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Abstract: Particulate matter (PM) exposure is a global health issue that impacts both urban and rural
communities. Residential communities in the Southwestern United States have expressed concerns
regarding the health impacts of fugitive PM from rural, legacy mine-sites. In addition, the recent
literature suggests that exosomes may play a role in driving toxicological phenotypes following
inhaled exposures. In this study, we assessed exosome-driven mechanisms and systemic health
impacts following inhaled dust exposure, using a rodent model. Using an exosome inhibitor, GW4869
(10 µM), we inhibited exosome generation in the lungs of mice via oropharyngeal aspiration. We then
exposed mice to previously characterized inhaled particulate matter (PM) from a legacy mine-site and
subsequently assessed downstream behavioral, cellular, and molecular biomarkers in lung, serum,
and brain tissue. Results indicated that CCL-2 was significantly upregulated in the lung tissue and
downregulated in the brain (p < 0.05) following PM exposure. Additional experiments revealed
cerebrovascular barrier integrity deficits and increased glial fibrillary acidic protein (GFAP) staining
in the mine-PM exposure group, mechanistically dependent on exosome inhibition. An increased
stress and anxiety response, based on the open-field test, was noted in the mine-PM exposure group,
and subsequently mitigated with GW4869 intervention. Exosome lipidomics revealed 240 and
eight significantly altered positive-ion lipids and negative-ion lipids, respectively, across the three
treatment groups. Generally, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) lipids
were significantly downregulated in the PM group, compared to FA. In conclusion, these data suggest
that systemic, toxic impacts of inhaled PM may be mechanistically dependent on lung-derived,
circulating exosomes, thereby driving a systemic, proinflammatory phenotype.

Keywords: metals; particulate matter; lung; brain; inflammation

1. Introduction

As a result of U-mining cessation following the Cold War era, hundreds of former
U-mines were left abandoned in the Southwestern United States. Proximity to abandoned
U-mine and mill sites is a significant risk factor that contributes to negative health effects
in surrounding communities [1–4]. These mines were often left unremediated, resulting
in contamination of the surrounding soil, water, and air with toxic metals, including U, V,
As, and Ni [5]. Inhalation of fugitive, wind-blown dusts from these mine-sites is currently
under investigation in relation to neurovascular and neurological disease [5,6].

The previous literature has demonstrated that mine-based dust is mechanistically more
toxic than background (control) dust and may potentiate cardiopulmonary toxicity [7,8].
The biological mechanisms driving this impact may be due to circulating factors that in-
teract with the endothelium [6]. White blood cells may extravasate through the activated
endothelium via diapedesis and eventually form foam cells between the endothelial wall
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and the smooth muscle layer [9], thereby driving atherogenic disease. In the case of neuroin-
flammatory disease, the blood–brain barrier (BBB) is the primary target for these secondary
circulating factors, subsequent to inhaled toxicants [10]. Activation of glial and other cells,
such as astrocytes and microglia, may occur after inhaled toxicant exposure. Neurological
disorders have recently been described in association with PM exposures. Silica-based
dusts may not only drive pulmonary inflammation, but also cause neuroinflammatory
impacts in an autoimmune model [5]. Furthermore, mental health impacts and depression
have been linked to short-term exposure to PM and a depressive-like response in mice due
to inflammation in the brain [11,12]. More specifically, there is a neuro- and immunologic
association among stress, inflammation, and air pollution exposures [13–16]. Furthermore,
circulating factors, such as exosomes, have been used in experimental clinical models and
may have prognostic value for brain and mental health disorders [17]. However, specific
molecular mechanisms driving this effect are currently unknown.

