Studying Respiratory Symptoms Related to Swimming Pools Attendance in Young Athletes: The SPHeRA Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Questionnaire
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chase, N.L.; Sui, X.; Blair, S.N. Swimming and all-cause mortality risk compared with running, walking, and sedentary habits in men. Int. J. Aquat. Res. Educ. 2008, 2, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Pugh, C.J.A.; Sprung, V.S.; Ono, K.; Spence, A.; Thijssen, D.H.J.; Carter, H.H.; Green, D.J. The Effect of Water Immersion during Exercise on Cerebral Blood Flow. Med. Sci. Sports Exerc. 2015, 47, 299–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisgerber, M.C.; Guill, M.; Weisgerber, J.M.; Butler, H. Benefits of Swimming in Asthma: Effect of a Session of Swimming Lessons on Symptoms and PFTs with Review of the Literature. J. Asthma 2003, 40, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, H.J.; Jiang, Y.; Shan, C.H.; Tam, W.W.S.; Wang, W. A systematic review and meta-analysis on the effective-ness of swimming on lung function and asthma control in children with asthma. Int. J. Nurs. Stud. 2021, 120, 103953. [Google Scholar] [CrossRef]
- Wang, J.S.ì.; Hung, W.P. The effects of a swimming intervention for children with asthma. Respirology 2009, 14, 838–842. [Google Scholar] [CrossRef]
- Bar-Or, O.; Inbar, O. Swimming and Asthma: Benefits and Deleterious Effects. Sports Med. 1992, 4, 397–405. [Google Scholar] [CrossRef]
- Goodman, M.; Hays, S. Asthma and Swimming: A Meta-Analysis. J. Asthma 2008, 45, 639–647. [Google Scholar] [CrossRef]
- Päivinen, M.; Keskinen, K.; Putus, T.; Kujala, U.M.; Kalliokoski, P.; Tikkanen, H.O. Asthma, allergies and respiratory symp-toms in different activity groups of swimmers exercising in swimming halls. BMC Sports Sci. Med. Rehab. 2021, 13, 119. [Google Scholar] [CrossRef]
- Lévesque, B.; Duchesne, J.-F.; Gingras, S.; Lavoie, R.; Prud’Homme, D.; Bernard, E.; Boulet, L.-P.; Ernst, P. The determinants of prevalence of health complaints among young competitive swimmers. Int. Arch Occup. Environ. Health 2006, 80, 32–39. [Google Scholar] [CrossRef]
- Alves, A.; Martins, C.; Delgado, L.; Fonseca, J.; Moreira, A. Exercise-Induced Rhinitis in Competitive Swimmers. Am. J. Rhinol. Allergy 2010, 24, e114–e117. [Google Scholar] [CrossRef]
- Romberg, K.; Tufvesson, E.; Bjermer, L. Asthma symptoms, mannitol reactivity and exercise-induced bronchoconstriction in adolescent swimmers versus tennis players. J. Asthma Allergy 2017, 10, 249–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Shim, J.; Lee, S. Formation of disinfection by-products in chlorinated swimming pool water. Chemosphere 2002, 46, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Carter, R.A.A.; Allard, S.; Croué, J.P.; Joll, C.A. Occurrence of disinfection by-products in swimming pools and the estimated re-sulting cytotoxicity. Sci. Total Environ. 2019, 664, 851–864. [Google Scholar] [CrossRef] [PubMed]
- Granger, C.O.; Richardson, S.D. Do DBPs swim in salt water pools? Comparison of 60 DBPs formed by electrochemically gener-ated chlorine vs. conventional chlorine. J. Environ. Sci. 2022, 117, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Manasfi, T.; Coulomb, B.; Boudenne, J.-L. Occurrence, origin, and toxicity of disinfection byproducts in chlorinated swimming pools: An overview. Int. J. Hyg. Environ. Health 2017, 220, 591–603. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Safe Recreational Water Environments: Volume 2. Swimming Pools and Similar Environments; World Health Organization: Genève, Switzerland, 2006; Volume 2, p. 146.
- Villanueva, C.M.; Font-Ribera, L. Health impact of disinfection by-products in swimming pools. Ann. Dell’Ist. Super. Sanita 2012, 48, 387–396. [Google Scholar] [CrossRef]
- Fernández-Luna, A.; Burillo, P.; Felipe, J.L.; del Corral, J.; Unanue, J.F.G.; Gallardo, L. Perceived health problems in swimmers according to the chemical treatment of water in swimming pools. Eur. J. Sport Sci. 2015, 16, 256–265. [Google Scholar] [CrossRef]
- Istituto Nazionale di Statistica. La Pratica Sportiva in Italia. 2015. Available online: https://www.istat.it/it/files//2017/10/Pratica-sportiva2015.pdf (accessed on 1 December 2022).
