Monitoring Cannabinoids and the Safety of the Trace Element Profile of Light Cannabis sativa L. from Different Varieties and Geographical Origin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Material and Reagents
2.2.1. ICP-MS Analysis
2.2.2. GC-FID Analysis
2.2.3. DMA-80 Analysis
2.3. Cannabinoid Analysis
2.4. Element Analysis
2.5. Validation of the ICP-MS and DMA-80 Methods
2.6. Statistical Analysis
3. Results and Discussion
3.1. Cannabinoids
3.2. Element Profile
3.3. PCA of Mineral Elements and Cannabinoids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Small, E.; Cronquist, A. A practical and natural taxonomy for cannabis. Taxon 1976, 25, 405–435. [Google Scholar] [CrossRef]
- Faeti, V.; Mandolino, G.; Ranalli, P. Genetic diversity of Cannabis sativa germplasm based on RAPD markers. Plant Breed. 1996, 115, 367–370. [Google Scholar] [CrossRef]
- Rapa, S.F.; Di Iorio, B.R.; Campiglia, P.; Heidland, A.; Marzocco, S. Inflammation and Oxidative Stress in Chronic Kidney Disease—Potential Therapeutic Role of Minerals, Vitamins and Plant-Derived Metabolites. Int. J. Mol. Sci. 2019, 21, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galić, M.; Perčin, A.; Zgorelec, Ž.; Kisić, I. Evaluation of heavy metals accumulation potential of hemp (Cannabis sativa L.). J. Cent. Eur. Agric. 2019, 20, 700–711. [Google Scholar]
- Zuk-Golaszewska, K.; Golaszewki, J. Cannabis sativa L.—Cultivation and quality of raw material. J. Elem. 2018, 23, 971–984. [Google Scholar] [CrossRef]
- Harpaz, D.; Veltman, B.; Sadeh, Y.; Marks, R.S.; Bernstein, N.; Eltzov, E. The effect of cannabis toxicity on a model microbiome bacterium epitomized by a panel of bioluminescent E. coli. Chemosphere 2021, 263, 128241. [Google Scholar] [CrossRef]
- Casajuana Kogel, C.; Lopez-Pelayo, H.; Balcells-Olivero, M.M.; Colom, J.; Gual, A. Psychoactive constituents of cannabis and their clinical implications: A systematic review. Adicciones 2018, 30, 140–151. [Google Scholar]
- Smeriglio, A.; Giofrè, S.V.; Galati, E.M.; Monforte, M.T.; Cicero, N.; D’Angelo, V.; Grassi, G.; Circosta, C. Inhibition of aldose reductase activity by Cannabis sativa chemotypes extracts with high content of cannabidiol or cannabigerol. Fitoterapia 2018, 127, 101–108. [Google Scholar] [CrossRef]
- Casati, S.; Angeli, I.; Bergamaschi, R.F.; Ravelli, A.; Colombo, G.; Binelli, G.; Minoli, M.; Orioli, M. Determination of cannabinoids in hair: Indicators for illegal vs CBD-rich cannabis use. Forensic Sci. Int. 2022, 333, 111237. [Google Scholar] [CrossRef]
- Zafeiraki, E.; Kasiotis, K.M.; Nisianakis, P.; Machera, K. Macro and Trace Elements in Hemp (Cannabis sativa L.) Cultivated in Greece: Risk Assessment of Toxic Elements. Front. Chem. 2021, 9, 654308. [Google Scholar] [CrossRef]
- Pacifici, R.; Pichini, S.; Pellegrini, M.; Tittarelli, R.; Pantano, F.; Mannocchi, G.; Rotolo, M.C.; Busardò, F.P. Determination of cannabinoids in oral fluid and urine of “light cannabis” consumers: A pilot study. Clin. Chem. Lab. Med. 2018, 57, 238–243. [Google Scholar] [CrossRef]
- European Commission. Council directive 2002/53/EC of 13 June 2002 on the common catalogue of varieties of agricultural plant species. Off. J. L 2002, 193, 1–11. Available online: http://data.europa.eu/eli/dir/2002/53/oj (accessed on 10 October 2022).
- Marchei, E.; Tittarelli, R.; Pellegrini, M.; Rotolo, M.C.; Pacifici, R.; Pichini, S. Is “light cannabis” really light? Determination of cannabinoids content in commercial products. Clin. Chem. Lab. Med. 2020, 58, e175–e177. [Google Scholar] [CrossRef]
- Available online: https://www.coltivazionebiologica.it/cannabis-light-legge/ (accessed on 10 October 2022).