The “secretome” is an ongoing area of research, with regard to toxicological expo-
sures [6,10,18,19]. These secondary factors may modify the circulation by altering adhesion
molecules on the endothelium surface [20]. Extracellular vesicles (EVs) are lipid-based
vesicles secreted by cells into the extracellular and interstitial space [21,22]. Extracellular
vesicles contain a lipid bilayer membrane that protects the internal material including, but
not limited to peptides, miRNAs, metabolites, and nucleic acids. Furthermore, extracellular
vesicles are involved in intercellular communication and cellular disposal, and they may
act as circulating biomarkers. There are several different subclasses of EVs, including
microvesicles (MVs), apoptotic bodies, and exosomes, which are distinguished on the
basis of biogenesis, composition, and size. Exosomes, also known as intraluminal vesicles
(ILVs), are some of the smallest EVs and typically span 30–150 nm in diameter. Exosomal
cargo varies and may also depend on exosomal biogenesis-type [23–25]. Exosome and
extracellular vesicle-mediated exposures have been linked to a number of pathologies
including neurodegeneration, pulmonary disease, infertility, and cancer [25–28]. Endo-
somal sorting complexes required for transport (ESCRT)-dependent pathways mediate
ubiquinated cytosolic proteins as cargo; however, ubiquinated proteins and peptides are
not required for ESCRT-independent selection, which includes a wide array of proteins
including MHC receptors, MMPs, β-catenin, and viral-associated protein [29]. The ESCRT-
independent pathway involves ceramides and neutral sphingomylinase, both involved in
microvesicle budding.

Lipids are critical components of extracellular vesicles; however, our knowledge of
the composition and function of these molecules is limited, despite the fact that circulat-
ing lipids are key drivers of neurovascular disease [30]. Plasma membrane disruption is
crucial to allow exosome formation. This modification of the outer membrane promotes
EV formation. Multiple lipid pathways are involved in exosome biogenesis including ES-
CRT, ceramide, hexadecylglycerol, PIP3, cholesterol, and phosphatidic acid pathways [31].
Exosome composition, including a high ratio of protein/lipids, may enhance membrane
rigidity, ensuring durability to circulate within biological fluids [32].

The objective of this study was to examine the mechanistic role of lung-derived
exosomes following PM exposure and impacts on the neurovascular system using a rodent
model. We hypothesized that PM induces proinflammatory lung-derived exosomes which
eventually circulate systemically and cause inflammatory impacts in the brain such as
reduced barrier integrity in cerebrovascular endothelial cells and activation of astrocytes.

2. Materials and Methods
2.1. Animal Care and Study Design

Mice were ordered from Taconic Biosciences (Albany, NY, USA) and acclimated in
appropriate housing facilities for 2 weeks, as per the university-approved institutional
animal care and use committee (IACUC) protocol. C57BL/6 mice were randomly assigned
to three different treatment groups (n = 10 mice per group): HEPA-filtered air (Lab Products
LLC, Seaford, DE) + saline (FA), particulate matter + saline (PM), or PM + an exosome
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inhibitor, GW4869 (MilliporeSigma, St. Louis, MO, USA) (PM + GW4869) (Figure 1A).
Firstly, 50 µL of 10 µM GW4869 or 1× physiological saline solution (PSS, MilliporeSigma, St.
Louis, MO) was instilled into the lungs of mice 1 h prior to inhaled exposure of mine-dust
from St. Anthony mine PM exposure or FA prior to each 4 h exposure.
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Figure 1. Study design and PM concentration. (A) Mice were subjected to 50 µL of GW4869 (10 µM)
or 50 µL of saline via oropharyngeal aspiration the day before and the day of exposure to either FA or
PM (2.51 ± 0.08 mg/m3). (B) PM concentration each exposure day (2 days total).

2.2. Inhalation Exposures

Previously characterized dust samples, derived from St. Anthony mine [5], a former
commercial mine near Paguate, NM, were sieved to <60 µm to facilitate aerosolization in a
closed inhalation chamber. A whole-body, bench-scale exposure system with air supply,
dilution, and filtration with real-time TSI monitoring for particulate concentration and size
distribution was used to for all rodent exposures. Gravimetric filter samples were collected
to confirm true mass calculations. The average chamber concentration was measured over
several days and averaged 2.51 ± 0.08 mg/m3 (Figure 1B).

2.3. Bronchoalveolar Lavage Fluid Following Exposure

A small cannula was inserted using an incision in the trachea of each mouse, while
under isoflurane anesthesia. Bronchoalveolar lavage fluid (BALF) was extracted by flushing
the lungs with 1 mL of phosphate-buffered saline (PBS) and withdrawn using a sterile
syringe for collection. Total cell, neutrophil, and macrophage counts were then subse-
quently assessed, using Hoechst staining (ThermoFisher Scientific, Waltham, MA, USA)
techniques [33] for dead/live cell acquisition using a hemocytometer.

