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Abstract: Venlafaxine is an antidepressant used worldwide. Therefore, studies to confirm its safe
use are mandatory. This report evaluated the drug DNA damage capacity in the brain and liver of
ICR mice, and its oxidative effect on DNA, lipids, and proteins, as well as the amount of nitrites,
also in the brain and liver. Determinations were made at 2, 6, 12, and 24 h post-treatment, excluding
DNA oxidation that was observed at 2 h. The tested doses of venlafaxine were 5, 50, and 250 mg/kg.
The results showed DNA damage in the brain with the two more elevated doses of venlafaxine at 2
and 6 h post-treatment and also at 12 h in the liver. The comet assay plus the FPG enzyme showed
DNA damage in both organs with all doses. The two high doses increased lipoperoxidation in the
two tissues from 6 to 12 h post-administration. Protein oxidation increased with the three doses,
mainly from 2 to 12 h, and nitrite content was elevated only with the high dose in the liver. The drug
was found to affect both tissues, although it was more pronounced in the liver. Interestingly, DNA
oxidative damage was observed even with a dose that corresponds to the therapeutic range. The
clinical relevance of these findings awaits further investigations.

Keywords: venlafaxine; genotoxicity; molecular oxidation; mouse brain and liver

1. Introduction

Venlafaxine was the first synthesized antidepressant drug belonging to the group
of inhibitors of serotonin and noradrenaline recapture drugs. It is a racemic compound
named 1-[2-dimethylamine-1-(4-methoxyphenil)ethyl]ciclohexan-1-ol [1]. The chemical
is metabolized in the liver by the action of the cytochrome P450 enzyme to the active
metabolite O-desmethylvenlafaxine through the processes of conjugation and oxidation
to a lesser extent. Venlafaxine and its main metabolite exhibit linear kinetics with an
elimination half-life of 5 ± 2 h and 11 ± 2 h, respectively. Regarding the clinical use of this
antidepressant, the maximum recommended dose is 375 mg/day [2].

The drug has been recommended in patients with major depression but also for the
improvement of other diseases, including generalized anxiety disorders, panic attacks,
social phobia, and neuropathic pain, among its various uses [3]. With respect to its toxicity,
it has been observed that the drug may cause various collateral organic damage, such as
neurological and cardiovascular effects, as well as rhabdomiolisis, interstitial pneumonitis,
and prostatism. In addition, a controlled study performed in rats also demonstrated a
number of histopathological damages in the liver, kidney, and stomach [4]. With respect to
the genotoxic field, a report by Brambilla in 2009 [5] mentioned that no damage had been
shown by venlafaxine in various in vitro and in vivo studies; however, Lacaze et al. [6]
reported a study conducted in hemocytes of blue mussel (Mytilus edulis), where increased
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phagocytosis activity was found by exposure to venlafaxine, as well as moderate DNA
damage determined with the comet assay. Another report using cultured human lympho-
cytes demonstrated a significant increase in chromosomal aberrations, mainly chromatid
breaks and sister chromatid unions, as well as micronuclei in binuclear cells [7]. Finally,
Madrigal-Bujaidar et al. [8], using the micronucleus test in mice, determined significant
genotoxic damage, as well as bone marrow proliferation decrease, by registering the num-
ber of immature and mature erythrocytes. Moreover, in another area, a study conducted
in rat hepatocytes demonstrated that antidepressants induced lipid peroxidation, cellular
GSH content depletion, and elevation of the GSSG level and consequently increased the
formation of ROS [9]. These findings are of high significance in light of the well-known
knowledge that oxidative stress is a significant etiological factor that causes lipid, protein,
and DNA damage and because these alterations may be associated with a number of genetic
damages that may trigger the development of numerous diseases, including cancer [10].

Therefore, the design of the present report was based on the following points: initially,
because depression is a public health concern that constitutes one of the most common
mental diseases worldwide and because it is also the second leading disorder that causes
years of living with disability, a problem with high prevalence among people of working
ages, depression results in a strong economic burden [11]. Moreover, because of the
mentioned importance, the use of antidepressant drugs has been highly relevant to combat
the disease and, in this form, to improve the socioeconomic burden. However, some of
the antidepressant drugs used have been reported to possess variable genotoxic effects,
including venlafaxine. Therefore, based on the previous information, the first aim of
the present report was to evaluate the genotoxic potential of venlafaxine with a different
approach, which includes the use of the comet assay in an in vivo kinetic time strategy
design in mouse brain and liver cells. For this purpose, we studied DNA damage at 2, 6, 12,
and 24 h post-administration of the drug; moreover, the oxidative capacity of venlafaxine
was determined in the same organs. In this case, the DNA oxidative potential was examined
after 2 h of administration, and the lipid and protein oxidation, as well as the nitrite content,
was determined at 2, 6, 12, and 24 h.