- Jarvis, D. The European Community Respiratory Health Survey II. Eur. Respir. J. 2002, 20, 1071–1079. [Google Scholar]
- Bonini, M.; Braido, F.; Baiardini, I.; Del Giacco, S.; Gramiccioni, C.; Manara, M.; Tagliapietra, G.; Scardigno, A.; Sargentini, V.; Brozzi, M.; et al. Aqua©: Allergy Ques-tionnaire for Athletes. Development and Validation. Med. Sci. Sports Exerc. 2009, 41, 1034–1041. [Google Scholar] [CrossRef] [Green Version]
- Bougault, V.; Turmel, J.; Boulet, L.P. Effect of intense swimming training on rhinitis in high-level competitive swimmers. Clin. Exp. Allergy 2010, 40, 1238–1246. [Google Scholar] [CrossRef]
- Stadelmann, K.; Stensrud, T.; Carlsen, K.-H. Respiratory Symptoms and Bronchial Responsiveness in Competitive Swimmers. Med. Sci. Sports Exerc. 2011, 43, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Couto, M.; Bernard, A.; Delgado, L.; Drobnic, F.; Kurowski, M.; Moreira, A.; Rodrigues-Alves, R.; Rukhadze, M.; Seys, S.; Wiszniewska, M.; et al. Health effects of exposure to chlorination by-products in swimming pools. Allergy 2021, 76, 3257–3275. [Google Scholar] [CrossRef] [PubMed]
- Liberatore, H.K.; Daiber, E.J.; Ravuri, S.A.; Schmid, J.E.; Richardson, S.D.; DeMarini, D.M. Disinfection byproducts in chlo-rinated or brominated swimming pools and spas: Role of brominated DBPs and association with mutagenicity. J. Environ. Sci. 2022, 117, 253–263. [Google Scholar] [CrossRef]
- Eksi, N.; Calis, A.B.; Seyhun, N.; Ozkarafakili, M.A.; Coskun, B.U. Evaluation of exercise induced bronchoconstriction and rhinitis in adolescent elite swimmers. North. Clin. Istanb. 2021, 8, 493–499. [Google Scholar] [CrossRef]
- Gelardi, M.; Ventura, M.T.; Fiorella, R.; Fiorella, M.L.; Russo, C.; Candreva, T.; Carretta, A.; Passalacqua, G. Allergic and non-allergic rhinitis in swimmers: Clinical and cytological aspects. Br. J. Sports Med. 2012, 46, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Passàli, D.; Damiani, V.; Passàli, G.C.; Passàli, F.M.; Bellussi, L. Alterations in rhinosinusal homeostasis in a sportive popula-tion: Our experience with 106 athletes. Eur. Arch. Oto-Rhino-Laryngol. Head Neck 2004, 261, 502–506. [Google Scholar] [CrossRef]
- Valeriani, F.; Protano, C.; Vitali, M.; Spica, V.R. Swimming attendance during childhood and development of asthma: Meta-analysis. Pediatr. Int. 2017, 59, 614–621. [Google Scholar] [CrossRef] [Green Version]
- Cullinan, S.M.; Heaton, H.A.; Mullan, A.; O’Horo, J.; Binnicker, M.J.; Tande, A.J.; Post, J.A.; Campbell, R.L.; Raukar, N.P. Impact of the COVID-19 Pandemic on Respiratory Infection Rates. Mayo Clin. Proc. 2022, 97, 1023–1025. [Google Scholar] [CrossRef]
- Doroshenko, A.; Lee, N.; MacDonald, C.; Zelyas, N.; Asadi, L.; Kanji, J.N. Decline of Influenza and Respiratory Viruses With COVID-19 Public Health Measures: Alberta, Canada. Mayo Clin. Proc. 2021, 96, 3042–3052. [Google Scholar] [CrossRef]
- Noh, J.Y.; Seong, H.; Yoon, J.G.; Song, J.Y.; Cheong, H.J.; Kim, W.J. Social Distancing against COVID-19: Implication for the Control of Influenza. J. Korean Med. Sci. 2020, 35, e182. [Google Scholar] [CrossRef]
- Wiese, A.D.; Everson, J.; Grijalva, C.G. Social Distancing Measures: Evidence of Interruption of Seasonal Influenza Activity and Early Lessons of the SARS-CoV-2 Pandemic. Clin. Inf. Dis. 2021, 73, E141–E143. [Google Scholar] [CrossRef] [PubMed]