- European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). Low-THC Cannabis Products in Europe. 2020. Available online: https://www.emcdda.europa.eu/system/files/publications/13471/TD0320749ENN01.pdf (accessed on 21 November 2022).
- Andre, C.M.; Hausman, J.F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Sorrentino, G. Introduction to emerging industrial applications of cannabis (Cannabis sativa L.). Rend. Lincei Sci. Fis. Nat. 2021, 32, 233–243. [Google Scholar] [CrossRef]
- Placido, D.F.; Lee, C.C. Potential of Industrial Hemp for Phytoremediation of Heavy Metals. Plants 2022, 11, 595. [Google Scholar] [CrossRef]
- Mihoc, M.; Pop, G.; Alexa, E.; Radulov, I. Nutritive quality of Romanian hemp varieties (Cannabis sativa L.) with special focus on oil and metal contents of seeds. Chem. Cent. J. 2012, 6, 122. [Google Scholar] [CrossRef] [Green Version]
- Citterio, S.; Santagostino, A.; Fumagalli, P.; Prato, N.; Ranalli, P.; Sgorbati, S. Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 2003, 256, 243–252. [Google Scholar] [CrossRef]
- Bengyella, L.; Kuddus, M.; Mukherjee, P.; Fonmboh, D.J.; Kaminski, J.E. Global impact of trace non-essential heavy metal contaminants in industrial cannabis bioeconomy. Toxin Rev. 2021, 41, 1215–1225. [Google Scholar] [CrossRef]
- Amendola, G.; Bocca, B.; Picardo, V.; Pelosi, P.; Battistini, B.; Ruggieri, F.; Barbini, D.A.; De Vita, D.; Madia, V.N.; Messore, A.; et al. Toxicological aspects of cannabinoid, pesticide and metal levels detected in light Cannabis inflorescences grown in Italy. Food Chem. Toxicol. 2021, 156, 112447. [Google Scholar] [CrossRef]
- U.S. EPA. Principles of Environmental Impact Assessment Review: Appendix A: Environmental Impact Assessment Checklist. 1998. (accessed on 10 October 2022).
- Bertil, M.; Örnemark, U. The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics; LGC: Teddington, Middlesex, UK, 2014. [Google Scholar]
- Thompson, M.; Ellison, S.L.; Fajgelj, A.; Willetts, P.; Wood, R. Harmonized guidelines for the use of recovery information in analytical measurement. Pure Appl. Chem. 1999, 71, 337–348. [Google Scholar] [CrossRef]
- Albergamo, A.; Mottese, A.F.; Bua, G.D.; Caridi, F.; Sabatino, G.; Barrega, L.; Costa, R.; Dugo, G. Discrimination of the Sicilian prickly pear (Opuntia ficus-indica L., cv. Muscaredda) according to the provenance by testing unsupervised and supervised chemometrics. J. Food Sci. 2018, 83, 2933–2942. [Google Scholar] [CrossRef] [PubMed]
- Mottese, A.F.; Fede, M.R.; Caridi, F.; Sabatino, G.; Marcianò, G.; Calabrese, G.; Albergamo, A.; Dugo, G. Chemometrics and innovative multidimensional data analysis (MDA) based on multi-element screening to protect the Italian porcino (Boletus sect. Boletus) from fraud. Food Control 2020, 110, 107004. [Google Scholar] [CrossRef]
- Di Bella, G.; Porretti, M.; Albergamo, A.; Mucari, C.; Tropea, A.; Rando, R.; Nava, V.; Lo Turco, V.; Potortì, A.G. Valorization of Traditional Alcoholic Beverages: The Study of the Sicilian Amarena Wine during Bottle Aging. Foods 2022, 11, 2152. [Google Scholar] [CrossRef] [PubMed]
- Pattnaik, F.; Nanda, S.; Mohanty, S.; Dalai, A.K.; Kumar, V.; Ponnusamy, S.K.; Naik, S. Cannabis: Chemistry, extraction and therapeutic applications. Chemosphere 2022, 289, 133012. [Google Scholar] [CrossRef] [PubMed]
- Appendino, G.; Gibbons, S.; Giana, A.; Pagani, A.; Grassi, G.; Stavri, M.; Smith, E.; Rahman, M.M. Antibacterial cannabinoids from Cannabis sativa: A structure− activity study. J. Nat. Prod. 2008, 71, 1427–1430. [Google Scholar] [CrossRef]
- World Health Organization. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Mehri, A. Trace elements in human nutrition (II)–an update. Int. J. Prev. Med. 2020, 11, 2. [Google Scholar]
- Douvris, C.; Bentil, E.; Ayensu, I.; Osei Akoto, C.; Amponsah, I.K.; Adu, J.; Bussan, D. Trace Metals in Cannabis Seized by Law Enforcement in Ghana and Multivariate Analysis to Distinguish among Different Cannabis Farms. Toxics 2022, 10, 567. [Google Scholar] [CrossRef]
- World Health Organization—WHO. Quality Control Methods for Medicinal Plant Materials. 1998. Available online: https://apps.who.int/iris/handle/10665/41986 (accessed on 10 October 2022).
