Accumulation of Metals in the Environment and Grazing Livestock near A Mongolian Mining Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Sample Preparation and Metal Extraction
2.4. Quality Control and Quality Assurance
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Regulations Related to Heavy Metal and Overview of Results
4.2. Arsenic Contamination in Mongolia
4.3. Selenium Contamination in Mongolia
4.4. Copper and Zinc Contamination in Mongolia
4.5. Cadmium and Lead Contamination in Mongolia
4.6. Source of Heavy Metal Contamination into Livestock and Human
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AZOMINING. Available online: https://www.azomining.com/ (accessed on 17 August 2022).
- The Observatory of Economic Complexity (OEC). Available online: https://oec.world/ (accessed on 17 August 2022).
- The Organisation for Economic Co-Operation and Development (OECD) ILibrary. Available online: https://www.oecd-ilibrary.org/ (accessed on 17 August 2022).
- Nakayama, S.M.M.; Ikenaka, Y.; Hamada, K.; Muzandu, K.; Choongo, K.; Teraoka, H.; Mizuno, N.; Ishizuka, M. Metal and Metalloid Contamination in Roadside Soil and Wild Rats around a Pb-Zn Mine in Kabwe, Zambia. Environ. Pollut. 2011, 159, 175–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swarup, D.; Naresh, R.; Varshney, V.P.; Balagangatharathilagar, M.; Kumar, P.; Nandi, D.; Patra, R.C. Changes in Plasma Hormones Profile and Liver Function in Cows Naturally Exposed to Lead and Cadmium around Different Industrial Areas. Res. Vet. Sci. 2007, 82, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Angelovičová, L.; Fazekašová, D. Contamination of the Soil and Water Environment by Heavy Metals in the Former Mining Area of Rudňany (Slovakia). Soil Water Res. 2014, 9, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Orisakwe, O.E.; Oladipo, O.O.; Ajaezi, G.C.; Udowelle, N.A. Horizontal and Vertical Distribution of Heavy Metals in Farm Produce and Livestock around Lead-Contaminated Goldmine in Dareta and Abare, Zamfara State, Northern Nigeria. J. Environ. Public Health 2017, 2017, 3506949. [Google Scholar] [CrossRef] [PubMed]
- Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy Metal Pollution and Human Biotoxic Effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Mukesh, K.R.; Puneet, K.; Manoj, S.; Anand, S. Toxic Effect of Heavy Metals in Livestock Health. Vet. World 2008, 1, 28–30. [Google Scholar]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Batjargal, T.; Otgonjargal, E.; Baek, K.; Yang, J.S. Assessment of Metals Contamination of Soils in Ulaanbaatar, Mongolia. J. Hazard Mater. 2010, 184, 872–876. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Battsengel, E.; Murayama, T.; Fukushi, K.; Nishikizawa, S.; Chonokhuu, S.; Ochir, A.; Tsetsgee, S.; Davaasuren, D. Ecological and Human Health Risk Assessment of Heavy Metal Pollution in the Soil of the Ger District in Ulaanbaatar, Mongolia. Int. J. Environ. Res. Public Health 2020, 17, 4668. [Google Scholar] [CrossRef] [PubMed]