- Helenius, I.; Haahtela, T. Allergy and asthma in elite summer sport athletes. J. Allergy Clin. Immunol. 2000, 106, 444–452. [Google Scholar] [CrossRef]
- Harris, W.E.; Giebaly, K.; Adair, C.; Alsuwaidan, S.; Nicholls, D.P.; Stanford, C.F. The parasympathetic system in exer-cise-induced rhinorrhoea. Rhinology 1992, 30, 21–23. [Google Scholar] [PubMed]
- Beck, K.C.; Offord, K.P.; Scanlon, P.D. Bronchoconstriction occurring during exercise in asthmatic subjects. Am. J. Respir. Crit. Care Med. 1994, 149, 352–357. [Google Scholar] [CrossRef]
- Caggiano, S.; Cutrera, R.; Di Marco, A.; Turchetta, A. Exercise-Induced Bronchospasm and Allergy. Front. Pediatr. 2017, 5, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitale, J.A.; Ieno, C.; Baldassarre, R.; Bonifazi, M.; Vitali, F.; La Torre, A.; Piacentini, M.F. The Impact of a 14-Day Altitude Training Camp on Olympic-Level Open-Water Swimmers’ Sleep. Int. J. Environ. Res. Public Health 2022, 19, 4253. [Google Scholar] [CrossRef]
- Schmitt, L.; Millet, G.; Robach, P.; Nicolet, G.; Brugniaux, J.V.; Fouillot, J.P.; Richalet, J.P. Influence of “living high-training low” on aerobic performance and economy of work in elite athletes. Eur. J. Appl. Physiol. 2006, 97, 627–636. [Google Scholar] [CrossRef]
- Vitale, J.A.; Banfi, G.; La Torre, A.; Bonato, M. Effect of a Habitual Late-Evening Physical Task on Sleep Quality in Neither-Type Soccer Players. Front. Physiol. 2018, 9, 1582. [Google Scholar] [CrossRef] [Green Version]
- Bonato, M.; La Torre, A.; Saresella, M.; Marvetano, I.; Merati, G.; Banfi, G.; Vitale, J.A. Effect of high-intensity interval training versus small-sided games training on sleep and salivary cortisol level. Int. J. Sports Physiol. Perf. 2020, 15, 1237–1244. [Google Scholar] [CrossRef]
- van Rensburg, D.C.J.; van Rensburg, A.J.; Fowler, P.M.; Bender, A.M.; Stevens, D.; Sullivan, K.O.; Botha, T. Managing travel fatigue and jet lag in athletes: A review and consensus statement. Sports Med. 2021, 51, 2029–2050. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, Z. Cross-sectional studies: Strengths, weaknesses, and recommendations. Chest 2020, 158, S65–S71. [Google Scholar] [CrossRef] [PubMed]
- Malpede, M.; Percoco, M. Lockdown measures and air quality: Evidence from Italian provinces. Lett. Spat. Resour. Sci. 2021, 14, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, D.; Kanmanipappa, C.; Shankarlal, B.; Saravanan, M. Assessing the impact of lockdown in US, Italy and France–What are the changes in air quality? Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–11. [Google Scholar] [CrossRef]
- De Nitto, S.; Stefanizzi, P.; Bianchi, F.P.; Castellana, M.; Ascatigno, L.; Notarnicola, A.; Tafuri, S. Prevalence of cigarette smoking: A cross-sectional survey between individual and team sport athletes. Ann. Ig 2020, 32, 132–140. [Google Scholar]