2.4. BALF Exosome Isolation and Quantification

Exosomes isolated from bronchoalveolar lavage fluid (BALF) were centrifuged at
3000× g for 15 min to remove cellular debris, and then subsequently transferred into a new
tube. The appropriate amount of ExoQuick solution was added incubated with the BALF
using a commercially available kit, ExoQuick ULTRA EV Isolation Kit (System Biosciences,
Palo Alto, CA, USA). The solution and the BALF were mixed well and incubated overnight.
The ExoQuick/BALF mixture was centrifuged at 1500× g for 30 min. Centrifugation was
performed at room temperature or 4 ◦C. The supernatant was carefully aspirated following
centrifugation at 1500× g for 5 min. The remaining, precipitated EV pellet was resuspended
in 350 µL of Lysis Buffer, vortexed for 15 s, and allowed to sit at room temperature for
5 min. The quantification and the confirmation of exosomes in the sample were conducted
using Nanocyte technology according to previously published literature [34].
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2.5. ICP-MS Metals Content in BALF Exosomes

Isolated exosomes were digested using a hot-block technique digestion following
methods outlined in Meyer et al. (2018) [35] using a Digi Prep hot block and PP di-
gestion tubes (SCP Science, Quebec, CA, USA). Mass-based aliquots were treated with
aliquots of concentrated nitric acid and hydrogen peroxide (J.T. Baker ULTREX II Ultra-
pure). Samples were heated to 90 ◦C to denature proteins, resulting in a clear solution.
The digestion was then diluted to achieve 2% acid prior to analysis by ICP-MS. All sam-
ples were analyzed on an Agilent Model 7700× ICP-MS (Santa Clara, CA, USA). The
instrument parameters were as follows: RF power = 1450 W, dwell time = 50 ms, sweeps
per replicate = 100, nebulizer flow = 0.95 L/min, coolant = 15 L/min, auxiliary = 1.3 L/min,
sample uptake = ~0.400 mL/min. Replicates were run in technical triplicate according to
each sample, and the acquisition mode was set to peak hopping.

The US EPA protocol in Method 6020 was used. Each run included quality control
checks referred to as Initial Calibration Verification (ICV) standards and Independent
Calibration Verification. The QC checks fell within ±10% of their expected value. After
calibration, after every 10 samples, and at the run end, quality control samples were
reanalyzed. These QC checks included a mid-range standard (Continuing Calibration
Verification, CCV), a QC solution sample from an independent source, and the matched
matrixed sample. Examples are NIST 1643 trace metals in water or a certified reference
material (High Purity Standards, Charleston, SC, USA). Results were within 25% of the
expected value.

2.6. RT-qPCR Gene Expression

Gene expression was assessed using real-time quantitative polymerase chain reaction
(RT-qPCR) methods. Lung and brain tissues were dissected and snap-frozen in liquid
nitrogen. Samples were then subsequently stored in a −80 ◦C freezer for further use. Total
RNA was extracted using a commercial RNA kit (RNeasy, Qiagen, Germantown, MD, USA).
Samples were later thawed and reverse-transcribed using High-Capacity cDNA Reverse
Transcription reagents (Applied Biosystems, Foster City, CA, USA), prior to performing
qPCR. Gene expression was assessed using Taqman Gene Expression protocols and a
384 CFX Opus Real-Time PCR System (Bio-Rad, Hercules, CA, USA). Genes assessed in-
cluded CCL-2 (Mm00441242_m1), TGF-β (Mm0178820_m1), IL-6 (Mm00446190_m1), TNFα
(Mm00443258_m1), CXCL-1 (Mm04207460_m1), and IL-1β (Mm00434228_m1); TATA-
binding protein (TBP, Mm01277042) was used as a housekeeping control gene (Thermo
Fisher Scientific, Waltham, MA, USA). Relative gene expression using these target genes
was analyzed using the 2−∆∆CT method [36].

2.7. Electric Cell Impedance Sensing Assay

Transendothelial resistance of mouse cerebrovascular endothelial cells (mCECs) in re-
sponse to both serum and isolated exosomes was examined using the electric cell impedance
sensing (ECIS) system (Applied Biophysics, Troy, NY, USA). This system utilizes an elec-
trical current to examine alterations in endothelial cell integrity, according to Ohm’s law
(V = IR). In this study, 5% serum was incubated with a monolayer of mCECs that were
plated and grown to confluence, as monitored by a plateau in transendothelial resistance.
Transendothelial resistance was measured at 16 k Hz, and the normalized adhesion index
was calculated on the basis of previous literature [37]. In a second set of experiments,
exosomes were isolated from the FA and PM exposure groups, and cell regrowth was
monitored at 16 kHz after an electrical shock (wounding). Normalized resistance was
reported as a plateau was reached within the cell culture.