- Rajaganapathy, V.; Xavier, F.; Sreekumar, D.; Mandal, P.K. Heavy Metal Contamination in Soil, Water and Fodder and Their Presence in Livestock and Products: A Review. J. Environ. Sci. Technol. 2011, 4, 234–249. [Google Scholar] [CrossRef]
- Anees, M.; Jamal, Q.; Durani, P.; Khan, K.; Munir, S.; Hussain, S.; Munir, K. Heavy Metals Accumulation and Their Toxic Effects: Review. J. Bio-Mol. Sci. (JBMS) 2013, 1, 27–36. [Google Scholar]
- Pareja-Carrera, J.; Mateo, R.; Rodríguez-Estival, J. Lead (Pb) in Sheep Exposed to Mining Pollution: Implications for Animal and Human Health. Ecotoxicol. Environ. Saf. 2014, 108, 210–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yohannes, Y.B.; Ikenaka, Y.; Nakayama, S.M.; Mizukawa, H.; Ishizuka, M. Trace Element Contamination in Tissues of Four Bird Species from the Rift Valley Region. Bull. Environ. Contam. Toxicol. 2017, 98, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Yohannes, Y.B.; Ikenaka, Y.; Saengtienchai, A.; Watanabe, K.P.; Nakayama, S.M.M.; Ishizuka, M. Occurrence, Distribution, and Ecological Risk Assessment of DDTs and Heavy Metals in Surface Sediments from Lake Awassa-Ethiopian Rift Valley Lake. Environ. Sci. Pollut. Res. 2013, 20, 8663–8671. [Google Scholar] [CrossRef]
- Chiroma, T.M.; Ebewele, R.O.; Hymore, F.K. Comparative Assessment of Heavy Metal Levels in Soil, Vegetables and Urban Grey Waste Water Used for Irrigation in Yola and Kano. Int. Refereed J. Eng. Sci. 2014, 3, 1–9. [Google Scholar]
- U.S. Environmental Protection Agency. Ecological Soil Screening Levels for Zinc; U.S. Environmental Protection Agency: Washington, DC, USA, 2007. [Google Scholar]
- U.S. Environmental Protection Agency. Ecological Soil Screening Levels for Cadmium; U.S. Environmental Protection Agency: Washington, DC, USA, 2005. [Google Scholar]
- U.S. Environmental Protection Agency. Ecological Soil Screening Levels for Arsenic; U.S. Environmental Protection Agency: Washington, DC, USA, 2005. [Google Scholar]
- U.S. Environmental Protection Agency. Ecological Soil Screening Levels for Manganese; U.S. Environmental Protection Agency: Washington, DC, USA, 2007. [Google Scholar]
- U.S. Environmental Protection Agency. Ecological Soil Screening Levels for Selenium; U.S. Environmental Protection Agency: Washington, DC, USA, 2007. [Google Scholar]
- U.S. Environmental Protection Agency. Ecological Soil Screening Levels for Copper; U.S. Environmental Protection Agency: Washington, DC, USA, 2006. [Google Scholar]
- U.S. Environmental Protection Agency. Ecological Soil Screening Levels for Lead; U.S. Environmental Protection Agency: Washington, DC, USA, 2005. [Google Scholar]
