1. Availability (A)—measures the extent to which the terminal’s equipment and systems
operate without failure. This is a critical indicator that impacts operational continuity
and minimizes downtime;

2. Number of Non-Productive Operations (NNO)—includes all activities that do not
directly contribute to container handling, such as waiting for equipment availability
or other delays. A high NNO indicates lower operational efficiency;

3. Operation Time (CTO)—refers to the average time taken to handle one container or a
group of containers. Short operation times signify high efficiency;

4. Energy Consumption (ZE)—measures the amount of energy consumed during opera-
tions. Energy efficiency is important for operational cost management and sustain-
able development;

5. Throughput (P)—defined as the number of containers handled by the terminal within
a specified time frame. High throughput indicates effective utilization of infrastructure
and resources.

Detailed methods for determining these parameters are discussed in papers [32–35].
The definition of minimum and maximum values for each parameter based on operational
data are as follows:

1. Availability factor (A)

- Minimum value: Amin

- Maximum value: Amax, where A ∈ [0, 1]

2. Number of Non-Productive Operations (NNO)

- Minimum value: NNOmin

- Maximum value: NNOmax, where N ∈ [0, ∞)

3. Operation Time (CTO)

- Minimum operation time (with travel): CTOmin

- Maximum operation time (with travel): CTOmax, where CTO ∈ [0, ∞)

4. Energy Consumption (ZE)

- Minimum energy consumption: ZEmin

- Maximum energy consumption: ZEmax, where ZE ∈ [0, ∞)

5. Throughput (P)

- Minimum throughput: Pmin

- Maximum throughput: Pmax, where P ∈ [0, ∞)

Step 2: Normalization of Parameters
Transformation of parameter values to a scale from 0 to 1 to enable comparison. The

following normalization formulas are applied:
Availability (A):

Anorm = A (1)



Logistics 2025, 9, 2 8 of 18

Availability is an indicator that takes values within the range [0, 1], as it is defined
as the ratio of operational time to total time (including both operational and downtime).
Consequently, it does not require additional normalization in the evaluation model, simpli-
fying calculations and enhancing methodological clarity. From a probabilistic perspective,
as a function representing the likelihood that a system is in a state of readiness at any given
time, this indicator also falls within the same [0, 1] range, maintaining consistency with
fundamental principles of probability theory.

Number of Non-Productive Operations (NNO):

NNOnorm = 1− NNO− NNOmin
NNOmax − NNOmin

(2)

Operation Time (CTO):

CTOnorm = 1− CTO− CTOmin
CTOmax − CTOmin

(3)

Energy Consumption (ZE):

ZEnorm = 1− ZE− ZEOmin
ZEOmax − ZEOmin

(4)

Throughput (P):

Pnorm =
P− Pmin

Pmax − Pmin
(5)

Step 3: Assignment of Weights to Parameters
Assign a weight (wi) to each parameter such that the total sum of weights equals 1.

The parameter weights are as follows:

- Availability (R): wR,
- Number of Non-Productive Operations (NNO): wNNO,
- Operation Time (CTO): wCTO,
- Energy Consumption (ZE): wZE,
- Throughput (P): wP.

The weights assigned to the parameters wR, wNNO, wCTO, wZE, wP are determined by
terminal management and reflect the specific priorities and strategic goals of the terminal.
These priorities vary depending on the operational context and the objectives that the
terminal seeks to achieve. For example, if high productivity is the primary goal, the weight
assigned to energy consumption wZE might be relatively low, as energy efficiency is less
critical in this scenario. Conversely, if minimizing the number of non-productive operations
wNNO is the main focus, throughput wP might be assigned a lower weight as it becomes a
secondary concern.

This flexibility in assigning weights allows the evaluation model to adapt to different
strategic needs. For instance, a terminal with operational characteristics optimized for
low energy consumption might receive a low OPT value if productivity is prioritized,
as its parameters are less aligned with this goal. However, under the same operational
conditions, the same terminal would achieve a high OPT value if energy efficiency were the
primary priority. Therefore, the assignment of parameter weights is specific to each strategy
and reflects the terminal’s objectives, ensuring the model’s adaptability and relevance in
varying operational contexts.

