Impact of Imidacloprid Resistance on the Demographic Traits and Expressions of Associated Genes in Aphis gossypii Glover
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects and Insecticide
2.2. Toxicity Bioassays
2.3. Fitness Comparisons
2.4. RNA Extraction and cDNA Synthesis
2.5. Quantitative Real-Time PCR
2.6. Data Analysis
2.7. Life Table Data Analysis
2.8. Population Projection
3. Results
3.1. Toxicity of Imidacloprid to SS and ImR Strains of Aphis gossypii
3.2. Impact of Imidacloprid Resistance on Developmental Stages and Adult Longevity of SS and ImR Aphis gossypii
3.3. Reproduction and Life Table Parameters of SS and ImR Aphis gossypii
3.4. Population Projection
3.5. Expression Profile of Genes Related to Development and Reproduction in ImR and SS Strains
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops: An Identification and Information Guide; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Hullé, M.; Chaubet, B.; Turpeau, E.; Simon, J. Encyclop’ Aphid: A website on aphids and their natural enemies. Entomol. Gen. 2020, 40, 97–101. [Google Scholar] [CrossRef]
- Jactel, H.; Verheggen, F.; Thiéry, D.; Escobar-Gutiérrez, A.J.; Gachet, E.; Desneux, N. Alternatives to neonicotinoids. Environ. Int. 2019, 129, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Yin, M.-Z.; Shen, J. Nanoparticle-based nontransformative RNA insecticides for sustainable pest control: Mechanisms, current status and challenges. Entomol. Gen. 2022. [Google Scholar] [CrossRef]
- Kim, D.S.; Zhang, J. Strategies to improve the efficiency of RNAi-mediated crop protection for pest control. Entomol. Gen. 2022. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.-C.; Du, W.-M.; Zang, L.-S.; Ruan, C.-C.; Zhang, J.-J.; Zou, Z.; Monticelli, L.S.; Harwood, J.D.; Desneux, N. Multi-parasitism: A promising approach to simultaneously produce Trichogramma chilonis and T. dendrolimi on eggs of Antheraea pernyi. Entomol. Gen. 2021, 41, 627–636. [Google Scholar] [CrossRef]
- Liang, H.-Y.; Yang, X.-M.; Sun, L.-J.; Zhao, C.-D.; Chi, H.; Zheng, C.-Y. Sublethal effect of spirotetramat on the life table and population growth of Frankliniella occidentalis (Thysanoptera: Thripidae). Entomol. Gen. 2021, 41, 219–231. [Google Scholar] [CrossRef]
- Hafeez, M.; Ullah, F.; Khan, M.M.; Wang, Z.; Gul, H.; Li, X.; Huang, J.; Siddiqui, J.A.; Qasim, M.; Wang, R.-L. Comparative low lethal effects of three insecticides on demographical traits and enzyme activity of the Spodoptera exigua (Hübner). Environ. Sci. Pollut. Res. 2022, 29, 60198–60211. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Ullah, F.; Gul, H.; Tariq, K.; Desneux, N.; Gao, X.; Song, D. Thiamethoxam induces transgenerational hormesis effects and alteration of genes expression in Aphis gossypii. Pestic. Biochem. Physiol. 2020, 165, 104557. [Google Scholar] [CrossRef]
- Ragsdale, D.W.; Landis, D.A.; Brodeur, J.; Heimpel, G.E.; Desneux, N. Ecology and management of the soybean aphid in North America. Annu. Rev. Entomol. 2011, 56, 375–399. [Google Scholar] [CrossRef]
- Tomizawa, M.; Casida, J.E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 247–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thany, S.H. Neonicotinoid insecticides. In Insect Nicotinic Acetylcholine Receptors; Springer: Berlin/Heidelberg, Germany, 2010; pp. 75–83. [Google Scholar]
- Zhang, W.; Jiang, F.; Ou, J. Global pesticide consumption and pollution: With China as a focus. Proc. Int. Acad. Ecol. Environ. Sci. 2011, 1, 125. [Google Scholar]
- Ullah, F.; Gul, H.; Desneux, N.; Gao, X.; Song, D. Imidacloprid-induced hormesis effects on demographic traits of the melon aphid, Aphis gossypii. Entomol. Gen. 2019, 39, 325–337. [Google Scholar] [CrossRef]
- Shan, J.; Zhu, B.; Gu, S.; Liang, P.; Gao, X. Development of resistance to chlorantraniliprole represses sex pheromone responses in male Plutella xylostella (L.). Entomol. Gen. 2021, 41, 615–625. [Google Scholar] [CrossRef]