- U.S. Environmental Protection Agency. Ecological Soil Screening Levels for Chromium; U.S. Environmental Protection Agency: Washington, DC, USA, 2005. [Google Scholar]
- Puls, R. Mineral Levels in Animal Health: Diagnostic Data; Sherpa International: Aldergrove, BC, Canada, 1994. [Google Scholar]
- Kincaid, R.L. Assessment of Trace Mineral Status of Ruminants: A Review. J. Anim. Sci. 1999, 77, 1–10. [Google Scholar] [CrossRef]
- Biswas, U.; Sarkar, S.; Bhowmik, M.K.; Samanta, A.K.; Biswas, S. Chronic Toxicity of Arsenic in Goats: Clinicobiochemical Changes, Pathomorphology and Tissue Residues. Small Rumin. Res. 2000, 38, 229–235. [Google Scholar] [CrossRef]
- Rana, T.; Bera, A.K.; Das, S.; Bhattacharya, D.; Bandyopadhyay, S.; Pan, D.; Kumar Das, S. Effect of Chronic Intake of Arsenic-Contaminated Water on Blood Oxidative Stress Indices in Cattle in an Arsenic-Affected Zone. Ecotoxicol. Environ. Saf. 2010, 73, 1327–1332. [Google Scholar] [CrossRef]
- Nandi, D.; Patra, R.C.; Swarup, D. Effect of Cysteine, Methionine, Ascorbic Acid and Thiamine on Arsenic-Induced Oxidative Stress and Biochemical Alterations in Rats. Toxicology 2005, 211, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Alonso, M.L.; Benedito, J.L.; Miranda, M.; Castillo, C.; Hernández, J.; Shore, R.F. Cattle as Biomonitors of Soil Arsenic, Copper, and Zinc Concentrations in Galicia (NW Spain). Arch. Environ. Contam. Toxicol. 2002, 43, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Jenisova, Z.; Feszterova, M.; Baros, S.; Liska, J.; Hudecova, D.; Rhodes, C.J.; Valko, M. Arsenic: Toxicity, Oxidative Stress and Human Disease. J. Appl. Toxicol. 2011, 31, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Raj Khanal, D.; Knight, A.P. Selenium: Its Role in Livestock Health and Productivity. J. Agric. Environ. 2010, 11, 101–106. [Google Scholar] [CrossRef]
- Tiwary, A.K.; Stegelmeier, B.L.; Panter, K.E.; James, L.F.; Hall, J.O. Comparative Toxicosis of Sodium Selenite and Selenomethionine in Lambs. J. Vet. Diagn. Investig. 2006, 18, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deore, M.D.; Srivastava, A.K.; Sharma, S.K. Effect of Reduced Glutathione Treatment on Selenosis, Blood Selenium Concentration and Glutathione Peroxidase Activity after Repeated Short-Term Selenium Exposure in Buffalo Calves. Toxicology 2005, 213, 169–174. [Google Scholar] [CrossRef]
- Osredkar, J.; Sustar, N. Copper and Zinc, Biological Role and Significance of Copper/Zinc Imbalance. Clin. Toxicol. 2011, s3, 1. [Google Scholar] [CrossRef] [Green Version]
- Todd, J.R. Chronic Copper Toxicity of Ruminants. Proc. Nutr. Soc. 1969, 28, 189–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiener, G.; Hall, J.G.; Hayter, S. An Association between the Concentration of Copper in Whole Blood and Haemoglobin Type in Sheep. Anim. Prod. 1973, 17, 1–7. [Google Scholar] [CrossRef]
