Effects of Moss-Dominated Biocrusts on Soil Microbial Community Structure in an Ionic Rare Earth Tailings Area of Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Field Sampling
2.2. Soil Nutrient Analysis
2.3. 16 S Amplicon Sequencing and Bioinformatic Processing
2.4. Diversity and Abundance Analysis
2.5. Core Microbiome and Symbiotic Network Analysis
3. Results
3.1. Physico-Chemical Analysis of Soil under Different Moss-Dominated Biocrusts
3.2. Diversity of Microbial Communities Is Driven by Moss Species
3.3. Specific Differences in Soil Microbial Composition from Different Moss Species
3.4. Higher Diversity of Specific Microorganisms for Claopodium Rugulosifolium in Moss-Dominated Biocrusts
3.5. The Core Microorganisms of Moss-Dominated Biocrusts Are Represented by a Small Subset of Rhizosphere Genera
3.6. Effects of Core Microorganisms on s
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eldridge, D.J.; Reed, S.; Travers, S.K.; Bowker, M.A.; Maestre, F.T.; Ding, J.; Havrilla, C.; Rodriguez-Caballero, E.; Barger, N.; Weber, B.; et al. The pervasive and multifaceted influence of biocrusts on water in the world’s drylands. Glob. Change Biol. 2020, 26, 6003–6014. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Zhang, W.; Xiao, L.; Yang, R.; Xiao, D.; Zhao, J.; Wang, W.; Chen, H.; Wang, K. Moss-dominated biological soil crusts modulate soil nitrogen following vegetation restoration in a subtropical karst region. Geoderma 2019, 352, 70–79. [Google Scholar] [CrossRef]
- Ferrenberg, S.; Faist, A.M.; Howell, A.; Reed, S.C. Biocrusts enhance soil fertility and Bromus tectorum growth, and interact with warming to influence germination. Plant Soil 2018, 429, 1–14. [Google Scholar] [CrossRef]
- García-Carmona, M.; Arcenegui, V.; García-Orenes, F.; Mataix-Solera, J. The role of mosses in soil stability, fertility and microbiology six years after a post-fire salvage logging management. J. Environ. Manage. 2020, 262, 110281–110287. [Google Scholar] [CrossRef]
- Su, Y.G.; Chen, Y.W.; Padilla, F.M.; Zhang, Y.M.; Huang, G. The influence of biocrusts on the spatial pattern of soil bacterial communities: A case study at landscape and slope scales. Soil Biol. Biochem. 2020, 142, 107721. [Google Scholar] [CrossRef]
- Guan, P.; Zhang, X.; Cheng, Y.; Zheng, H.; Liang, W. Biocrust regulates the effects of water and temperature on soil microbial and nematode communities in a semiarid ecosystem. Land Degrad. Dev. 2020, 31, 1335–1343. [Google Scholar] [CrossRef]
- Havrilla, C.A. Towards a predictive framework for biocrust mediation of vascular plant performance and community structure. Doctoral Dissertation, University of Colorado, Boulder, CO, USA, 2019. [Google Scholar]
- Corbin, J.D.; Thiet, R.K. Temperate biocrusts: Mesic counterparts to their better-known dryland cousins. Front. Ecol. Environ. 2020, 18, 456–464. [Google Scholar] [CrossRef]
- Veluci, R.M.; Neher, D.A.; Weicht, T.R. Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils. Microb. Ecol. 2006, 51, 189–196. [Google Scholar] [CrossRef]
- Köster, J.; Rahmann, S. Snakemake—A scalable bioinformatics workflow engine. Bioinformatics 2018, 34, 3600. [Google Scholar] [CrossRef] [Green Version]
- Sandén, T.; Zavattaro, L.; Spiegel, H.; Grignani, C.; Sandén, H.; Baumgarten, A.; Tiirola, M.; Mikkonen, A. Out of sight—Profiling soil characteristics, nutrients and microbial communities affected by organic amendments down to one meter in a long-term maize cultivation experiment. Appl. Soil Ecol. 2018, EPSC2016-6936. [Google Scholar]
- Chen, M.; Li, F.; Hu, L.; Yang, T.; Yang, Q.; Tao, M.; Deng, Y. Heavy metal pollution in topsoil and vegetables in the typical mining area near Gannan, Jiangxi Province, China, Environ. Eng. Sci. 2019, 36, 1307–1314. [Google Scholar]