Step 4: Calculation of the Terminal Performance Index (OPT)
The overall terminal performance index can be calculated using the following formula:

OPT = wR × Rnorm + wNNO × NNOnorm + wCTO × CTOnorm + wP × Pnorm (6)
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Step 5: Classification of Terminal Performance
Classify the terminal’s performance based on the OPT value, dividing it into four

categories: unacceptable, average, satisfactory, and good.
Definition of Thresholds:
Assume three threshold values a, b, and c, where:

0 < a < b < c < 1

The classification can be defined as follows:

- Unacceptable: OPT∈[0, a)
- Average: OPT∈[a, b)
- Satisfactory: OPT∈[b, c)
- Good: OPT∈[c, 1].

The boundary values for the intervals (a, b, c) in the classification of the OPT indicator
were designed as general parameters that can be adapted to specific industry requirements
or empirical results. The values aa, bb, and cc are decisive boundaries, and a given OPT
value belongs to the lowest category if OPT < a and transitions to the next higher category
when OPT = a.

The interval boundaries should align with operational performance standards rec-
ognized in logistics or container terminal management. For example, terminals with an
OPT value below aa may be classified as “insufficient” in terms of efficiency, whereas those
above cc meet the highest performance standards. This approach enables the boundary
values to be grounded in existing guidelines or best practices within the industry.

Another method for determining boundary values involves analyzing the operational
performance results of terminals in a specific region or group of terminals. Using historical
data allows the boundaries to be adjusted to natural efficiency thresholds, such as distinct
differences in performance between terminals with low and high levels of productivity. In
this article, the values adopted are similar to those presented in articles [32–35].

3.2. Preliminary Calculation Example

This section presents sample calculations using the proposed method.
Definition of linguistic variables:

1. Availability (R)

- Low: below 95%
- Medium: 95% to 98%
- High: above 98%

2. Number of Non-Productive Operations (NNO)

- Low: fewer than 4
- Medium: 4 to 7
- High: 8 and above

3. Operation Time (CTO)

- Operation time depends on the container layer, influencing the duration evaluation.

These dependencies are shown in Table 1.
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Table 1. Linguistic variables for operation time.

Layer Short [s] Medium [s] Long [s]

1 < 40 40–60 >60

2 < 50 50–80 >80

3 < 80 80–150 >150

4 < 150 150–240 >240

4. Energy Consumption (ZE) (hourly consumption)

- Low: less than 15 L/hour
- Medium: 15–20 L/hour
- High: above 20 L/hour

Considering Distance:

- Short distance: less than 30 m
- Medium distance: 30–150 m
- Long distance: over 150 m

5. Throughput (P)

- Low: fewer than 20 cycles/hour
- Medium: 20–35 cycles/hour
- High: above 35 cycles/hour

Parameter weights
The following weights are assumed:

- Availability (R): 0.3
- Number of Non-Productive Operations (NNO): 0.2
- Operation Time (CTO): 0.2
- Energy Consumption (ZE): 0.1
- Throughput (P): 0.2

Total weights: 0.3 + 0.2 + 0.2 + 0.1 + 0.2 = 1
Calculation of the Overall Performance Index (OPT)
The overall terminal performance index is calculated using Formula (6):

OPT = wr × Rnorm + wNNO × NNOnorm + wCTO × CTOnorm + wP × Pnorm

Classification of Terminal Performance
Performance classification can be defined with the following ranges:

- Good: OPT > 0.8
- Satisfactory: 0.6 < OPT ≤ 0.8
- Average: 0.4 < OPT ≤ 0.6
- Unacceptable: OPT ≤ 0.4

Assumptions for calculations:

- Availability (R): 97%
- Number of Non-Productive Operations (NNO): 5
- Operation Time (CTO): 70 s (Layer 2)
- Energy Consumption (ZE): 18 L/hour
- Throughput (P): 30 cycles/hour

Normalization of Parameters (Based on Assumed Limits):

- Availability (R):



Logistics 2025, 9, 2 11 of 18

Rnorm =
0.97− 0.9

1− 0.9
=

0.07
0.1

= 0.7

- Number of Non-Productive Operations (NNO):