2.8. Immunofluorescent Staining

Brains were dissected from each mouse and subsequently halved. The right hemi-
sphere was embedded using optimal cutting temperature (OCT) media. After freezing,
the block was sectioned using a cryostat at 60 µm and mounted on positively charged
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slides. Fluorescent staining was conducted using commercially available reagents (Abcam,
Waltham, MA, USA). Glial fibrillary acidic protein (GFAP) rabbit polyclonal antibody
(Abcam, Cambridge, MA, USA) was diluted to 1:2000 and incubated on each slide for
1–2 h. Sections were counterstained with DAPI (Thermo Scientific, Waltham, MA, USA)
in a sealed box protected from light for 8 min. Once dry, ProLong Gold antifade reagent
(Invitrogen, Waltham, MA, USA) was applied to the tissue. Once complete, slides were
stored at room temperature.

2.9. Microscopy and Imaging

Images were captured used Leica TSC SP8 Confocal Microscope. DAPI was captured
at an excitation peak at 359 nm and an emission peak at 457 nm, while GFAP’s fluorescence
was captured at 490 nm excitation and 525 nm emission. Slides were imaged using a 20×
oil objective using 4× zoom resulting at 80× magnification. Both hippocampi and the
cortex were imaged for each slide. Individual nuclei and astrocytes were imaged along
with colocalized regions.

2.10. High-Throughput Astrocyte Quantification via HALO Analysis

Image analysis produced from the confocal microscope was performed using the
HALO software (Indicalabs, Albuquerque, NM, USA), running on a Dell Precision Tower
7810 PC incorporating dual 3 GHz Intel Xenon processors with 32 GB of RAM. Images
were annotated to separate the hippocampi and the cortex by creating separate annotation
layers, the hippocampus being annotation layer one and the cortex being annotation layer
two. Post segmentation, the image was further annotated to exclude any sections of high
density that were not able to be read by the HALO software. The dentate gyrus was
excluded from the analysis of every hippocampus, due to its high density of nuclei. After
the annotations were set, analysis was run on all of the images. Post-analysis data was
analyzed using Graph Pad (GraphPad Holdings, LLC, San Diego, CA, USA). Parameters
measured from visualized astrocytes included the GFAO area of both hippocampi and
the cortex (µm2), percentage area, inner and outer area, minimum diameter, maximum
diameter, optical density (OD), colocalized area (µm2), and percentage of GFAP stained
cells (object 2) colocalized with DAPI (object 1).

2.11. Behavioral Tasks

Behavioral tasks including assays related to learning and spatial memory, stress and
anxiety, or learning and spatial memory were conducted following inhaled exposures.
Four tasks were assessed including the open-field test and O-maze, both measures of
stress and anxiety, and the novel object test and Y-maze, two tests of learning and spatial
memory, sequentially across a span of 4 days. All behavioral studies were executed at the
University of New Mexico, Health Sciences Center, Center for Brain Recovery and Repair
Preclinical Core, by the same user. The total duration of interactions and the time spent in
each designated area were tracked using Noldus Ethovision XT software to quantify both
learning and memory deficits and overall stress and anxiety, over the course of a 5 min
behavioral task.

2.12. Serum Exosome Isolation

Serum was separated from blood and stored at −80◦ until further use. Serum was
centrifuged at 2000 rpm for 30 min to remove any excess debris. The supernatant containing
clarified serum was then transferred to a new tube using the ultracentrifugation method [38].
Serum and reagent were mixed by pipetting and incubated at ~4 ◦C for 30 min. After
incubation, the sample was centrifuged at 10,000 rpm for 10 min at room temperature. The
supernatant was then aspirated. The remaining exosome pellet was then resuspended with
200 µL of 1× PBS. The sample was then transferred to an Exosome Purification Column
and centrifuged at 3000 rpm for 10 min at 4 ◦C. The filtrates were collected, transferred to a
new tube, and stored at −80◦ until further use.
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2.13. Sample Preparation for Lipidomics

Serum exosome sample preparation was executed by adding 1.2 mL of chloroform/
MeOH (2:1, v/v) and 0.2 mL of ultrapure water into the sample and vortexed, before
centrifuging for 10 min at 3000 rpm at 4 ◦C. The dried exosomes were resuspended in
200 µL of isopropyl alcohol/MeOH (1:1, v/v) with 5 µL of LPC (12:0) as an internal standard.
The sample was then centrifuged for 10 min at 12,000 rpm at 4 ◦C, and the supernatant was
used for LC–MS analysis.