- Sobhanirad, S.; Naserian, A.A. Effects of High Dietary Zinc Concentration and Zinc Sources on Hematology and Biochemistry of Blood Serum in Holstein Dairy Cows. Anim. Feed Sci. Technol. 2012, 177, 242–246. [Google Scholar] [CrossRef]
- Chafik, A.; Essamadi, A.; Çelik, S.Y.; Mavi, A. Purification and Biochemical Characterization of a Novel Copper, Zinc Superoxide Dismutase from Liver of Camel (Camelus Dromedarius): An Antioxidant Enzyme with Unique Properties. Bioorg. Chem. 2019, 86, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Bengoumi, M.; Essamadi, A.K.; Tressol, J.C.; Faye, A.B. Comparative Study of Copper and Zinc Metabolism in Cattle and Camel. Biol. Trace Elem. Res. 1998, 63, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Farmer, A.A.; Farmer, A.M.; Stan, T. Concentrations of Cadmium, Lead and Zinc in Livestock Feed and Organs around a Metal Production Centre in Eastern Kazakhstan. Sci. Total Environ. 2000, 257, 53–60. [Google Scholar] [CrossRef]
- Jorhem, L. Lead and Cadmium in Tissues from Horse, Sheep, Lamb and Reindeer in Sweden. Z Lebensm. Unters Forsch. 1999, 208, 106–109. [Google Scholar] [CrossRef]
- Janette, O. Itai-Itai Disease Caused by Cadmium Poisoning. J. Heavy Met. Toxic. Dis. 2021, 6, 455–463. [Google Scholar]
- Nakata, H.; Nakayama, S.M.M.; Kataba, A.; Yohannes, Y.B.; Ikenaka, Y.; Ishizuka, M. Evaluation of the Ameliorative Effect of Spirulina (Arthrospira Platensis) Supplementation on Parameters Relating to Lead Poisoning and Obesity in C57BL/6J Mice. J. Funct. Foods 2021, 77, 104344. [Google Scholar] [CrossRef]
- Nakata, H.; Nakayama, S.M.M.; Yabe, J.; Muzandu, K.; Toyomaki, H.; Yohannes, Y.B.; Kataba, A.; Zyambo, G.; Ikenaka, Y.; Choongo, K.; et al. Clinical Biochemical Parameters Associated with the Exposure to Multiple Environmental Metals in Residents from Kabwe, Zambia. Chemosphere 2021, 262, 127788. [Google Scholar] [CrossRef]
- Nakata, H.; Nakayama, S.M.M.; Ikenaka, Y.; Mizukawa, H.; Ishii, C.; Yohannes, Y.B.; Konnai, S.; Darwish, W.S.; Ishizuka, M. Metal Extent in Blood of Livestock from Dandora Dumping Site, Kenya: Source Identification of Pb Exposure by Stable Isotope Analysis. Environ. Pollut. 2015, 205, 8–15. [Google Scholar] [CrossRef]
- Pandey, G.; Madhuri, S. Heavy Metals Causing Toxicity in Animals and Fishes. Res. J. Anim. Vet. Fish. Sci. 2014, 2, 17–23. [Google Scholar]
- Reglero, M.M.; Monsalve-González, L.; Taggart, M.A.; Mateo, R. Transfer of Metals to Plants and Red Deer in an Old Lead Mining Area in Spain. Sci. Total Environ. 2008, 406, 287–297. [Google Scholar] [CrossRef]
- Filipović-Trajković, R.; Ilić, Z.S.; Šunić, L.; Andjelković, S. The Potential of Different Plant Species for Heavy Metals Accumulation and Distribution. J. Food Agric. Environ. 2005, 10, 959–964. [Google Scholar]