NNOnorm = 1− 5− 0
10− 0

= 0.5

- Energy Consumption (ZE):

ZEnorm = 1− 18− 10
25− 10

= 1− 8
15
≈ 0.467

- Throughput (P):

Pnorm =
30− 15
50− 15

≈ 0.429

Calculation of OPT:

OPT = (0.3 × 0.7) + (0.2 × 0.5) + (0.2 × 0.5) + (0.1 × 0.467) + (0.2 × 0.429) = 0.5415

Classification:
Since 0.4 < OPT < 0.6, the terminal performance evaluation is classified as “average”.

3.3. Analysis of Inter-Parameter Influence and Method Modification

The parameters used for evaluating container terminal performance are highly inter-
related, and their interactions significantly influence the overall efficiency. For example,
reduced Availability leads to higher Non-Productive Operations (NNO), longer Operation
Time (CTO), and increased Energy Consumption (ZE), ultimately lowering Throughput
(P). Similarly, high NNO not only extends CTO but also increases ZE and reduces P. These
interdependencies underscore the necessity of balancing parameters based on specific
strategic priorities, such as maximizing productivity or minimizing energy consumption.

To account for these interactions, parameter weights wR, wNNO, wCTO, wZE, wP are
dynamically adjusted according to the terminal’s operational goals. This dynamic approach
ensures that the evaluation framework remains adaptable and relevant under varying
operational conditions.

Mathematical relationships between parameters
(a) Relationship Between NNO and CTO
Assume a direct linear or non-linear relationship between the number of non-

productive operations and the operation time:

CTO = CTOprod + NNO× tnprod (7)

where:

- CTOprod—productive operation time,
- tnprod—average time per non-productive operation.

(b) Relationship Between CTO and ZE
Energy consumption is proportional to operation time:

ZE = Pmoc × CTO (8)

where:

- Pmoc—average power used during operations (constant or variable).

(c) Relationship Between CTO and P
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Throughput is inversely proportional to operation time:

P =
3600
CTO

(9)

where:

- 3600—number of seconds in an hour,
- CTO—average time for one operation in seconds.

(d) Relationship Between R and NNO
Lower Availability may lead to more non-productive operations:

NNO = NNObase + k× (1− R) (10)

where:

- NNObase—base number of non-productive operations at ideal Availability,
- k—proportionality constant.

Model Modifications
(a) Combining CTO and ZE
Since ZE depends on CTO, the weight for CTO can be adjusted to reflect its impact on

energy consumption:
w′CTO = wCTO + wZE (11)

(b) Combining NNO and CTO
If NNO affects CTO, a cumulative operation time parameter can be created:

CTOcumulative = CTO + NNO× tnprod (12)

Taking into account the above dependencies, a simplified model with three main parameters
can be presented:

- Availability (R)
- Cumulative Operation Time (CTOcumulative)
- Throughput (P)

OPT = wr × Rnorm + wCTO × CTOnorm + wP × Pnorm (13)

where CTOnorm is the normalized cumulative operation time.
Considering these parameter relationships allows for a more realistic evaluation of

terminal performance. Reducing the number of parameters through the inclusion of inter-
dependencies simplifies the model and can increase its clarity. Mathematical relationships
between parameters can be used to predict the impact of changes in one parameter on
others, which is valuable for decision-making processes.

The final OPT value can vary based on the selected weights and the values of the
individual parameters. Table 2 presents a set of equations characterizing possible forms of
the OPT equation as a function of wR, under the following scenarios:

(1) wR decreases, wCTO increases, wP is constant,
(2) wR decreases, wP increases, wCTO is constant,
(3) wCTO decreases, wR increases, wP is constant,
(4) wCTO decreases, wP increases, wR is constant,
(5) wP decreases, wR increases, wCTO jest is constant,
(6) wP decreases, wCTO increases, wR is constant.
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Table 2. Set of OPT equations based on wR in assumed scenarios.