- Bernard, A.; Carbonnelle, S.; Michel, O.; Higuet, S.; de Burbure, C.; Buchet, J.; Hermans, C.; Dumont, X.; Doyle, I. Lung hy-perpermeability and asthma prevalence in schoolchildren: Unexpected associations with the attendance at indoor chlorinated swimming pools. Occup. Environ. Med. 2003, 60, 385–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thickett, K.M.; McCoach, J.S.; Gerber, J.M.; Sadhra, S.; Burgel, P.S. Occupational asthma caused by chloramines in indoor swimming pool air. Eur. Resp. J. 2002, 19, 827–832. [Google Scholar] [CrossRef] [PubMed]
Variable | Total N = 396 | Winter/Spring Season N = 197 | Summer Season N = 199 | p-Value |
---|---|---|---|---|
Female athletes n (%) | 202 (51.0) | 93 (47.2) | 109 (54.8) | 0.132 |
Male athletes n (%) | 194 (49.0) | 104 (52.8) | 90 (45.2) | |
Age (years) arithmetic mean ± SD | 16 ± 2 | 16 ± 6 | 16 ± 5 | 0.775 |
Years of practice arithmetic mean ± SD | 8 ± 3 | 8 ± 4 | 8 ± 4 | 0.460 |
Training sessions per week arithmetic mean ± SD | 6 ± 2 | 6 ± 1 | 6 ± 4 | 0.050 |
Hours of training per session arithmetic mean ± SD | 2.0 ± 0.3 | 2.0 ± 0.3 | 2.0 ± 0.3 | 0.100 |
Distance swum per session (Km) arithmetic mean ± SD | 5.8 ± 2 | 6.1 ± 2 | 5.6 ± 3 | 0.001 |
Hours of training per week arithmetic mean ± SD | 12 ± 5 | 12 ± 4 | 13 ± 5 | 0.356 |
Indoor training n (%) | 295 (74.5) | 195 (99.0) | 100 (50.3) | <0.001 |
Diagnosed asthma n (%) | 38 (9.6) | 21 (10.7) | 17 (8.5) | 0.474 |
Diagnosed allergic diseases n (%) | 84 (21.2) | 48 (24.4) | 36 (18.1) | 0.127 |
Respiratory symptoms experienced during or after training: | ||||
Nasal congestion/rhinorrhea n (%) | 186 (47.0) | 104 (52.8) | 82 (41.2) | 0.021 |
Sneezing n (%) | 247 (62.4) | 130 (66.0) | 117 (58.8) | 0.139 |
Coughing n (%) | 167 (42.2) | 101 (51.3) | 66 (33.2) | <0.001 |
Itchy throat n (%) | 99 (25.0) | 56 (28.4) | 43 (21.6) | 0.117 |
Wheezing n (%) | 67 (16.9) | 37 (18.8) | 30 (15.1) | 0.325 |
Chest tightness n (%) | 75 (18.9) | 48 (24.4) | 27 (13.6) | 0.006 |
Breathing difficulty n (%) | 99 (25.0) | 59 (29.9) | 40 (20.1) | 0.024 |
Outcomes | Predictors | Winter | Summer | ||
---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | ||
Nasal congestion/rhinorrhea | Age | 1.03 (0.95–1.12) | 0.432 | 0.95 (0.85–1.06) | 0.378 |
Sex | 1.38 (0.78–2.42) | 0.265 | 1.67 (0.94–2.97) | 0.079 | |
Years of practice | 1.01 (0.93–1.09) | 0.827 | 0.99 (0.90–1.09) | 0.850 | |
Training sessions per week | 1.27 (1.01–1.61) | 0.040 | 0.95 (0.82–1.09) | 0.474 | |
Hours of training per session | 3.53 (1.33–9.37) | 0.011 | 0.96 (0.38–2.40) | 0.923 | |
Distance swum per session (Km) | 1.00 (0.83–1.20) | 0.992 | 1.11 (0.91–1.35) | 0.284 | |
Hours of training per week | 1.11 (1.02–1.21) | 0.014 | 0.98 (0.93–1.04) | 0.588 | |
Indoor training | 0.89 (0.05–14.48) | 0.937 | 0.94 (0.53–1.65) | 0.819 | |
Diagnosed asthma | 0.98 (0.40–2.43) | 0.968 | 1.68 (0.62–4.55) | 0.308 | |
Diagnosed allergic diseases | 1.51 (0.78–2.92) | 0.225 | 2.70 (1.28–5.66) | 0.009 | |
Coughing | Age | 0.92 (0.85–1.01) | 0.085 | 0.96 (0.86–1.08) | 0.484 |
Sex | 0.80 (0.46–1.41) | 0.444 | 1.72 (0.94–3.16) | 0.078 | |
Years of practice | 0.97 (0.89–1.05) | 0.438 | 0.97 (0.88–1.07) | 0.562 | |
Training sessions per week | 0.96 (0.81–1.23) | 0.969 | 0.98 (0.85–1.14) | 0.806 | |
Hours of training per session | 3.63 (1.36–9.66) | 0.010 | 1.08 (0.41–2.83) | 0.870 | |
Distance swum per session (Km) | 1.23 (1.02–1.49) | 0.034 | 1.02 (0.84–1.25) | 0.807 | |
Hours of training per week | 1.04 (0.96–1.12) | 0.313 | 1.00 (0.94–1.07) | 0.882 | |