2. Materials and Methods
2.1. Chemicals and Animals

Venlafaxine was obtained as the usually prescribed antidepressant (Effexor, Pfizer,
México City, México), CAS number 136434-34-9, and molecular formula C17H27NO2.
The following substances were obtained from Sigma Chemicals (St Louis, MO, USA): Tri-
ton X-100, dimethyl sulfoxide (DMSO), methyl metanesulfonate (MMS) sodium chloride,
tris, normal melting point agarose (NMPA), low melting point agarose (LMPA), calcium,
magnesium-free phosphate-buffered saline (PBS), ethidium bromide (EB), trypan blue
solution, N-lauroyl-sarcosine (sodium salt), HEPES, bovine serum albumin (BSA), Bradford
reagent, thiobarbituric acid (TBA), trichloroacetic acid (TCA), 2,4-dinitrophenylhydrazine
(DNPH), guanidine, sulfanilamide, N-1-(naftil) etilendiamine dichloride, and the enzyme
formamidopyrimidine-DNA glycosylase (FPG). In addition, potassium hydroxide, potas-
sium chloride, sodium hydroxide, EDTA, ethanol, ethyl acetate, formic acid, methanol, and
hydrochloric acid (HCl) were purchased from Baker (Phillipsburg NJ, USA).

For the assay, we used 100 six-week-old male mice (ICR) with a mean weight of 24 g
(Harlan Laboratory, Mexico City, Mexico). Five animals per cage and per experimental
group were placed in polycarbonate cages at 24 ◦C, 12 h dark–light cycles, and 50% relative
humidity, and the animals had free access to water and food (Rodent Lab Chow 5001,
Purina). The experiment was approved by the Bioethics Committee of the Hidalgo State
Autonomous University (11 January 2021. Pachuca, Hidalgo, México), and it was started
after a week of mouse conditioning in the Genetics Animal Facility of the Laboratory
of Genetics, according to the previously mentioned conditions. Moreover, the animal
management of the present study followed the international guidelines and regulations
described in ARRIVE guidelines 2.0 [12].
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With respect to the single cell gel electrophoresis assay (SCGEA), we used the next
groups of animals, each of them with 25 mice: a control group of mice was intragastrically
(IG) given purified water, a positive control group was intraperitoneally (IP) injected
with 150 mg/kg MMS, and three additional groups were IG administered venlafaxine
with 5, 50, and 250 mg/kg, respectively. The drug was dissolved in purified water (0.5,
5, and 25 mg/mL) to finally administer the corresponding doses. The last tested dose
was approximately 80% of the LD50 previously determined in our laboratory by the IG
path (using the method of Lorke [13]); besides, the lower dose agreed with the high
quantity prescribed for the daily therapeutic drug in humans [2]. Concerning the oxidative
tests, in the same mice used for the comet assay, we applied the same chemicals and
used the same routes and doses as already described for the negative control, positive
control, and venlafaxine-treated groups. Mice were euthanized by cervical dislocation, and
determinations of each oxidative and genotoxic parameter were conducted at 2, 6, 12, and
24 h post-administration (five animals per group), with the exception of the modified comet
assay with the FPG enzyme. In this case, the evaluation was made at 2 h only because the
results observed with the classic SCGEA suggested that DNA damage was rapidly induced
by the drug.

2.2. SCGEA Standard Method

The comet assay is based on the migration of negatively charged, fragmented DNA
strands when subjected to an electrical field. The procedure includes the preparation of a
cell suspension layered onto slides, the cell lysis in a high salt solution, the DNA unwinds,
and its electrophoresis under alkali conditions before being stained with a fluorescent dye.
In the following lines, we describe the procedure made in the present report. Initially, we
obtained the whole brain and a fragment of the right liver lobule from each mouse. With
respect to the brain, approximately 4 mm of the tissue was placed in 500 µL of cold PBS
and several times hit with a syringe rod to eventually place 40 µL of the cell suspension in
a tube on ice. The liver tissue was disjoined with scissors, the clumps were detached, and
the cells were placed in PBS at 4 ◦C. The method of the SCGEA followed the guidelines
published by OECD 489 [14]. We used approximately 10,000 cells/mL in each tested sample
with the viability of no less than 80% according to the trypan blue staining method.