2.14. UPLC–MS and Data Analysis for Lipidomics

Separation was performed by UPLC (Thermo, Ultimate 3000 LC). The mobile phase
consisted of solvent A (60% ACN + 40% H2O + 10 mM HCOONH4) and solvent B (10%
ACN + 90% isopropyl alcohol + 10 mM HCOONH4) with a gradient elution (0–10.5 min,
30–100% B; 10.5–12.5 min, 100% B; 12.5–12.51 min, 100–30% B; 12.51–16 min, 30% B). The
mobile phase flow rate was 0.3 mL/min. The column temperature was maintained at 40 ◦C.
ESI+ and ESI− modes were set at the following parameters: ESI+: heater temperature,
300 ◦C; sheath gas flow rate, 45 arb; auxiliary gas flow rate, 15 arb; sweep gas flow rate,
1 arb; spray voltage, 3.0 kV; capillary temperature, 350 ◦C; S-lens RF level, 30%. ESI−:
heater temperature, 300 ◦C; sheath gas flow rate, 45 arb; auxiliary gas flow rate, 15 arb;
sweep gas flow rate, 1 arb; spray voltage, 3.2 kV; capillary temperature, 350 ◦C; S-lens
RF level, 60%. During the sample analysis, three quality control (QC) samples were
run in triplicate to avoid changes in chromatographic retention time and signal intensity.
Lipidomics data were analyzed and heatmaps were generated using python packages.
Both positive- and negative-ion serum-borne exosomal lipidomics were reported.

2.15. Statistical Analyses

A one-way ANOVA was executed for the majority of experimental data, with Tukey’s
post hoc test. A p-value <0.05 was considered statistically significant in all cases. Significant
values are accordingly indicated with an asterisk (*) in the figures. Data in the figures are
represented as the mean ± standard error of the mean (SEM).

3. Results
3.1. Bronchoalveolar Lavage Cells

Lavage results indicated no significant changes in total cells, %PMN, and
%macrophages (Figure 2). No statistically significant changes were noted among the
FA, PM, and PM + GW4869 groups. However, these modest cellular changes were likely
caused by the delay due to the series of behavioral tests that occurred between PM exposure
and euthanasia.

3.2. Brain and Lung Gene Expression

Lung CCL-2 was significantly diminished in the PM exposure group, relative to FA
and PM + GW4869 (p = 0.01, Figure 3). Lung gene expression indicated no significant
changes in TGF-β, IL-6, TNFα, CXCL-1, and IL-β, according to mRNA RT-qPCR analysis.
Genes tested in the right brain whole hemisphere indicated no statistically significant
changes in IL-β, TNFα, and IL-6, according to a one-way ANOVA (≤0.05). Interestingly,
CCL-2 was significantly diminished in the brain (p = 0.03) following PM exposure and this
impact was mitigated via administration of GW4869.
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Figure 2. Bronchoalveolar lavage fluid. Cells from lung fluid from FA, PM, and PM + GW4869
inhibitor including (A) total cells, (B) polymorphonuclear neutrophils (% PMN), and (C) macrophages
(% macrophages). A one-way ANOVA was performed with a Kruskal–Wallis post hoc test, and
p ≤ 0.05 was considered significant. Data represent the mean ± SEM.
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Figure 3. Lung and brain RT-qPCR whole-lung homogenate gene expression for RT-qPCR analysis
(A–F). Brain homogenate gene expression (G–J). Data were statistically analyzed using a one-way
analysis of variance test (ANOVA), followed by a Kruskal Wallis post hoc test; p ≤ 0.05 was considered
statistically significant, as indicated by the asterisk (*). Data represented include the mean ± SEM.