Mongolian Government Limit (mg/kg) | Eco-SSLs (mg/kg) | Maximum Permissible Level (mg/kg) * | This Study (2016) with Recorded Area (mg/kg) | Previous Study in Mongolia (2019) (mg/kg) | Previous Study in Mongolia (2007) (mg/kg) | |||
---|---|---|---|---|---|---|---|---|
Cr | 150 | Ⅲ 34 | 100 | Median | 26.5 | (Tuv aimag) | 29 | 20.3 |
Ⅳ 130 | Highest | 120.6 | (Dornogovi ZB) | 110.4 | 23.9 | |||
Mn | 4000 | 2000 | Median | 377.8 | (Tuv aimag) | 0.5 | ||
Highest | 3504.0 | (Dornogovi ZB) | 1.1 | |||||
Cu | 100 | 49 | 100 | Median | 18.1 | (Tuv aimag) | 28.9 | 35.9 |
Highest | 64.7 | (Dornogovi ZB) | 78.6 | 47.4 | ||||
Zn | 300 | 79 | 300 | Median | 34.5 | (Tuv aimag) | 135.6 | 158.7 |
Highest | 209.1 | (Dornogovi ZB) | 384 | 203.0 | ||||
As | 20 | 46 | 20 | Median | 8.8 | (Tuv aimag) | 22.9 | 14.0 |
Highest | 48.2 | (Dornogovi ZB) | 526.8 | 64.1 | ||||
Se | 10 | 0.63 | 10 | Median | 10.7 | (Dornogovi AE) | 0.1 | |
Highest | 86.5 | (Dornogovi ZB) | 1.5 | |||||
Cd | 3 | 0.36 | 3 | Median | 0.07 | (Tuv aimag) | 0.2 | 0.8 |
Highest | 0.44 | (Dornogovi ZB) | 1.9 | 1.1 | ||||
Pb | 100 | 56 | 100 | Median | 7.5 | (Tuv aimag) | 34.5 | 63.9 |
Highest | 76.5 | (Dornogovi ZB) | 77.3 | 119.6 |
Dornogovi AE | Cr | Mn | Cu | Zn | As | Se | Cd | Pb | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Goat (15) | median | 0.05 | 0.074 | 4.0 | 11.4 | 0.011 | 0.95 | < 0.001 | 0.077 | ||||||||||||||||
(mg/kg) | range | 0.023 | — | 0.14 | 0.046 | — | 0.31 | 1.6 | — | 4.8 | 6.8 | — | 18.3 | 0.009 | — | 0.023 | 0.47 | — | 1.4 | < 0.001 | — | < 0.001 | 0.036 | — | 0.13 |
Sheep (10) | median | 0.0525 | 0.11 | 3.5 | 10.0 | 0.0125 | 1.2 | < 0.001 | 0.055 | ||||||||||||||||
(mg/kg) | range | 0.031 | — | 0.075 | 0.078 | — | 0.15 | 2.4 | — | 4.5 | 6.4 | — | 14.6 | 0.009 | — | 0.015 | 0.59 | — | 1.5 | < 0.001 | — | < 0.001 | 0.03 | — | 0.088 |
Dornogovi UB | Cr | Mn | Cu | Zn | As | Se | Cd | Pb | |||||||||||||||||
Goat (10) | median | 0.045 | 0.10 | 5.2 | 29.0 | 0.013 | 1.5 | 0.001 | 0.10 | ||||||||||||||||
(mg/kg) | range | 0.031 | — | 0.20 | 0.069 | — | 0.37 | 4.7 | — | 8.1 | 9.4 | — | 148.1 | 0.008 | — | 0.049 | 1.2 | — | 1.9 | < 0.001 | — | 0.003 | 0.033 | — | 0.22 |
Sheep (10) | median | 0.054 | 0.13 | 4.9 | 20.6 | 0.016 | 1.6 | 0.001 | 0.095 | ||||||||||||||||
(mg/kg) | range | 0.032 | — | 0.15 | 0.085 | — | 0.24 | 3.7 | — | 7.9 | 8.9 | — | 63.4 | 0.011 | — | 0.020 | 1.3 | — | 2.2 | < 0.001 | — | 0.004 | 0.038 | — | 0.14 |
Horse (3) | median | 0.055 | 0.09 | 3.7 | 9.3 | 0.013 | 0.85 | 0.003 | 0.036 | ||||||||||||||||
(mg/kg) | range | 0.052 | — | 0.12 | 0.067 | — | 0.12 | 2.8 | — | 6.7 | 7.0 | — | 10.1 | 0.008 | — | 0.013 | 0.84 | — | 1.0 | 0.003 | — | 0.003 | 0.031 | — | 0.039 |