Fully frosted slides were initially coated with three layers of agarose. The first layer
consisted of 0.12 mL of 1% NMPA made in PBS. Above this layer of agarose, we aggregated
a second sheet formed by 0.075 mL of 1% LMPA prepared in PBS plus 0.02 mL of brain
or liver mass, and the last coat was formed by 0.075 mL of 1% LMPA. From each animal,
three slides protected from light were made per treatment/exposure/time and stored
for 24 h at 4 ◦C in lysis solution (NaCl 2.5 M EDTA 100 mM, tris 10 mM, 1% sodium
sarcosinate, 1% Triton X-100, and 10% DMSO at pH 10). Slides were then placed in an
electrophoresis chamber containing 300 mM NaOH plus 1 mM EDTA at pH > 13 and
4 ◦C for 20 min before the electrophoresis (25 V, 250 mA, and pH > 13 for 20 min). Then,
the slides were washed with Tris (0.4 M, pH 7.5) for 5 min. The stain was made with EB
(25 µg/mL), and finally, the length-to-width relationship was determined in 100 nucleoids
per individual/treatment/time using an epifluorescence microscope (Axioscope, Carl
Zeiss, Jena, Germany) equipped with emission and excitation filters of 488 and 565 nm,
respectively. In addition, the microscope was adjusted to the image analyzer Image-Pro Plus
(Media Cybernetics, Silver Spring, MD, USA). This type of comet measurement includes
two steps: tail length measurement and nucleoid diameter measurement [15,16].

2.3. SCGEA with the FPG Enzyme

To evaluate the capacity of venlafaxine to oxidize the DNA molecule, we applied the
comet assay plus the addition of the FPG enzyme. Slides parallel to those prepared for the
previous assay were used. In this second comet method, however, after cells went through
the lysis phase, they were laundered with the enzyme buffer (3 times for 5 min each). The
enzyme buffer was composed of 40 mM HEPES, 0.1 M KCl, EDTA 0.5 mM, and albumin
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bovine serum 0.2 mg/mL, pH 8.0. Then, 10 µg of the FPG enzyme was diluted in 2 mL
of the buffer solution to produce a stock solution of 5 µg/mL, and 10 µL of this solution
was aggregated to 40 µL of the buffer solution to obtain an FPG concentration of 1 µg/mL.
From this preparation, 50 µL of the enzyme was added to each slide; one of these (per
mouse) was exposed to 50 µL of the FPG buffer after 2 h of venlafaxine administration.
In the next step, all slides were put in a wet chamber for 45 min at 37 ◦C. After that, the
slides were located at 4 ◦C for 5 min, the coverslips were detached, and DNA denaturation
was made with a solution of 300 mM NaOH plus 1 mM EDTA at pH 13 for 40 min; at the
end, electrophoresis was accomplished at 25 V, 300 mA, and pH > 13 for 30 min [17]. After
that, the scoring and statistical analysis were performed as described above for the classic
SCGEA method. To obtain the DNA oxidation, the values which were determined with the
enzyme buffer were subtracted from the results obtained with the FPG solution.

2.4. Total Protein Evaluation

The indicated evaluation was made according to the method of Bradford [18]. The
brain and the liver were homogenized in cold PBS (1:10 w/v), and 0.1 mL of the homogenate
from each sample was centrifuged at 13,500× g for 10 min. Then, to 0.01 mL of the obtained
supernatant, we added 2.5 mL of Bradford’s reagent plus 0.09 mL of deionized water. The
mixture was agitated for 5 min, and the absorbances of the samples were measured at
595 nm using a blank made with 0.1 mL of deionized water plus 2.5 mL of Bradford’s
reagent. The results were interpolated in a bovine serum albumin standard curve (from 0.1
to 1.0 mg/mL) and expressed as mg protein/g tissue.