Scenario Equation OPT(wR) Coefficient ai Coefficient bi

1 OPT(wr) = a1wr + b1 a1 = kCTOCTOnorm b1 = OPTstart − a1wRstart

2 OPT(wr) = a2wr + b2 a2 = kPPnorm b2 = OPTstart − a2wRstart

3 OPT(wr) = a3wr + b3 a3 = kRRnorm b3 = OPTstart − a3wRstart

4 OPT(wr) = a4wr + b4 a4 = kPPnorm − kCTOCTOnorm b4 = OPTstart − a4wRstart

5 OPT(wr) = a5wr + b5 a5 = kRRnorm + kPPnorm b5 = OPTstart − a5wRstart

6 OPT(wr) = a6wr + b6 a6 = kZEZEnorm + kCTOCTOnorm b6 = OPTstart − a6wRstart

Calculating bi involves determining the initial value of OPT at a given wR.

4. Analysis of the Proposed Method: Achieved OPT Values and
Operational Priorities

Adopting different priorities, such as emphasizing high throughput instead of avail-
ability, can lead to different assessments of terminal performance. Changing the weights
assigned to individual parameters in the evaluation model impacts which aspects of ter-
minal operations are highlighted. As a result, a terminal can receive a higher or lower
assessment depending on whether the priority is throughput or availability.

Priority on Availability
An availability-focused approach is crucial when handling hazardous or sensitive

goods, such as chemicals, explosives, pharmaceuticals, or medical equipment. In such
cases, minimizing the risk of equipment or system failures that could lead to accidents,
environmental contamination, or loss of valuable goods is paramount. High availability
ensures the safety of workers, the environment, and cargo while also meeting legal and
insurance requirements.

Another example of prioritizing availability is during the fulfillment of contracts with
key clients who demand high-quality service and availability. Maintaining high availabil-
ity is essential for customer satisfaction, avoiding contractual penalties, and sustaining
long-term business relationships. High availability builds the terminal’s reputation as
a trustworthy partner and ensures smooth operations within the broader supply chain,
where delays or failures can significantly impact the entire logistics network. Ensuring
uninterrupted operations is critical for maintaining supply chain fluidity and minimizing
delays and additional costs.

Priority on Operation Time
Operation time is a priority when handling perishable goods such as food, flowers,

or other products with a short shelf life. Quick handling is necessary to maintain product
quality and ensure timely delivery. Reducing operation time minimizes the risk of product
spoilage and customer dissatisfaction.

An example of this priority is maintaining strict schedules, where delays can cause
knock-on effects at other transfer points (e.g., ports). Fast handling reduces ship port
stays, which saves costs for shipowners and maintains schedules, potentially making the
terminal more appealing for future operations. Additionally, fast operations are essential
during peak traffic periods (e.g., pre-holiday seasons) when the terminal must handle more
containers in a short period. Effective time management increases terminal throughput
during critical periods, preventing congestion and delays.

Priority on Throughput
Throughput becomes a priority when the terminal handles large shipping lines re-

quiring the processing of significant container volumes in a short timeframe. Increasing
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the number of handled cycles per hour is essential to meet customer demands. High
throughput enables the handling of more ships and increases the terminal’s revenue.

When a terminal competes with others in the region, demonstrating high efficiency
and the ability to manage large volumes can attract new clients. Additionally, when a
terminal has invested in modern equipment and infrastructure capable of handling higher
container volumes, maximizing operational capacity helps achieve a return on investment.
High throughput translates to increased revenue and cost efficiency.

Balanced Weights—A Comprehensive Approach
Aside from emphasizing specific strategies, a balanced approach is also viable. This is

often seen in the implementation of long-term sustainable development strategies, where
a terminal aims to maintain a stable market position through balanced management of
all operational aspects. Equal weighting of availability, operation time, and throughput
is beneficial when serving diverse clients with varying needs and expectations, allowing
for flexible adaptation to individual client requirements and fostering long-term business
relationships and loyalty.

Balanced weighting can also support terminal operations aimed at continuous process
optimization by focusing on all key performance indicators (KPIs). This improves overall
terminal performance and competitiveness.