Camel (13) | median | 0.035 | 0.20 | 2.9 | 50.4 | 0.01 | 1.4 | < 0.001 | 0.058 | ||||||||||||||||
(mg/kg) | range | 0.015 | — | 0.18 | 0.078 | — | 0.80 | 1.8 | — | 19.2 | 15.1 | — | 211.2 | 0.005 | — | 0.072 | 0.88 | — | 10.8 | < 0.001 | — | 0.004 | 0.038 | — | 0.37 |
Dornogovi ZB | Cr | Mn | Cu | Zn | As | Se | Cd | Pb | |||||||||||||||||
Goat (21) | median | 0.041 | 0.07 | 4.8 | 13.3 | 0.012 | 0.96 | < 0.001 | 0.062 | ||||||||||||||||
(mg/kg) | range | 0.014 | — | 0.14 | 0.017 | — | 0.35 | 2.0 | — | 8.4 | 5.2 | — | 62.7 | 0.003 | — | 0.063 | 0.54 | — | 2.7 | < 0.001 | — | 0.004 | 0.018 | — | 0.19 |
Sheep (20) | median | 0.040 | 0.12 | 4.5 | 11.3 | 0.019 | 2.3 | 0.001 | 0.055 | ||||||||||||||||
(mg/kg) | range | 0.019 | — | 0.10 | 0.073 | — | 0.29 | 2.9 | — | 6.0 | 7.4 | — | 56.4 | 0.008 | — | 0.050 | 1.2 | — | 3.4 | < 0.001 | — | 0.003 | 0.026 | — | 0.15 |
Horse (10) | median | 0.044 | 0.11 | 3.6 | 9.4 | 0.015 | 2.0 | 0.002 | 0.047 | ||||||||||||||||
(mg/kg) | range | 0.015 | — | 0.12 | 0.027 | — | 0.31 | 1.3 | — | 6.5 | 3.7 | — | 14.0 | 0.003 | — | 0.037 | 0.60 | — | 3.4 | < 0.001 | — | 0.005 | 0.019 | — | 0.33 |
Camel (15) | median | 0.037 | 0.17 | 2.8 | 31.1 | 0.012 | 1.2 | 0.001 | 0.044 | ||||||||||||||||
(mg/kg) | range | 0.009 | — | 0.080 | 0.015 | — | 0.49 | 1.0 | — | 4.2 | 5.9 | — | 59.5 | 0.002 | — | 0.029 | 0.47 | — | 4.0 | < 0.001 | — | 0.003 | 0.017 | — | 0.16 |
Cow (3) | median | 0.026 | 0.04 | 1.4 | 2.6 | 0.003 | 0.62 | < 0.001 | 0.024 | ||||||||||||||||
(mg/kg) | range | 0.015 | — | 0.031 | 0.018 | — | 0.058 | 0.028 | — | 2.5 | 0.21 | — | 7.7 | 0.001 | — | 0.006 | 0.004 | — | 1.1 | < 0.001 | — | 0.002 | 0.019 | — | 0.025 |
Tuv Zaamar | Cr | Mn | Cu | Zn | As | Se | Cd | Pb | |||||||||||||||||
Goat (9) | median | 0.053 | 0.13 | 5.5 | 21.1 | 0.047 | 0.27 | 0.001 | 0.065 | ||||||||||||||||
(mg/kg) | range | 0.032 | — | 0.089 | 0.059 | — | 0.32 | 4.4 | — | 6.3 | 8.0 | — | 44.9 | 0.007 | — | 0.094 | 0.18 | — | 0.41 | < 0.001 | — | 0.005 | 0.042 | — | 0.13 |
Sheep (10) | median | 0.044 | 0.13 | 4.4 | 15.7 | 0.042 | 0.26 | < 0.001 | 0.052 | ||||||||||||||||
(mg/kg) | range | 0.021 | — | 0.17 | 0.056 | — | 0.28 | 1.9 | — | 5.0 | 4.3 | — | 32.4 | 0.004 | — | 0.079 | 0.076 | — | 0.42 | < 0.001 | — | 0.004 | 0.015 | — | 0.18 |
Cow (5) | median | 0.068 | 0.10 | 4.2 | 34.0 | 0.078 | 0.14 | 0.002 | 0.15 | ||||||||||||||||
(mg/kg) | range | 0.042 | — | 0.079 | 0.063 | — | 0.25 | 4.0 | — | 4.7 | 23.6 | — | 101.2 | 0.067 | — | 0.39 | 0.11 | — | 0.18 | 0.001 | — | 0.005 | 0.091 | — | 0.21 |
(3a) | Cr | Mn | Cu | Zn | As | Se | Cd | Pb | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sheep (10) (mg/kg) | median | 0.21 | 12.4 | 235.1 | 99.5 | 0.06 | 1.9 | 0.28 | 0.38 | ||||||||||||||||