2.5. Evaluation of Lipoperoxidation

Malondialdehyde (MDA) is one of the final products of polyunsaturated fatty acids
peroxidation in cells. MDA level is a commonly known marker of oxidative stress and
antioxidant status. This determination was made according to the method of Buege and
Aust [19]. Initially, the brain and the liver were homogenized 1:10 (w/v) in cold PBS. After
that, in a test tube per sample, we added 0.5 mL of the homogenate from each tissue plus
2 mL of the reaction mixture (TCA-TBA-HCl) at 15% w/v, 0.375% w/v, and 0.25 N, respec-
tively. The samples were boiled for 15 min, cooled for 10 min in an ice bath, and centrifuged
at 2600× g for 10 min. The absorbances of the supernatant were spectrophotometrically
measured (Spectronic 20, GenesysTM, Baton Rouge, LA, USA) at 532 nm, utilizing as a
blank 0.5 mL of PBS and 2.5 mL of the reaction mixture. The concentration of MDA was
estimated by using an extinction coefficient of 1.56 × 105 M−1 cm−1, and the results were
shown as nmol MDA/mg protein.

2.6. Evaluation of Oxidized Proteins

Protein oxidation is mainly caused by reactive oxygen and nitrogen species, is thought
to play a major role in various oxidative processes within the cells, and is implicated in
the development of many human diseases. In this determination, we followed the method
of Levine et al. [20] to determine the reactive carbonyl content. The liver and the brain of
each mouse were homogenized in PBS 1:10 (w/v). Later, we added 0.2 mL of the tissue
homogenate plus 0.5 mL of DNPH (10 mM in HCl 2 mM). The blend remained at rest in
the dark at room temperature for 1 h, and the generated hydrazones were precipitated
with 0.5 mL of 20% TCA. Each sample was centrifuged three times at 13,500× g for 10 min,
and each time, the suspension was washed with 1 mL of ethyl acetate–ethanol 1:1. The
pellet was resuspended in 1 ml of hydrochlorate guanidine 6 M, incubated at 37 ◦C for
15 min, and centrifuged at 11,000× g for 10 min. The blank was incubated at 37 ◦C with
0.5 mL of HCl 2 M without DNPH. The amount of carbonyl was spectrophotometrically
registered in a range from 350 to 375 nm (Spectronic 20, GenesysTM, Baton Rouge, LA,
USA), and its concentration was calculated by using 22,000 M−1cm−1 as the coefficient of
molar absorbance. The results were expressed as nmol of CO/mg protein.
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2.7. Nitrite Determination

Nitrite may generate NO and, in this form, participates in numerous biological path-
ways, including a number of cell injuries and diseases. Here we show the nitrite deter-
mination. The brain and the liver were washed with PBS 0.01 M at 4 ◦C, pH 7.4. Then,
a homogenate was performed with each sample in cold PBS (1:4 w/v). The mixture was
centrifuged at 2600× g for 20 min, and the supernatant was treated with the Griess reactive
to obtain the nitrite concentration [21]. The procedure consisted of the mixing of 0.1 mL
of the supernatant plus 0.6 mL of distilled water and 0.3 mL of the Griess reagent. The
absorbance of such mix was registered at 540 nm (Spectronic 20, GenesysTM, Baton Rouge,
LA, USA). As a standard, we used 0.1 mM NaNO2 in an interval from 0.9 µM to 10 µM.
The obtained results were shown as nmol of nitrite/g of tissue.

2.8. Statistical Analysis

The results were represented as the mean values plus/minus standard deviation
(SDM). The results were statistically managed with a two-way ANOVA and with a post hoc
Tukey test. For this aim, we utilized the Program Sigma Stat version 3.5 (Systat Software,
Inc., Palo Alto, CA, USA).

3. Results
3.1. Standard and FPG-Modified Single Cell Gel Electrophoresis Assays

The results determined with the standard comet assay in the brain are shown in
Figure 1A. Low and uniform DNA damage levels were found in the control mice throughout
the experimental period, with a mean length-to-width index value of 1.02 ± 0.009, which
contrasts with the significant DNA damage exerted by MMS throughout the whole schedule,
with a mean damage elevation of approximately three and a half times over the control
level. With respect to the effect of venlafaxine, the low dose gave rise to values similar to
those observed in the control group; however, the intermediate dose of the drug produced
significant DNA damage at 2 and 6 h of exposure, while the high tested dose (250 mg/kg)
also induced more evident damage at 2 and 6 h post-exposure. At 2 h, the high dose
reached an approximately 60% increase over the control level. A damage decline related to
the time elapsed in the assay was observed with the two higher doses, surely related to the
repair and detoxification processes.