- World Health Organization—WHO. WHO Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues. 2007. Available online: https://apps.who.int/iris/handle/10665/43510 (accessed on 10 October 2022).
- USP 39—Chemical Tests/<232> Elemental Impurities—Limits. Available online: https://www.usp.org/sites/default/files/usp/document/our-work/chemical-medicines/key-issues/c232-usp-39.pdf (accessed on 12 October 2022).
- Busse, F.; Omidi, L.; Timper, K.; Leichtle, A.; Windgassen, M.; Kluge, E.; Stumvoll, M. Lead poisoning due to adulterated marijuana. N. Engl. J. Med. 2008, 358, 1641–1642. [Google Scholar] [CrossRef]
- Combemale, P.; Consort, T.; Denis-Thelis, L.; Estival, J.L.; Dupin, M.; Kanitakis, J. Cannabis arteritis. BJD Br. J. Dermatol. 2005, 152, 166–169. [Google Scholar] [CrossRef]
- Gauvin, D.V.; Zimmermann, Z.J.; Yoder, J.; Tapp, R. Marijuana toxicity: Heavy metal exposure through state-sponsored access to “la Fee Verte”. Pharm. Regul. Aff. Open Access 2018, 7, 202. [Google Scholar] [CrossRef]
- Moir, D.; Rickert, W.S.; Levasseur, G.; Larose, Y.; Maertens, R.; White, P.; Desjardins, S. A comparison of mainstream and sidestream marijuana and tobacco cigarette smoke produced under two machine smoking conditions. Chem. Res. Toxicol. 2008, 21, 494–502. [Google Scholar] [CrossRef]
Sample Code | Species | Variety | Geographical Origin | No. Samples |
---|---|---|---|---|
Finola_SR | C. sativa L. | Finola | Siracusa (Sicily) | 3 |
Antal_SR | Antal | 3 | ||
Futura75_SR | Futura75 | 3 | ||
Tiborszallasi_SR | Tiborszallasi | 3 | ||
Kompolti_SR | Kompolti | 3 | ||
Carmagnola_SR | Carmagnola | 3 | ||
Finola_RM | Finola | Rome (Lazio) | 3 | |
Antal_RM | Antal | 3 | ||
Futura75_RM | Futura75 | 3 | ||
Tiborszallasi_RM | Tiborszallasi | 3 | ||
Kompolti_RM | Kompolti | 3 | ||
Carmagnola_RM | Carmagnola | 3 | ||
Finola_BA | Finola | Bari (Apulia) | 3 | |
Antal_BA | Antal | 3 | ||
Futura75_BA | Futura75 | 3 | ||
Tiborszallasi_BA | Tiborszallasi | 3 | ||
Kompolti_BA | Kompolti | 3 | ||
Carmagnola_BA | Carmagnola | 3 | ||
Finola_LO | Finola | Lodi (Lombardy) | 3 | |
Antal_LO | Antal | 3 | ||
Futura75_LO | Futura75 | 3 | ||
Tiborszallasi_LO | Tiborszallasi | 3 | ||
Kompolti_LO | Kompolti | 3 | ||
Carmagnola_LO | Carmagnola | 3 | ||
Total samples | 72 |
BCR-402 (White Clover) | ||||||||
---|---|---|---|---|---|---|---|---|
Analyte | R2 | LOD (mg/Kg) | LOQ (mg/Kg) | Experimental Value (mg/Kg) | Expected Value (mg/Kg) | Recovery (%) | Precision (RSD%) | |
Intraday | Interday | |||||||
Al * | 0.9995 | 0.067 | 0.221 | 1.96 | 2.00 | 98.00 ± 0.50 | 1.1 | 1.3 |
Cr | 0.9996 | 0.002 | 0.007 | 5.11 | 5.19 | 98.46 ± 0.39 | 0.3 | 0.5 |
Mn * | 0.9998 | 0.003 | 0.010 | 1.98 | 2.00 | 99.00 ± 0.50 | 1.0 | 1.4 |