- Ma, K.; Tang, Q.; Zhang, B.; Liang, P.; Wang, B.; Gao, X. Overexpression of multiple cytochrome P450 genes associated with sulfoxaflor resistance in Aphis gossypii Glover. Pestic. Biochem. Physiol. 2019, 157, 204–210. [Google Scholar] [CrossRef]
- Koo, H.-N.; An, J.-J.; Park, S.-E.; Kim, J.-I.; Kim, G.-H. Regional susceptibilities to 12 insecticides of melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae) and a point mutation associated with imidacloprid resistance. Crop Prot. 2014, 55, 91–97. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, A.; Shan, T.; Dong, W.; Shi, X.; Gao, X. Cross-resistance and Fitness Cost Analysis of Resistance to Thiamethoxam in Melon and Cotton Aphid (Hemiptera: Aphididae). J. Econ. Entomol. 2020, 113, 1946–1954. [Google Scholar] [CrossRef]
- Ullah, F.; Gul, H.; Tariq, K.; Desneux, N.; Gao, X.; Song, D. Fitness costs in clothianidin-resistant population of the melon aphid, Aphis gossypii. PLoS ONE 2020, 15, e0238707. [Google Scholar] [CrossRef]
- Ullah, F.; Gul, H.; Tariq, K.; Desneux, N.; Gao, X.; Song, D. Functional analysis of cytochrome P450 genes linked with acetamiprid resistance in melon aphid, Aphis gossypii. Pestic. Biochem. Physiol. 2020, 175, 104687. [Google Scholar] [CrossRef]
- Paula, D.P.; Lozano, R.E.; Menger, J.P.; Andow, D.A.; Koch, R.L. Identification of point mutations related to pyrethroid resistance in voltage-gated sodium channel genes in Aphis glycines. Entomol. Gen. 2021, 41, 243–255. [Google Scholar] [CrossRef]
- Gassmann, A.J.; Carrière, Y.; Tabashnik, B.E. Fitness costs of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 2009, 54, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Gul, H.; Desneux, N.; Said, F.; Gao, X.; Song, D. Fitness costs in chlorfenapyr-resistant populations of the chive maggot, Bradysia odoriphaga. Ecotoxicology 2020, 29, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Sayyed, A.H.; Ahmad, M.; Crickmore, N. Fitness costs limit the development of resistance to indoxacarb and deltamethrin in Heliothis virescens (Lepidoptera: Noctuidae). J. Econ. Entomol. 2008, 101, 1927–1933. [Google Scholar] [CrossRef] [PubMed]
- Carriere, Y.; Tabashnik, B. Reversing insect adaptation to transgenic insecticidal plants. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2001, 268, 1475–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kliot, A.; Ghanim, M. Fitness costs associated with insecticide resistance. Pest. Manag. Sci. 2012, 68, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Saeed, R.; Abbas, N.; Hafez, A.M. Biological fitness costs in emamectin benzoate-resistant strains of Dysdercus koenigii. Entomol. Gen. 2021, 41, 267–278. [Google Scholar] [CrossRef]
- Fu, B.; Li, Q.; Qiu, H.; Tang, L.; Zeng, D.; Liu, K.; Gao, Y. Resistance development, stability, cross-resistance potential, biological fitness and biochemical mechanisms of spinetoram resistance in Thrips hawaiiensis (Thysanoptera: Thripidae). Pest. Manag. Sci. 2018, 74, 1564–1574. [Google Scholar] [CrossRef]
- Steinbach, D.; Moritz, G.; Nauen, R. Fitness costs and life table parameters of highly insecticide-resistant strains of Plutella xylostella (L.) (Lepidoptera: Plutellidae) at different temperatures. Pest. Manag. Sci. 2017, 73, 1789–1797. [Google Scholar] [CrossRef]
- Zhang, X.; Mao, K.; Liao, X.; He, B.; Jin, R.; Tang, T.; Wan, H.; Li, J. Fitness cost of nitenpyram resistance in the brown planthopper Nilaparvata lugens. J. Pest. Sci. 2018, 91, 1145–1151. [Google Scholar] [CrossRef]
- Ullah, F.; Gul, H.; Tariq, K.; Desneux, N.; Gao, X.; Song, D. Acetamiprid resistance and fitness costs of melon aphid, Aphis gossypii: An age-stage, two-sex life table study. Pestic. Biochem. Physiol. 2021, 171, 104729. [Google Scholar] [CrossRef]