Toxics 2022, 10, 457 8 of 14

3.3. GFAP Staining and Cerebrovascular Endothelial Integrity

Hippocampus GFAP staining did not indicate any changes in GFAP staining according
to a number of assessed parameters including optical density (OD) and total normalized
GFAP area. Normalized GFAP total area was significantly upregulated (p = 0.03) in the PM
exposure group, relative to FA and PM + GW4869 treatment (Figure 4). Other parameters
tested including astrocyte percentage area, inner and outer area, minimum, maximum, and
median diameter, and optical density (OD), which in this study, did not significantly change
among treatment groups. This impact was significantly mitigated with the administration
of GW4869 in the PM exposure group and mimicked GFAP staining similar to the FA
control group.
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Figure 4. Cerebrovascular integrity. Representative images of brain cortex sections (A–C) stained with
DAPI (nuclear staining, blue) and normalized GFAP staining (green) in FA, PM, and PM + GW4869
treatment groups with respective quantification (D). Transendothelial electrical cell impedance sens-
ing (ECIS) in cerebrovascular endothelial cells treated with 5% serum from the aforementioned
exposure treatment groups (E,F). There was significant (p = 0.02) diminished resistance in vascular en-
dothelial integrity following serum treatment, suggesting endothelial leakage in the PM group, which
was mitigated with GW4869, according to a one-way ANOVA. (G,H) Transendothelial resistance
following treatment with solely exosomes and cell culture wounding (scratch assay) with regrowth
(p = 0.01). Data are considered significant at p ≤ 0.05, as indicated by the asterisk (*). Data represent
the mean ± SEM.

Endothelial cerebrovascular integrity indicated significantly diminished transendothe-
lial electrical resistance (TEER) in the PM exposure, relative to FA and PM + GW4869
exposure groups, following 5% serum incubation with cerebrovascular endothelial cells,
according to normalized resistance measurements. In the secondary experiment assess-
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ing serum-derived exosomes on cerebrovascular wound healing, normalized resistance
diminished in the PM exposure group, relative to FA.

3.4. Behavioral Tasks

Behavioral tasks including the open-field test resulted in a significant change in the
PM exposure group, relative to the FA and PM + GW4869 treatment groups (Figure 5). The
open-field test resulted in significantly diminished center frequency visitation (p = 0.0482)
and open-field cumulative duration (p = 0.0407) following PM exposure. The Y-maze,
O-maze, and novel object frequency and cumulative duration remained unchanged among
FA, PM, and PM + GW4869 and did not result in any significant differences.
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Figure 5. Behavioral tasks. Behavioral tasks were executed following FA, PM, and PM + GW4869
aspiration. These included the open-field test (A,B), Y-maze (C,D), O-maze (E,F), and novel object test
(G,H). The open-field test resulted in significantly diminished center frequency visitation (p = 0.0482)
and open-field cumulative duration (p = 0.0407). Data represent the mean ± SEM. Data are considered
significant at p ≤ 0.05, as indicated by the asterisk (*).
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3.5. Exosome-Lipidomics and Exosome Composition

The majority of positive-ion downregulated lipids in the PM, compared to FA, con-
sisted of PC and PE lipids, while a significant number of upregulated lipids in the PM
group were triglycerides (TG) (Figure 6). Lipid composition did not change significantly
with GW4869 aspiration, and exosome lipid composition remained relatively consistent
between PM and PM + GW4869. In a second set of experiments, well-documented toxic
metals including As, V, U, Pb, Sb, and Sn that were assessed in isolated BALF exosomes
presented either negligible or no detectable level in the FA and PM samples examined
(Supplementary Figure S1).
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4. Discussion

There is an established link among particulate matter, associated metals, neurotoxicity,
and mental health outcomes [39]. Furthermore, the role of exosomes and other extracellular
vesicles following air pollution is an ongoing area of study [22,27]. In this study, we
examined the mechanistic role of lung-based exosomes in a preclinical, rodent model
exposed to an environmentally relevant dust sample, derived from the St. Anthony mine-
site in New Mexico.