range | 0.03 | — | 0.57 | 3.7 | — | 26.6 | 20.8 | — | 814.9 | 65.0 | — | 239.1 | 0.03 | — | 0.16 | 0.22 | — | 4.8 | 0.002 | — | 0.83 | 0.22 | — | 2.2 | |
Goat (11) (mg/kg) | median | 0.28 | 10.2 | 92.4 | 176.2 | 0.06 | 1.9 | 0.11 | 0.24 | ||||||||||||||||
range | 0.07 | — | 1.1 | 4.0 | — | 33.4 | 10.5 | — | 734.5 | 59.9 | — | 406.6 | 0.01 | — | 0.27 | 0.40 | — | 3.6 | 0.002 | — | 0.72 | 0.08 | — | 2.8 | |
Cattle (4) (mg/kg) | median | 0.28 | 16.2 | 148.3 | 305.0 | 0.19 | 4.4 | 1.02 | 0.31 | ||||||||||||||||
range | 0.11 | — | 0.60 | 2.7 | — | 32.9 | 8.8 | — | 365.5 | 127.8 | — | 885.9 | 0.06 | — | 0.42 | 2.4 | — | 10.5 | 0.320 | — | 1.8 | 0.20 | — | 0.35 | |
(3b) | Cr | Mn | Cu | Zn | As | Se | Cd | Pb | |||||||||||||||||
Sheep (8) (mg/kg) | median | 0.27 | 3.9 | 16.6 | 88.8 | 0.07 | 4.3 | 0.28 | 0.21 | ||||||||||||||||
range | 0.10 | — | 0.52 | 2.5 | — | 5.9 | 8.7 | — | 43.8 | 45.9 | — | 231.2 | 0.03 | — | 0.13 | 1.8 | — | 11.9 | 0.003 | — | 4.1 | 0.10 | — | 0.67 | |
Goat (11) (mg/kg) | median | 0.29 | 4.8 | 15.0 | 87.7 | 0.07 | 5.0 | 1.02 | 0.24 | ||||||||||||||||
range | 0.08 | — | 0.61 | 1.9 | — | 22.3 | 8.4 | — | 279.1 | 49.3 | — | 777.1 | 0.01 | — | 0.27 | 1.1 | — | 9.6 | 0.004 | — | 7.0 | 0.06 | — | 0.99 | |
Cattle (4) (mg/kg) | median | 0.32 | 4.4 | 39.2 | 306.4 | 0.24 | 8.2 | 3.8 | 0.60 | ||||||||||||||||
range | 0.18 | — | 2.2 | 4.3 | — | 6.3 | 11.6 | — | 99.8 | 95.3 | — | 408.5 | 0.15 | — | 0.38 | 7.4 | — | 10.1 | 0.99 | — | 6.9 | 0.25 | — | 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bataa, B.; Motohira, K.; Dugar, D.; Sainnokhoi, T.-A.; Gendenpil, L.; Sainnokhoi, T.; Pelden, B.; Yohannes, Y.B.; Ganzorig, S.; Nakayama, S.M.M.; et al. Accumulation of Metals in the Environment and Grazing Livestock near A Mongolian Mining Area. Toxics 2022, 10, 773. https://doi.org/10.3390/toxics10120773
Bataa B, Motohira K, Dugar D, Sainnokhoi T-A, Gendenpil L, Sainnokhoi T, Pelden B, Yohannes YB, Ganzorig S, Nakayama SMM, et al. Accumulation of Metals in the Environment and Grazing Livestock near A Mongolian Mining Area. Toxics. 2022; 10(12):773. https://doi.org/10.3390/toxics10120773
Chicago/Turabian StyleBataa, Bayartogtokh, Kodai Motohira, Delgermurun Dugar, Tsend-Ayush Sainnokhoi, Lkhamjav Gendenpil, Tserenchimed Sainnokhoi, Bolormaa Pelden, Yared Beyene Yohannes, Sumiya Ganzorig, Shouta M. M. Nakayama, and et al. 2022. "Accumulation of Metals in the Environment and Grazing Livestock near A Mongolian Mining Area" Toxics 10, no. 12: 773. https://doi.org/10.3390/toxics10120773
APA StyleBataa, B., Motohira, K., Dugar, D., Sainnokhoi, T. -A., Gendenpil, L., Sainnokhoi, T., Pelden, B., Yohannes, Y. B., Ganzorig, S., Nakayama, S. M. M., Ishizuka, M., & Ikenaka, Y. (2022). Accumulation of Metals in the Environment and Grazing Livestock near A Mongolian Mining Area. Toxics, 10(12), 773. https://doi.org/10.3390/toxics10120773