- Naeem, A.; Hafeez, F.; Iftikhar, A.; Waaiz, M.; Güncan, A.; Ullah, F.; Shah, F.M. Laboratory induced selection of pyriproxyfen resistance in Oxycarenus hyalinipennis Costa (Hemiptera: Lygaeidae): Cross-resistance potential, realized heritability, and fitness costs determination using age-stage, two-sex life table. Chemosphere 2021, 269, 129367. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Su, H.-Y. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead)(Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer)(Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 2006, 35, 10–21. [Google Scholar] [CrossRef]
- Chi, H.; You, M.; Atlıhan, R.; Smith, C.L.; Kavousi, A.; Özgökçe, M.S.; Güncan, A.; Tuan, S.-J.; Fu, J.-W.; Xu, Y.-Y.; et al. Age-Stage, two-sex life table: An introduction to theory, data analysis, and application. Entomol. Gen. 2020, 40, 102–123. [Google Scholar] [CrossRef]
- Birch, L. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 1948, 17, 15–26. [Google Scholar] [CrossRef]
- Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Yu-Bing, H.; Hsin, C. The age-stage, two-sex life table with an offspring sex ratio dependent on female age. J. Agric. Food Res. 2011, 60, 337–345. [Google Scholar]
- Moores, G.D.; Gao, X.; Denholm, I.; Devonshire, A.L. Characterisation of insensitive acetylcholinesterase in insecticide-resistant cotton aphids, Aphis gossypii Glover (Homoptera: Aphididae). Pestic. Biochem. Physiol. 1996, 56, 102–110. [Google Scholar] [CrossRef]
- Ma, K.-S.; Li, F.; Liang, P.-Z.; Chen, X.-W.; Liu, Y.; Gao, X.-W. Identification and validation of reference genes for the normalization of gene expression data in qRT-PCR analysis in Aphis gossypii (Hemiptera: Aphididae). J. Insect Sci. 2016, 16, 17. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Chi, H.; Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin 1985, 24, 225–240. [Google Scholar]
- Chi, H. TWOSEX-MS Chart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis. 2022. Available online: http://140.120.197.173/ecology/Download/Twosex-MSChart-exe-B100000.rar (accessed on 2 September 2022).
- Akca, I.; Ayvaz, T.; Yazici, E.; Smith, C.L.; Chi, H. Demography and population projection of Aphis fabae (Hemiptera: Aphididae): With additional comments on life table research criteria. J. Econ. Entomol. 2015, 108, 1466–1478. [Google Scholar] [CrossRef] [PubMed]
- Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; Chapman and 913 Hall. Inc.: New York, NY, USA, 1993; Volume 914. [Google Scholar]
- Wei, M.; Chi, H.; Guo, Y.; Li, X.; Zhao, L.; Ma, R. Demography of Cacopsylla chinensis (Hemiptera: Psyllidae) reared on four cultivars of Pyrus bretschneideri (Rosales: Rosaceae) and P. communis pears with estimations of confidence intervals of specific life table statistics. J. Econ. Entomol. 2020, 113, 2343–2353. [Google Scholar] [CrossRef] [PubMed]
- Goodman, D. Optimal life histories, optimal notation, and the value of reproductive value. Am. Nat. 1982, 119, 803–823. [Google Scholar] [CrossRef]
- Tuan, S.J.; Lee, C.C.; Chi, H. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 2014, 70, 805–813. [Google Scholar] [CrossRef]
- Tuan, S.J.; Lee, C.C.; Chi, H. Erratum: Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 2014, 70, 1936. [Google Scholar] [CrossRef]
- Huang, H.-W.; Chi, H.; Smith, C.L. Linking demography and consumption of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae) fed on Solanum photeinocarpum (Solanales: Solanaceae): With a new method to project the uncertainty of population growth and consumption. J. Econ. Entomol. 2018, 111, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chi, H. TIMING-MSChart: A Computer Program for the Population Projection Based on Age-Stage, Two-Sex Life Table. 2022. Available online: http://140.120.197.173/ecology/Download/Timing-MSChart-exe.rar (accessed on 2 September 2022).