Scenario analysis of weight changes
The assumptions for the calculations remain the same as in Section 3.2:

- Availability R = 0.95
- Cumulative Operation Time CTOcumulative = 120 s
- Throughput P = 30 cycles/hour

OPT calculations were conducted for the following scenarios:

1. wR = 0.6 decreases to 0.2, wCTO increases from 0.2 to 0.6, wP remains constant at 0.3,
2. wR = 0.6 decreases to 0.2, wP increases from 0.2 to 0.6, wCTO r remains constant at 0.3,
3. wCTO = 0.6 decreases to 0.2, wR increases from 0.2 to 0.6, wP remains constant at 0.3,
4. wCTO = 0.6 decreases to 0.2, wP increases from 0.2 to 0.6, wR remains constant at 0.3,
5. wP = 0.6 decreases to 0.2, wR increases from 0.2 to 0.6, wCTO remains constant at 0.3,
6. wP = 0.6 decreases to 0.2, wCTO increases from 0.2 to 0.6, wR remains constant at 0.3.

Table 3 presents the results for the first scenario.

Table 3. OPT calculation results for scenario 1.

wR wCTO wP OPT

0.6 0.2 0.2 0.5545

0.55 0.25 0.2 0.5659

0.5 0.3 0.2 0.5773

0.45 0.35 0.2 0.5886

0.4 0.4 0.2 0.6

0.35 0.45 0.2 0.6114

0.3 0.5 0.2 0.6227

0.25 0.55 0.2 0.6341

0.2 0.6 0.2 0.6455

It can be observed that reducing the priority of availability while increasing the
weight of operation time leads to an increase in the terminal’s evaluation. The function
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for this scenario is OPT(wR) = −0.2273(wR) + 0.6909. Table 4 shows the OPT functions for
each scenario.

Table 4. OPT function parameters for each scenario.

Scenario Function OPT(wR) OPT for wR = 0.6 OPT for wR = 0.2

1 OPT(wR) = −0.2273·wR + 0.6909 0.5545 0.6455

2 OPT(wR) = −0.0455·wR + 0.6091 0.5819 0.6

3 OPT(wR) = 0.2273·wR + 0.4182 0.5545 0.5637

4 OPT(wR) = −0.2273·wR + 0.7818 0.6455 0.7364

5 OPT(wR) = −0.0455·wR + 0.5818 0.5545 0.5727

6 OPT(wR) = −0.1818·wR + 0.6818 0.5727 0.6091

From the functions and initial and final results, the influence of changing parameter
weights on terminal evaluation can be analyzed.

In scenario 3, where availability is clearly dominant, increasing the weight of availabil-
ity wR leads to a significant rise in the OPT value. This demonstrates that availability has a
dominant impact on the terminal’s assessment when it is prioritized, while the weights
of other parameters, such as throughput wP, remain constant. The operation time CTO is
crucial in scenarios where its weight increases, indicating its fundamental role in termi-
nal efficiency. A high weight assigned to operation time directly translates into a better
assessment of the terminal’s performance, suggesting that reducing the time required to
carry out operations is a priority for optimization. Time efficiency is a vital operational
indicator because it enables faster container handling, minimizes bottlenecks, and increases
overall throughput. In practice, this means that terminals capable of optimizing opera-
tion execution time gain competitiveness and better meet the requirements of customers
and shipowners. Faster operations also contribute to increased customer satisfaction and
improved cargo turnover rates.

Examining the results for scenario 1, it can be observed that decreasing the weight of
availability wR and simultaneously increasing the weight of operation time wCTO leads to
an increase in the OPT value. This indicates that operation time plays a key role in the termi-
nal’s assessment in this scenario. Similarly, in scenario 6, increasing the weight of operation
time while decreasing the weight of throughput wP also leads to a rise in OPT, underscoring
the importance of time efficiency in operational processes. Availability is a significant factor
influencing the assessment, especially in scenarios where its weight increases. Although its
impact on the assessment is evident, it often yields to the significance of operation time.
Operational stability and minimization of failures are crucial for ensuring the smooth func-
tioning of the terminal, particularly when handling valuable or sensitive goods and when
collaborating with demanding clients. High availability translates into reduced operational
risk and increased certainty of operations, which is strategically important for long-term
contracts and maintaining a positive image of the terminal. However, in situations where
speed and dynamism of handling are critical, availability may give way to the importance
of time efficiency.