- Xie, L.; Wu, W.; Huang, X.; Bai, P.O. Mining and restoration monitoring of rare earth element (REE) exploitation by new remote sensing indicators in southern Jiangxi, China. Remote Sens. 2020, 12, 3558. [Google Scholar] [CrossRef]
- Banning, N.C.; Gleeson, D.B.; Grigg, A.H.; Grant, C.D.; Andersen, G.L.; Brodie, E.L.; Murphy, D.V. Soil microbial community successional patterns during forest ecosystem restoration. Appl. Environ. Microb. 2011, 77, 6158–6164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkowski, P.G.; Fenchel, T.; Delong, E.F. Microbial engines that drive earth’s biogeochemical cycles. Science 2008, 320, 1034–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.F.; Zhang, Z.H. Total nitrogen concentration and pedogenic function of Bryophyte Crust in Typical Vegetations in Upstream of Chishui River. Bull. Bot. Res. 2014, 34, 706–711. [Google Scholar]
- Jiao, S.; Du, N.; Zai, X.; Gao, X.; Chen, W.; Wei, G. Temporal dynamics of soil bacterial communities and multifunctionality are more sensitive to introduced plants than to microbial additions in a multicontaminated soil. Land Degrad. Dev. 2019, 30, 852–865. [Google Scholar] [CrossRef]
- Li, L.; Abou-Samra, E.; Ning, Z.; Zhang, X.; Mayne, J.; Wang, J.; Cheng, K.; Walker, K.; Stintzi, A.; Figeys, D. An in vitro model maintaining taxon-specific functional activities of the gut microbiome. Cold Spring Harb. Lab. 2019, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Smýkal, P.; Nelson, M.N.; Berger, J.D.; von Wettberg, E.J. The impact of genetic changes during crop domestication. Agronomy 2018, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Zhao, Z.; Hou, H.; Bai, Z.; Yuan, Y.; Su, Z.; Wang, G. The effect of combined ecological remediation (plant microorganism modifier) on rare earth mine wasteland. Environ. Sci. Pollut. R. 2020, 27, 13679–13691. [Google Scholar] [CrossRef]
- Donald, D.J. Determination of nitrate and nitrite. Method. Enzymol. 1957, 3, 981–984. [Google Scholar]
- Zheng, Y.; Fu, W.; Zhu, R.; Hu, Z.; Chen, G.; Chai, X.S. Determination of total phosphorus in soil and sludge by an effective headspace gas chromatographic method. RSC Adv. 2019, 9, 40961–40965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorich, R.A.; Nelson, D.W. Direct Colorimetric Measurement of Ammonium in Potassium Chloride Extracts of Soils. Soil Sci. Soc. Am. J. 1983, 47, 833–836. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; Miscellaneous Paper Institute for Agricultural Research: Kaduna, Nigeria, 1954. [Google Scholar]
- Huang, Y.; Wang, Y.; Liu, S.; Huang, W.; Zhou, J. Enhanced hydrolysis-acidification of high-solids and low-organic-content sludge by biological thermal-alkaline synergism. Bioresour. Technol. 2019, 294, 122234. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Liu, J.; Yu, Z.; Li, Y.; Jin, J.; Liu, X.; Wang, G. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China. Soil Biol. Biochem. 2017, 110, 56–67. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- White, J.T. Amplification and direct sequencing of fungal gibosomal RNA genes for phylogenetics. PCR Protoc.Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- Masella, A.P.; Bartram, A.K.; Truszkowski, J.M.; Brown, D.G.; Neufeld, J.D. PANDAseq: Paired-end assembler for illumina sequences. BMC Bioinform. 2012, 13, 31. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.; McGarrell, D.M.; Sun, Y.; Brown, C.T.; Porras-Alfaro, A.; Kuske, C.R.; Tiedje, J.M. Ribosomal database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014, 42, D633–D642. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Caballero, E.; Cantón, Y.; Chamizo, S.; Afana, A.; Solé-Benet, A. Effects of biological soil crusts on surface roughness and implications for runoff and erosion. Geomorphology 2012, 145, 81–89. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, Y. Btrim: A fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 2011, 98, 152–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, J.; Alm, E.J. Inferring Correlation Networks from Genomic Survey Data. PLoS Computational Biology 2012, 8, e1002687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Jaramillo, J.E.; Carrión, V.J.; Bosse, M.; Ferrão, L.F.; de Hollander, M.; Garcia, A.A.; Ramírez, C.A.; Mendes, R.; Raaijmakers, J.M. Linking rhizosphere microbiome composition of wild and domesticated phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. 2017, 11, 2244–2257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Team R. R: A language and environment for statistical computing. r foundation for statistical computing: Vienna, Austria. Computing 2009, 14, 12–21. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H.; et al. Package ‘Vegan’. Community Ecology Package; Version 2.0-0; University of Oulu: Oulu, Finland, 2013; pp. 1–295. [Google Scholar]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Brown, S.P.; Jumpponen, A. Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Mol. Ecol. 2014, 23, 481–497. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microb. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [Green Version]
- Maher, W.; Krikowa, F.; Wruck, D.; Louie, H.; Nguyen, T.; Huang, W. Determination of total phosphorus and nitrogen in turbid waters by oxidation with alkaline potassium peroxodisulfate and low pressure microwave digestion, autoclave heating or the use of closed vessels in a hot water bath: Comparison with Kjeldahl digestion. Anal. Chim. Acta 2002, 463, 283–293. [Google Scholar]
- Li, Y.; Liu, X.; Zhang, L.; Xie, Y.; Cai, X.; Wang, S.; Lian, B. Effects of short-term application of chemical and organic fertilizers on bacterial diversity of cornfield soil in a karst area. J. Soil Sci. Plant Nut. 2020, 20, 2048–2058. [Google Scholar] [CrossRef]
- Li, M.; Li, D.; Tang, Y.; Wu, F.; Wang, J. CytoCluster: A cytoscape plugin for cluster analysis and visualization of biological networks. Int. J. Mol. Sci. 2017, 18, 1880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faust, K.; Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Zhang, W.; Yang, Y.; Ma, J.; Li, S.; Wen, Z. Soil characteristics and microbial community response in rare earth mining areas in southern Jiangxi Province, China. Environ. Sci. Pollut. Res. 2021, 28, 56418–56431. [Google Scholar] [CrossRef]
- Keet, J.H.; Ellis, A.G.; Hui, C.; Novoa, A.; Le Roux, J.J. Impacts of invasive Australian acacias on soil bacterial community composition, microbial enzymatic activities, and nutrient availability in fynbos soils. Microb. Ecol. 2021, 82, 1–18. [Google Scholar] [CrossRef]
- Hairu, Y.U.; Feifan, Y.A.N.; Yunlong, W.A.N.G.; Xinying, T.O.N.G.; Di, C.H.E.N.; Qiang, Y.E.; Renzhe, P.I.A.O.; Hongyan, Z.H.A.O. Antagonistic effects of Sphingomonas and Pseudomonas aeruginosa on 4 kinds of pathogenic bacteria of Ginseng. Asian Agric. Res. 2022, 14, 5. [Google Scholar]
- Sardar, M.F.; Zhu, C.; Geng, B.; Huang, Y.; Abbasi, B.; Zhang, Z.; Song, T.; Li, H. Enhanced control of sulfonamide resistance genes and host bacteria during thermophilic aerobic composting of cow manure. Environ. Pollut. 2021, 275, 116587. [Google Scholar] [CrossRef]
- Kumawat, K.C.; Singh, I.; Nagpal, S.; Sharma, P.; Gupta, R.K.; Sirari, A. Co-inoculation of indigenous Pseudomonas oryzihabitans and Bradyrhizobium sp. modulates the growth, symbiotic efficacy, nutrient acquisition, and grain yield of soybean. Pedosphere 2022, 32, 438–451. [Google Scholar] [CrossRef]