- Chi, H. Timing of control based on the stage structure of pest populations: A simulation approach. J. Econ. Entomol. 1990, 83, 1143–1150. [Google Scholar] [CrossRef]
- Vasquez, B. Book of Insects Records; University of Florida: Gainesville, FL, USA, 1995. [Google Scholar]
- Wu, Y.; Xu, H.; Pan, Y.; Gao, X.; Xi, J.; Zhang, J.; Shang, Q. Expression profile changes of cytochrome P450 genes between thiamethoxam susceptible and resistant strains of Aphis gossypii Glover. Pestic. Biochem. Physiol. 2018, 149, 1–7. [Google Scholar] [CrossRef]
- Ma, K.; Tang, Q.; Xia, J.; Lv, N.; Gao, X. Fitness costs of sulfoxaflor resistance in the cotton aphid, Aphis gossypii Glover. Pestic. Biochem. Physiol. 2019, 158, 40–46. [Google Scholar] [CrossRef]
- Gul, H.; Ullah, F.; Biondi, A.; Desneux, N.; Qian, D.; Gao, X.; Song, D. Resistance against clothianidin and associated fitness costs in the chive maggot, Bradysia odoriphaga. Entomol. Gen. 2019, 39, 81–92. [Google Scholar] [CrossRef]
- Abbas, N.; Khan, H.; Shad, S.A. Cross-resistance, stability, and fitness cost of resistance to imidacloprid in Musca domestica L., (Diptera: Muscidae). Parasitol. Res. 2015, 114, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Wang, Q.; Qi, H.; Wang, Q.; Yuan, H.; Rui, C. Resistance selection of indoxacarb in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): Cross-resistance, biochemical mechanisms and associated fitness costs. Pest Manag. Sci. 2018, 74, 2636–2644. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-H.; Gong, Y.-J.; Chen, J.-C.; Su, X.-C.; Cao, L.-J.; Hoffmann, A.A.; Wei, S.-J. Laboratory selection for resistance to sulfoxaflor and fitness costs in the green peach aphid Myzus persicae. J. Asia-Pac. Entomol. 2018, 21, 408–412. [Google Scholar] [CrossRef]
- Hafeez, M.; Liu, S.; Jan, S.; Ali, B.; Shahid, M.; Fernández-Grandon, G.M.; Nawaz, M.; Ahmad, A.; Wang, M. Gossypol-induced fitness gain and increased resistance to deltamethrin in beet armyworm, Spodoptera exigua (Hübner). Pest Manag. Sci. 2018, 75, 683–693. [Google Scholar] [CrossRef]
- Ray, A.; Gadratagi, B.-G.; Rana, D.K.; Ullah, F.; Adak, T.; Govindharaj, G.-P.-P.; Patil, N.B.; Mahendiran, A.; Desneux, N.; Rath, P.C. Multigenerational Insecticide Hormesis Enhances Fitness Traits in a Key Egg Parasitoid, Trichogramma chilonis Ishii. Agronomy 2022, 12, 1392. [Google Scholar] [CrossRef]
- Ullah, F.; Gul, H.; Tariq, K.; Hafeez, M.; Desneux, N.; Gao, X.; Song, D. RNA interference-mediated silencing of ecdysone receptor (EcR) gene causes lethal and sublethal effects on melon aphid, Aphis gossypii. Entomol. Gen. 2022, 42, 791–797. [Google Scholar] [CrossRef]
- Zera, A.J.; Denno, R.F. Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 1997, 42, 207–230. [Google Scholar] [CrossRef] [Green Version]
- Dhadialla, T.S.; Carlson, G.R.; Le, D.P. New insecticides with ecdysterioidal and juvenile hormone activity. Annu. Rev. Entomol. 1998, 43, 545–569. [Google Scholar] [CrossRef] [Green Version]
- Petryk, A.; Warren, J.T.; Marqués, G.; Jarcho, M.P.; Gilbert, L.I.; Kahler, J.; Parvy, J.-P.; Li, Y.; Dauphin-Villemant, C.; O’Connor, M.B. Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proc. Natl. Acad. Sci. 2003, 100, 13773–13778. [Google Scholar] [CrossRef] [Green Version]