With respect to the liver (Figure 1B), the mean increase produced with MMS was
more than four times the mean control level, and with respect to the effect of venlafaxine,
we newly determined no DNA damage with the low dose, although significant damage
was found with the two high doses at 2, 6, and 12 h of exposure. The damage was more
elevated than that in brain cells. Again, a decline in the effect related to the exposure time
was observed.

Figure 2A shows the results obtained in the brain with the comet assay plus the FPG
enzyme. After 2 h of exposure, DNA damage related to the oxidation process was observed
in the treatments with MMS and venlafaxine along the studied schedule. The mean increase
in the drug’s DNA oxidative damage corresponded to 16.4% over the mean result obtained
with the standard comet test. Interestingly, in the comet-FPG assay, it was noted that the low
tested dose (5 mg/kg) produced a significant DNA-breaking effect related to the oxidation
process, a different finding from that observed in the standard comet assay. The results
obtained in the liver with the comet-FPG test (Figure 2B) were similar to those described in
the brain: an elevation of DNA damage by MMS and venlafaxine in comparison with data
obtained with the application of the standard comet assay, giving rise to a mean increase of
21% effect by the antidepressant, as well as a significant increase with its low tested dose.
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Figure 1. DNA damage induced by venlafaxine (VL) in the brain of mouse (A) and in mouse hepatic
tissue (B). MMS = methyl methanesulfonate. Each bar represents the average ± SDM determined in
100 nucleoids per mouse. Five mice per dose. * Shows statistically significant difference in comparison
with the control level. Two-way ANOVA and Tukey tests (p ≤ 0.05).
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Figure 2. DNA damage induced at 2 h of venlafaxine (VL) exposure without and with the FPG
enzyme. In the brain of mouse (A) and in mouse hepatic tissue (B). MMS = methyl methanesulfonate.
Each bar represents the mean ± SDM obtained in 100 nucleoids per mouse. Five mice per dose.
* Shows statistically significant difference in comparison with the control level. Two-way ANOVA
and Tukey tests (p ≤ 0.05).

3.2. Biomolecule Oxidation and Nitrite Content

Information about brain lipoperoxidation is shown in Figure 3A. The MDA values
observed in the control group were similarly maintained throughout the evaluated times,
with a mean value of 74.75 ± 2.21 nmol/mg of protein, while the values obtained by the
effect of MMS were over 90 nmol/mg of protein at all the evaluated times. Regarding the
low dose of venlafaxine, no lipid oxidation was detected in the brain; however, at 6 and
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12 h, the effect produced with 50 and 250 mg/kg was significant in comparison with the
control level, with a decline at 24 h.
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Figure 3. Lipid peroxidation induced by venlafaxine (VL) measured with the malondialdehyde con‐
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Figure 3. Lipid peroxidation induced by venlafaxine (VL) measured with the malondialdehyde
content (MDA) in the brain of mouse (A) and in mouse hepatic tissue (B). MMS = methyl methane-
sulfonate. Each bar represents the mean ± SDM obtained in 5 independent determinations per dose.
* Shows statistically significant difference in comparison with the control level. Two-way ANOVA
and Tukey tests (p ≤ 0.05).

In the case of liver peroxidation (Figure 3B), a similar pattern to that described before
was observed with respect to the control and the MMS-treated mice, and with respect to
venlafaxine, the results showed no effect with the low tested dose and a significant effect
with 50 and 250 mg/kg of the drug at 6 h of exposure and with the high dose at 12 h.