- Bañeras, L.; Llorens, L.; Díaz-Guerra, L.; Gispert, M.; Hernández-del Amo, E.; Massart, S.; Verdaguer, D. Resilience of microbial communities in Mediterranean soil after induced drought and manipulated UV radiation. Eur. J. Soil Sci. 2022, 73, e13218. [Google Scholar] [CrossRef]
- Cheng, C.; Li, Y.; Long, M.; Gao, M.; Zhang, Y.; Lin, J.; Li, X. Moss biocrusts buffer the negative effects of karst rocky desertification on soil properties and soil microbial richness. Plant Soil 2020, 475, 153–168. [Google Scholar] [CrossRef]
- Coleine, C.; Selbmann, L.; Singh, B.K.; Delgado-Baquerizo, M. The poly-extreme tolerant black yeasts are prevalent under high ultraviolet light and climatic seasonality across soils of global biomes. Environ. Microbiol. 2022, 24, 1988–1999. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Zhu, L.; Wang, J.; Xue, Y.; Liu, K.; Zhang, F.; Zhang, T. Nonpoint Source Pollution (NPSP) Induces structural and functional variation in the fungal community of sediments in the Jialing River, China. Microb. Ecol. 2022, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Barberán, A.; Bates, S.T.; Casamayor, E.O.; Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012, 6, 343–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Lu, R.; Du, J.; Lyu, Z.; Wang, L.; Gao, S.; Wu, Y. Evolution of peatlands in the Mu Us desert, northern China, since the last deglaciation. J. Geophys. Res. Earth Surf. 2018, 123, 252–261. [Google Scholar] [CrossRef]
- Abbo, S.; van-Oss, R.P.; Gopher, A.; Saranga, Y.; Ofner, I.; Peleg, Z. Plant domestication versus crop evolution: A conceptual framework for cereals and grain legumes. Trends Plant Sci. 2014, 19, 351. [Google Scholar] [CrossRef]
- Goodrich, J.; Wiener, P. A walk from the wild side: The genetics of domestication of livestock and crops. Bioessays 2010, 27, 574–576. [Google Scholar] [CrossRef]
- Chen, Y.H.; Gols, R.; Benrey, B. Crop Domestication and Its Impact on Naturally Selected Trophic Interactions. Annu. Rev. Entomol. 2015, 60, 35–58. [Google Scholar] [CrossRef] [Green Version]
- Zachow, C.; Müller, H.; Tilcher, R.; Berg, G. Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima—ancestor of all beet crops—and modern sugar beets. Front. Microbiol. 2014, 5, 415. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Garrido-Oter, R.; Münch, P.C.; Weiman, A.; Dröge, J.; Pan, Y.; McHardy, A.C.; Schulze-Lefert, P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 2015, 17, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Paulson, J.N.; Stine, O.C.; Bravo, H.C.; Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 2018, 10, 1200–1202. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Liu, R.; Yang, L.; Xiao, X.; He, G. Effects of Moss-Dominated Biocrusts on Soil Microbial Community Structure in an Ionic Rare Earth Tailings Area of Southern China. Toxics 2022, 10, 782. https://doi.org/10.3390/toxics10120782
Song Y, Liu R, Yang L, Xiao X, He G. Effects of Moss-Dominated Biocrusts on Soil Microbial Community Structure in an Ionic Rare Earth Tailings Area of Southern China. Toxics. 2022; 10(12):782. https://doi.org/10.3390/toxics10120782
Chicago/Turabian StyleSong, Yongsheng, Renlu Liu, Liren Yang, Xiaoyu Xiao, and Genhe He. 2022. "Effects of Moss-Dominated Biocrusts on Soil Microbial Community Structure in an Ionic Rare Earth Tailings Area of Southern China" Toxics 10, no. 12: 782. https://doi.org/10.3390/toxics10120782
APA StyleSong, Y., Liu, R., Yang, L., Xiao, X., & He, G. (2022). Effects of Moss-Dominated Biocrusts on Soil Microbial Community Structure in an Ionic Rare Earth Tailings Area of Southern China. Toxics, 10(12), 782. https://doi.org/10.3390/toxics10120782