- Ghanim, M.; Kontsedalov, S. Gene expression in pyriproxyfen-resistant Bemisia tabaci Q biotype. Pest Manag. Sci. 2007, 63, 776–783. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Singh, H.; Dixit, S.; Mendu, V.; Verma, P.C. Molecular characterization of vitellogenin and vitellogenin receptor of Bemisia tabaci. PLoS ONE 2016, 11, e0155306. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Primer Sequences (5′-3′) |
---|---|
Vg-F | ACCACTGCACACTCGGATAA |
Vg-R | CGGCTTGCATGAACCAGTAG |
EcR-F | CACAGCACAACAACAATTCGTCC |
EcR-R | CCGCATACCAGGCACAGTTCTTC |
USP-F | GGATAGAACTGAACTTGGCTGC |
USP-R | CGTAATGAAGGGAGCCGAAG |
JHBP-F | GCTCGGTTGGCCTATTGAAG |
JHBP-R | GCTTGATCCTCGCCAAATCC |
JHAMT-F | ATGTGGACCAGGCGATGTAA |
JHAMT-R | AGAACAGTCATTGGCATTTTC |
JHEH-F | CTTATGTTGCACGGATGGCC |
JHEH-R | ATCGCCACCTTGAACGTAGA |
EF1α-F | GAAGCCTGGTATGGTTGTCGT |
EF1α-R | GGGTGGGTTGTTCTTTGTG |
β-Actin-F | GGGAGTCATGGTTGGTATGG |
β-Actin-R | TCCATATCGTCCCAGTTGGT |
Strains | n a | Slope ± SE b | LC50 mgL−1 (95% CL) c | χ2 | df d | p-Value | RR e |
---|---|---|---|---|---|---|---|
SS | 360 | 1.961 ± 0.229 | 0.443 (0.359–0.540) | 9.467 | 13 | 0.737 | - |
ImR | 360 | 2.398 ± 0.241 | 12.312 (10.393–14.491) | 7.433 | 13 | 0.878 | 27.79 |
Stage | SS (Mean ± SE) | ImR (Mean ± SE) |
---|---|---|
First-instar nymph | 1.82 ± 0.08 b | 2.10 ± 0.08 a |
Second-instar nymph | 1.61 ± 0.10 b | 1.89 ± 0.07 a |
Third-instar nymph | 1.42 ± 0.08 a | 1.43 ± 0.08 a |
Fourth-instar nymph | 1.50 ± 0.10 b | 1.78 ± 0.09 a |
Pre-adult | 6.37 ± 0.08 b | 7.19 ± 0.11 a |
Adult (Female) | 22.45 ± 0.87 a | 17.30 ± 0.89 b |
Parameters a | SS (Mean ± SE) | ImR (Mean ± SE) |
---|---|---|
R0 (offspring/individual) | 43.85 ± 2.75 a | 32.43 ± 2.49 b |
r (day−1) | 0.2673 ± 0.0044 a | 0.2333 ± 0.0053 b |
λ (day−1) | 1.3065 ± 0.0057 a | 1.2628 ± 0.0067 b |
T (days) | 14.14 ± 0.18 b | 14.91 ± 0.27 a |
F (nymphs/female) | 46.16 ± 2.37 a | 35.05 ± 2.19 b |
RPd(days) | 17.63 ± 0.78 a | 13.97 ± 0.80 b |
TPRP (days) | 6.79 ± 0.13 b | 8.00 ± 0.24 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, F.; Xu, X.; Gul, H.; Güncan, A.; Hafeez, M.; Gao, X.; Song, D. Impact of Imidacloprid Resistance on the Demographic Traits and Expressions of Associated Genes in Aphis gossypii Glover. Toxics 2022, 10, 658. https://doi.org/10.3390/toxics10110658
Ullah F, Xu X, Gul H, Güncan A, Hafeez M, Gao X, Song D. Impact of Imidacloprid Resistance on the Demographic Traits and Expressions of Associated Genes in Aphis gossypii Glover. Toxics. 2022; 10(11):658. https://doi.org/10.3390/toxics10110658
Chicago/Turabian StyleUllah, Farman, Xiao Xu, Hina Gul, Ali Güncan, Muhammad Hafeez, Xiwu Gao, and Dunlun Song. 2022. "Impact of Imidacloprid Resistance on the Demographic Traits and Expressions of Associated Genes in Aphis gossypii Glover" Toxics 10, no. 11: 658. https://doi.org/10.3390/toxics10110658
APA StyleUllah, F., Xu, X., Gul, H., Güncan, A., Hafeez, M., Gao, X., & Song, D. (2022). Impact of Imidacloprid Resistance on the Demographic Traits and Expressions of Associated Genes in Aphis gossypii Glover. Toxics, 10(11), 658. https://doi.org/10.3390/toxics10110658