Protein oxidation through reactive carbonyl quantification is presented in Figure 4A,B
in regard to the brain and liver, respectively. In the brain, the control values were concordant
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throughout the study, with a mean value of 4111 ± 31 nmol CO/mg of protein, and the
MMS-treated cells showed a stronger effect from 2 to 12 h of exposure, with a mean increase
of 64% over the mean control level. Concerning the venlafaxine effect, the low tested dose
showed no difference in comparison with the control level throughout the assay; however,
the two high doses were significantly elevated at 2 and 6 h, and the high dose was also
significant at 12 h. At 24 h, none was significant. In the liver, the control and the MMS-
treated groups showed higher values than in the brain, although the general behavior was
similar. In relation to 50 mg/kg of venlafaxine, the results showed no significant elevation
of oxidized proteins along the observed schedule, although its administration induced a
certain increase, the two high doses were significant from 2 to 12 h post-administration, and
the high dose (250 mg/kg) was also significant at 24 h. The effect of this dose of the drug
was somewhat similar to the effect induced by MMS. In the period from 2 to 12 h, the mean
increase in venlafaxine (50 mg/kg) was 78% higher than the control level, and 250 mg/kg
was 120% higher, indicating a stronger effect in this organ with respect to the brain.
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Figure 4. Effect of venlafaxine (VL) on the reactive carbonyl content (CO•) in the brain of mouse (A)
and in mouse hepatic tissue (B). MMS = methyl methanesulfonate. Each bar represents the
mean ± SDM obtained in 5 independent determinations per dose. * Shows statistically signifi-
cant difference in comparison with the control level. Two-way ANOVA and Tukey tests (p ≤ 0.05).
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Figure 5A presents the results found with respect to the content of nitrites in the
brain. Control cells had homogeneous values throughout the study, with a mean of
46.37 ± 0.43 nmol of NO2/g of tissue, and the MMS-treated group showed a significant
increase at 6 and 12 h of its administration. With respect to venlafaxine, in this determina-
tion, we detected no effect along the studied schedule. However, in liver tissue (Figure 5B),
the nitrite content induced at 2 h of venlafaxine exposure (250 mg/kg) was statistically
elevated compared to the control level, suggesting more sensitivity to nitrite induction in
this organ. MMS was statistically significant from 2 to 24 h.
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4. Discussion

The etiology of major depressive disorder is believed to be multifactorial, including
the interaction of social, psychological, and biological aspects, and its prevalence varies in
relation to the country’s culture. For example, in the Czech Republic, a 12-month prevalence
of 0.3% was reported, which is highly different from the observed in other countries, for
example, 5.2% in West Germany, 4.5% in Mexico, and 10% in the USA [22,23].

Depression may be treated with psychotherapy, neuromodulation technology, and
drug therapy. In general, mild depression is usually treated with a psychosocial approach,
and drug therapy seems more effective in moderate to severe cases of the disease [24].

In the last ten years, hot research topics have notably increased in number of publica-
tions, including those related to depression management in primary care, interventions
to prevent the disease, studies on the pathogenesis of depression, its comorbidities, and
antidepressant treatment [25]. Regarding the last point, the development of new antide-
pressants has increased in recent years, and presently, we count nine different types of
drugs approved and used across the world, including those with psychopharmacological
mechanisms of effect based on serotonin and norepinephrine reuptake inhibitors, which
correspond to the class of venlafaxine.

One of the topics with low to moderate investigation corresponds to the safe use of
antidepressants, including the genotoxic and cytotoxic fields of knowledge; however, the
published information is sufficient to make clear that a number of drugs to treat depres-
sion may have DNA-damaging potential. Such studies have been made, for example, in
imipramine, desipramine, milnacipram, trazodone, citalopram, sertraline, and duloxetine,
among other drugs [26–30].

Information about alterations to the DNA molecule by venlafaxine is limited. La-
caze et al. [5] reported moderate DNA damage in the hemocytes of blue mussels. Sołek et al. [31]
determined the promotion of a telomerase-focused DNA damage response in mouse sper-
matogenic cells studied in vitro; however, Saleem et al. [32] found no DNA damage in rat
spermatozoids studied in vivo. On the other hand, chromosome studies, mainly performed
with the micronucleus test, have been positively consistent for venlafaxine genotoxicity;
in this area, reports have been made in mice in vitro using spermatogenic cells and in
mice in vivo using an acute and a subchronic approach [7,31]. In the present research, we
found significant DNA damage induced with 50 and 250 mg/kg of venlafaxine at 2 and
6 h postexposure in brain cells, as well as in liver cells, although in this last tissue, the
effect was also observed at 12 h of exposure. In addition, significant DNA damage was
found when the oxidation of the molecule was considered; thus, in mice examined with the
comet-FPG test, the three tested doses of venlafaxine were superior to the result obtained
in the same groups without the enzyme. It was particularly relevant that the low tested
dose (5 mg/kg), which belongs to the higher therapeutic drug prescription range, was able
to damage DNA. The FPG enzyme mainly determines purines that have been oxidized,
as well as formamidopyrimidines (ring-opened adenine or guanine) and ring-opened N7
guanine adducts, products that enhance the sensitivity of the comet assay by converting
damaged bases to breaks [33].