Indoor training | 0.95 (0.06–15.40) | 0.971 | 0.64 (0.35–1.17) | 0.147 | |
Diagnosed asthma | 2.05 (0.79–5.31) | 0.141 | 3.21 (1.16–8.88) | 0.024 | |
Diagnosed allergic diseases | 1.46 (0.75–2.81) | 0.261 | 1.81 (0.86–3.78) | 0.115 |
Outcomes | Predictors | Winter | Summer | ||
---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | ||
Logistic model 1: pseudo R2 = 0.0488 | Logistic model 1: pseudo R2 = 0.0421 | ||||
Nasal congestion/rhinorrhea | Age | 1.04 (0.95–1.14) | 0.372 | 0.98 (0.87–1.10) | 0.724 |
Sex | 1.42 (0.79–2.58) | 0.239 | 1.74 (0.91–3.32) | 0.091 | |
Training sessions per week | 1.18 (0.92–1.52) | 0.199 | 0.99 (0.85–1.16) | 0.945 | |
Hours of training per session | 3.10 (1.05–9.08) | 0.039 | 0.95 (0.35–2.59) | 0.925 | |
Asthma | 0.78 (0.26–2.30) | 0.650 | 1.35 (0.46–3.99) | 0.582 | |
Allergy | 1.68 (0.76–3.73) | 0.204 | 2.69 (1.23–5.88) | 0.013 | |
Indoor/outdoor facilities | 0.47 (0.02–11.44) | 0.645 | 0.91 (0.50–1.65) | 0.753 | |
Logistic model 2: pseudo R2 = 0.0410 | Logistic model 2: pseudo R2 = 0.0420 | ||||
Nasal congestion/rhinorrhea | Age | 1.02 (0.94–1.12) | 0.531 | 0.98 (0.87–1.10) | 0.725 |
Sex | 1.44 (0.80–2.61) | 0.212 | 1.73 (0.91–3.30) | 0.090 | |
Hours of training per week | 1.12 (1.03–1.22) | 0.010 | 1.00 (0.94–1.06) | 0.920 | |
Asthma | 0.79 (0.27–2.30) | 0.202 | 1.35 (0.46–3.93) | 0.585 | |
Allergy | 1.67 (0.76–3.66) | 0.663 | 2.70 (1.24–5.88) | 0.012 | |
Indoor/outdoor facilities | 0.37 (0.013–10.72) | 0.562 | 0.91 (0.50–1.65) | 0.756 | |
Logistic model 3: pseudo R2 = 0.0487 | Logistic model 3: pseudo R2 = 0.0488 | ||||
Coughing | Age | 0.92 (0.83–1.02) | 0.123 | 1.00 (0.88–1.13) | 0.994 |
Sex | 0.76 (0.42–1.39) | 0.375 | 2.04 (0.98–4.07) | 0.052 | |
Hours of training per session | 3.48 (1.28–9.50) | 0.015 | 0.89 (0.33–2.42) | 0.825 | |
Asthma | 1.58 (0.53–4.76) | 0.413 | 3.24 (1.09–9.59) | 0.033 | |
Allergy | 1.39 (0.64–3.03) | 0.406 | 1.53 (0.70–3.36) | 0.289 | |
Indoor/outdoor facilities | 0.80 (0.05–13.34) | 0.380 | 0.57 (0.30–1.06) | 0.080 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaccarin, M.; Zanni, S.; Gallè, F.; Protano, C.; Valeriani, F.; Liguori, G.; Romano Spica, V.; Vitali, M. Studying Respiratory Symptoms Related to Swimming Pools Attendance in Young Athletes: The SPHeRA Study. Toxics 2022, 10, 759. https://doi.org/10.3390/toxics10120759
Zaccarin M, Zanni S, Gallè F, Protano C, Valeriani F, Liguori G, Romano Spica V, Vitali M. Studying Respiratory Symptoms Related to Swimming Pools Attendance in Young Athletes: The SPHeRA Study. Toxics. 2022; 10(12):759. https://doi.org/10.3390/toxics10120759
Chicago/Turabian StyleZaccarin, Matteo, Stefano Zanni, Francesca Gallè, Carmela Protano, Federica Valeriani, Giorgio Liguori, Vincenzo Romano Spica, and Matteo Vitali. 2022. "Studying Respiratory Symptoms Related to Swimming Pools Attendance in Young Athletes: The SPHeRA Study" Toxics 10, no. 12: 759. https://doi.org/10.3390/toxics10120759
APA StyleZaccarin, M., Zanni, S., Gallè, F., Protano, C., Valeriani, F., Liguori, G., Romano Spica, V., & Vitali, M. (2022). Studying Respiratory Symptoms Related to Swimming Pools Attendance in Young Athletes: The SPHeRA Study. Toxics, 10(12), 759. https://doi.org/10.3390/toxics10120759