Fe | 0.9995 | 0.024 | 0.079 | 250.1 | 244.00 | 102.50 ± 0.45 | 0.2 | 0.5 |
Co | 0.9998 | 0.001 | 0.003 | 0.172 | 0.178 | 96.63 ± 1.12 | 0.4 | 0.7 |
Ni | 0.9996 | 0.002 | 0.007 | 7.99 | 8.25 | 96.85 ± 0.56 | 0.3 | 0.2 |
Cu * | 0.9992 | 0.017 | 0.056 | 1.92 | 2.00 | 96.00 ± 1.00 | 0.5 | 0.9 |
Zn | 0.9994 | 0.061 | 0.201 | 24.8 | 25.2 | 98.41 ± 0.79 | 1.2 | 1.5 |
As | 0.9998 | 0.001 | 0.003 | 0.094 | 0.093 | 101.08 ± 1.08 | 0.9 | 1.2 |
Se | 0.9993 | 0.002 | 0.007 | 6.65 | 6.70 | 99.25 ± 0.15 | 0.3 | 0.6 |
Cd * | 0.9999 | 0.001 | 0.003 | 2.00 | 2.00 | 100.00 ± 0.50 | 1.3 | 1.7 |
Pb * | 0.9997 | 0.002 | 0.007 | 1.98 | 2.00 | 99.00 ± 0.50 | 0.7 | 0.8 |
Mo | 0.9997 | 0.002 | 0.007 | 6.78 | 6.93 | 97.84 ± 0.44 | 0.3 | 0.4 |
Hg * | 0.9998 | 0.002 | 0.007 | 1.96 | 2.00 | 98.00 ± 1.00 | 0.6 | 1.0 |
Element | WHO 2007 | Oral Concentration | Inhalation Concentration | |||
---|---|---|---|---|---|---|
Limit (mg/Kg) | No. Samples | Limit (mg/Kg) | No. Samples | Limit (mg/Kg) | No. Samples | |
Mo | - | - | 300 | 0 | 1 | 0 |
Cu | - | - | 300 | 0 | 3 | 8 |
Co | - | - | 5 | 0 | 0.3 | 6 |
Cr | 2 | 0 | 1100 | 0 | 0.3 | 6 |
Ni | - | - | 20 | 0 | 0.5 | 6 |
Pb | 10 | 0 | 0.5 | 2 | 0.5 | 2 |
As | 5 | 0 | 1.5 | 0 | 0.2 | 0 |
Cd | 0.3 | 0 | 0.5 | 0 | 0.2 | 0 |
Hg | 0.2 | 0 | 3 | 0 | 0.1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nava, V.; Albergamo, A.; Bartolomeo, G.; Rando, R.; Litrenta, F.; Lo Vecchio, G.; Giorgianni, M.C.; Cicero, N. Monitoring Cannabinoids and the Safety of the Trace Element Profile of Light Cannabis sativa L. from Different Varieties and Geographical Origin. Toxics 2022, 10, 758. https://doi.org/10.3390/toxics10120758
Nava V, Albergamo A, Bartolomeo G, Rando R, Litrenta F, Lo Vecchio G, Giorgianni MC, Cicero N. Monitoring Cannabinoids and the Safety of the Trace Element Profile of Light Cannabis sativa L. from Different Varieties and Geographical Origin. Toxics. 2022; 10(12):758. https://doi.org/10.3390/toxics10120758
Chicago/Turabian StyleNava, Vincenzo, Ambrogina Albergamo, Giovanni Bartolomeo, Rossana Rando, Federica Litrenta, Giovanna Lo Vecchio, Mario Concetto Giorgianni, and Nicola Cicero. 2022. "Monitoring Cannabinoids and the Safety of the Trace Element Profile of Light Cannabis sativa L. from Different Varieties and Geographical Origin" Toxics 10, no. 12: 758. https://doi.org/10.3390/toxics10120758
APA StyleNava, V., Albergamo, A., Bartolomeo, G., Rando, R., Litrenta, F., Lo Vecchio, G., Giorgianni, M. C., & Cicero, N. (2022). Monitoring Cannabinoids and the Safety of the Trace Element Profile of Light Cannabis sativa L. from Different Varieties and Geographical Origin. Toxics, 10(12), 758. https://doi.org/10.3390/toxics10120758