Bronchoalveolar lavage fluid results did not indicate significant changes among treat-
ment groups, which was likely due to the delay between exposure and euthanasia. Other
PM studies indicated an increase in BAL cells immediately following PM exposure, which
resolved over time. Metal-based PM exposure induces biological changes (lipids) via
exosomes; however, toxic metals were not detected in exosomes following PM exposure
(Supplementary Figure S1). Determining exosome composition using novel analytical
methods, such as lipidomics, is an emerging field in research, and further exploration of
exosome composition is warranted in order to understand pathology and contribution
to disease development. Our results suggest that pulmonary inflammation largely re-
solves several days (5 days) following acute dust exposure at the concentrations we used
(2 days, 2.51 ± 0.08 mg/m3). CCL-2, however, was still upregulated in the lung even
5 days after exposure (upon euthanasia). This lung CCL-2 upregulation was mitigated
with GW4869 administration, which may suggest a mechanistic, proinflammatory role
of lung-driven exosomes following PM exposure. Interestingly, we found CCL-2 mRNA
expression diminished in the brain (cortex) in the PM exposure group alone. This may have
been a compensatory response to PM exposure, as several behavioral tasks were performed
between exposure and euthanasia, resulting in a slight delay in organ collection. Activated
cerebrovascular endothelial cells and astrocytes may release chemokines such as CCL-2
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and CXCL-1, which in turn stimulate microglia in the brain [40]. This contributes to the
proinflammatory cascade and subsequent neurological impairment [41]. These results indi-
cate that cerebrovascular integrity and subsequent astrocyte activation may be mediated
by lung-derived exosomes following inhaled PM, as depicted in Figure 4. Other studies
have noted that extracellular vesicles may mediate cerebrovascular integrity [42], and these
inflammatory vesicles may modulate pericyte cellular status [43].

There is an emerging role for lipid-based research in air pollution studies [44]. Recent
studies suggest that O3-mediated specialized pro-resolving lipid mediators (SPMs) may
drive O3-induced pulmonary inflammation. The majority of the literature has focused on
differential miRNA expression in exosomes [23,26]; however, using untargeted lipidomics,
we demonstrated significant downregulation in predominantly PE and PC exosome lipids
following inhaled PM exposure. These two lipid classes are the most abundant fatty acids
and are present in all mammalian cell membranes. Abnormally high or low PC or PE values
have been linked with disease progression, with regard to energy metabolism, including
changes in mitochondria energy production [45]. Downregulation of PE and PC lipids
has been implicated in neurodegenerative diseases such as Alzheimer’s disease and other
related dementias [46]. Lipids in Alzheimer’s disease are under current investigation as
biomarkers, with the ultimate intention of finding therapeutic targets [47].

Our data also suggest the role of exosomes in driving cerebrovascular impairment
following PM exposure (Figure 4), which is mitigated with GW4869 lung-based adminis-
tration. These data further define the role of exosomes and the lung–brain axis following
PM exposures. Our exosome lung-based blockade indicates that cerebrovascular cells
may be susceptible to exosomes post PM exposure. Interestingly, this lung-based exosome
blockade also suggests that circulating exosomes following PM exposure may have an
impact on transcriptional (mRNA) changes in CCL-2. Our results suggest that CCL-2
upregulation following PM exposure in the lung was mitigated with GW4869 oropha-
ryngeal aspiration (Figure 3). In addition, CCL-2 was significantly downregulated in the
brain following PM exposure; however, this may have been a compensatory response, due
to the delay between PM exposure and euthanasia, during behavioral studies. Prior air
pollution studies have examined the role of the BBB in mediating secondary molecular
impacts following exposures [6,10]. Other factors, such as the serum peptidome have been
examined extensively throughout air pollution studies [48]. Upregulation of aortic CCL-2
has also been implicated following combination exposures such as fine particulate matter
and gases [49]. However, this study is the first to suggest that exosome inhibition via the
ESCRT-independent pathway may impact CCL-2 transcription following PM exposures.
Future studies examining differential roles of exosome biogenesis following PM exposure
are warranted.

5. Conclusions

Under these conditions, we mechanistically determined that exosomes, derived from
the lung, may play a role in neuroinflammatory impacts following inhaled PM exposures.
Furthermore, CCL-2 may play a role in exosome-driven impacts following PM exposures.
We also determined that the lipid composition of exosomes is significantly altered by
PM exposure mainly via PE and PC lipids. Further research is warranted to determine
mechanisms of exosome alterations following air pollution exposures and subsequent
systemic consequences.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxics10080457/s1, Figure S1: BALF exosome characterization. Metal levels (µg/g) in
isolated BALF exosomes (Left) Nanocyte characterization of BALF exosomes after saline (control) or
GW4869 oropharyngeal aspiration (Right), demonstrating significant exosome inhibition following
GW4869 aspiration.
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