Throughput is the dominant parameter in scenarios 4 and 2. In the former, decreasing
the weight of operation time wCTO and increasing the weight of throughput wP indicates
the growing significance of the ability to handle a larger number of containers. Throughput
becomes an essential parameter when the key goal is to maximize the operational efficiency
of the terminal and increase revenues by handling large cargo volumes. For scenario 2,
changes in OPT are moderate; increasing the weight of throughput while decreasing the
weight of availability shows that the terminal may prefer the ability to quickly handle
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large quantities of cargo, which can be crucial in a competitive market environment, es-
pecially during peak traffic periods. Throughput affects the terminal’s assessment, but its
importance is more moderate compared to availability and operation time. While high
throughput denotes the terminal’s ability to handle more containers per unit of time—
which is beneficial for increasing revenues and operational efficiency—its impact on the
performance assessment is less if other key parameters, such as availability and operation
time, are not at adequately high levels. Throughput reflects more the terminal’s capacity
to process large volumes in a short time, which may be less critical in scenarios requiring
greater precision and availability. Nevertheless, with an appropriate balance with other pa-
rameters, it can serve as a factor supporting the improvement of the assessment, especially
in the context of maximizing the financial and operational efficiency of the terminal.

Each of these scenarios highlights how changing the weights of parameters affects the
overall assessment of the terminal, allowing for the adjustment of operational strategies to
evolving priorities and business requirements.

The chosen method, based on normalization, provides a straightforward and transpar-
ent framework for evaluating container terminal performance. By scaling all parameters to
a common range [0, 1] the method ensures comparability and eliminates the need for sub-
jective definitions, such as membership functions in fuzzy logic. However, normalization
has its limitations.

One challenge is the reliance on predefined parameter ranges, which may need peri-
odic updating to reflect changes in operational conditions or technological advancements.
Additionally, normalization treats all parameters independently, which may not fully cap-
ture complex interdependencies unless addressed through weight adjustments or scenario-
based analysis. Despite these limitations, normalization remains a robust and adaptable
tool, particularly in contexts where simplicity and clarity are critical.

5. Conclusions
The normalization-based approach offers significant practical advantages in container

terminal management. First, it enables real-time performance monitoring by provid-
ing a unified metric for evaluating key operational parameters. This makes it easier for
decision-makers to identify areas requiring improvement, such as reducing Non-Productive
Operations (NNO) or optimizing Energy Consumption (ZE).

Additionally, the method supports strategic planning by allowing the flexible adjust-
ment of parameter weights to reflect changing priorities, such as increasing throughput
during high-demand periods or reducing energy costs during off-peak times. Unlike meth-
ods that rely on qualitative assessments, normalization offers a quantitative foundation that
is easily interpretable and comparable across different scenarios. This makes it particularly
valuable for applications like capital allocation, site selection, and stakeholder collaboration,
where transparent and consistent evaluation is essential.

The calculation examples and the analysis of parameter weight impacts confirmed
the model’s effectiveness in reflecting real working conditions, especially in dynamic
and variable environments. The model allows for the identification of areas that require
improvement and enables a faster response to changing operational conditions.

The developed methodology was validated through scenario simulations, which
assessed its practical applicability. The analysis of parameter weight impacts revealed that
prioritizing different operational aspects leads to varied assessment results. Notably, it was
highlighted that operation time has a dominant influence on the final assessment when its
weight increases, whereas Availability plays a crucial role in contexts requiring stability
and risk minimization. Throughput, while important, was found to have a lesser impact
compared to other parameters unless it is prioritized. The results confirm that a fuzzy logic-



Logistics 2025, 9, 2 17 of 18

based approach is effective in modeling complex operational environments, allowing for
flexible adaptation of the evaluation to changing conditions. The presented solutions can
serve as a foundation for strategic and operational decision-making in container terminals.

Future work includes extending the model to incorporate additional variables and
integrating artificial intelligence algorithms to more accurately represent terminal opera-
tional complexity. The development of real-time decision-support tools based on dynamic
fuzzy logic models could further contribute to increased terminal efficiency and opera-
tional flexibility.
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