The present findings about venlafaxine DNA damage potential are relevant in light of
the described relationship of cellular DNA alterations with the etiology and progression
of many different types of human disorders and diseases, including neurodegenerative
conditions, skeletal damage, mental disorders, hematological abnormalities, and cancer
development [34,35]. In major depression, in particular, the contribution of genetics has
been suggested to be between 40 and 50%, an influence that has been related to polygenic
effects, epigenetic factors, or the presence of single nucleotide polymorphisms [25,36].

In our present assay, in addition to DNA oxidation, the oxidative effect of the evaluated
drug was also found in lipids and proteins of the studied tissues. With respect to proteins,
the two high doses elevated the liver oxidation from 2 to 12 h post-treatment and in brain
cells from 2 to 6 h; also, brain lipoperoxidation was increased with the two high doses
from 6 to 12 h, and in liver cells, the increase was found with the high dose from 6 to 12 h
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post-administration. Again, as observed in the case of DNA, the protein and lipid oxidation
decreased toward 24 h post-administration.

Our present study showed moderate nitrosative effects with the administration of
250 mg/kg venlafaxine only in the liver, a result probably related to the intrinsic properties
of the drug or the experimental conditions used. However, exposure to venlafaxine demon-
strated clear lipid oxidative damage by the measurement of MDA, a molecule produced
by polyunsaturated fatty acids and one of the best investigated products of lipid peroxi-
dation. MDA is a relevant molecule because of its various interactions; for example, the
compound may affect proteins and DNA independently or may produce protein/DNA
crosslinking into the mentioned molecules or between the two molecules, which may cause
extensive biochemical damage in the cells when the lipid peroxidation rate overwhelms
its repair capacity; in this form, apoptosis and necrosis may be induced as well as the
development of a number of pathological states, such as cancer, diabetes, cardiovascular,
neurological and inflammatory diseases, and the acceleration of the aging process [37,38].
In the case of proteins, their radical-mediated damage may be initiated by electron leakage,
metal-ion-dependent reactions, and oxidation of lipids and sugars. A number of oxidized
proteins are poorly handled by cells and may then accumulate and participate in aging and
pathologies such as diabetes, atherosclerosis, or neurodegenerative diseases. Proteins are
major targets for oxidation reactions because of their rapid reaction rates with oxidants and
their high abundance in cells, extracellular tissue, and body fluids; moreover, as shown in
the present study, a correlation between MDA and the number of protein modifications has
been suggested [39].

The observed biomolecular oxidative damage agrees with other studies on the matter.
For example, Ahmadian et al. [8] studied collagenase-perfused rat hepatocytes treated
with venlafaxine and demonstrated the induction of ROS followed by lipid peroxidation,
cellular GSH content depletion, elevated GSSG levels, and loss of lysosomal membrane
integrity, among other disturbances. However, studies about the oxidative/antioxidative
properties of antidepressants have been inconclusive for a number of years. Regarding
venlafaxine, other authors have found antagonizing effects on oxidative stress, enhancing
antioxidant defense mechanisms, or regulating the activity of epigenetic genes in this area;
for example, mouse hippocampal damage by alterations in lipid peroxidation, glutathione,
or GST activity was improved by the drug, as well as a number of oxidative parameters
that caused cisplatin nephrotoxicity or oxidative-induced rat arthritis [40–43]. Therefore,
in light of the present knowledge, it seems that the pro-oxidant or antioxidant activity of
antidepressants can be related to the involved specific drug, the examined tissue, the dose
used, and the duration of the assay.

In conclusion, in the present report, we followed the effect of three single doses of ven-
lafaxine through a 24 h period and demonstrated the DNA damaging potential of the drug
in mouse brain and liver cells in the initial and middle periods of the examined schedule
(2–12 h post-administration) with nontherapeutic doses and its DNA oxidative effect even
with a low therapeutic dose at 2 h post-administration. The report also demonstrated the
oxidative effect of venlafaxine on lipids and proteins in mouse brain and liver cells at non-
therapeutic doses throughout the assay. In addition, it was shown that the molecular effect
starts as soon as 2 h and diminishes in all molecular targets toward 24 h post-administration.
Our study therefore suggests caution with the therapeutic use of venlafaxine.
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