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Abstract: The evaluation of the catalytic capacity of catalysts is indispensable research, as catalytic
capacity is a crucial factor to dictate the efficiency of heterogeneous Fenton catalysis. Herein, we
obtained cigarette tar-methanol extracts (CTME) by applying methanol to cigarette tar and found
that CTME could cause CL reactions with Fe2+/H2O2 systems in acidic, neutral, and alkaline media.
The CL spectrum experiment indicated that the emission wavelengths of the CTME CL reaction with
Fe2+/H2O2 systems were about 490 nm, 535 nm, and 590 nm. Quenching experiments confirmed that
hydroxyl radicals (•OH) were responsible for the CL reaction for CTME. Then the CL property of
CTME was applied in-situ to rapidly determine the amounts of •OH in tetrachloro-1,4-benzoquinone
(TCBQ)/H2O2 system in acidic, neutral and alkaline media, and the CL intensities correlated the
best (R2 = 0.99) with TCBQ concentrations. To demonstrate the utility of the CTME CL method,
the catalytic capacity of different types and concentrations of catalysts in heterogeneous Fenton
catalysis were examined. It was found that the order of CL intensities was consistent with the
order of degradation efficiencies of Rhodamine B, indicating that this method could distinguish the
catalytic capacity of catalysts. The CTME CL method could provide a convenient tool for the efficient
evaluation of the catalytic capacity of catalysts in heterogeneous Fenton catalysis.

Keywords: chemiluminescence; heterogeneous fenton catalysis; cigarette tar; •OH detection; evaluation
of catalytic capacity of catalysts

1. Introduction

Heterogeneous Fenton catalysis has become a major research focus in the area of
wastewater treatment due to advantages over other advanced oxidation processes (AOPs)
such as recyclability, wide pH response range, easy solid-liquid separation, and non-
production iron sludge [1–6]. Catalytic capacity is the critical factor for dictating the
efficiency of heterogeneous Fenton catalysis in the degradation of pollutants. Therefore,
intensive attention has been paid to the synthesis of a wide variety of new catalysts to
improve the catalytic capacity [7–13]. For example, Hu et al. broke through the traditional
Fenton theory to synthesize a new type of catalyst with a dual-reaction center [14,15]. In
practice, researchers usually synthesize a series of materials in different conditions to obtain,
distinguish, and select a catalyst with the best catalytic capacity, which is important yet
tedious work. Hydroxyl radical (•OH) plays a crucial role in the degradation of pollutants
in heterogeneous Fenton catalysis, where the amount of •OH could be an indicator of the
catalytic capacity of a catalyst. Therefore, it is feasible to evaluate the catalytic capacity
of catalysts by rapid and in-situ detection of •OH in heterogeneous Fenton catalysis.
The current detection methods for •OH mainly include electron spin resonance (ESR),
ultraviolet-visible light (UV-vis) absorbance and fluorescence [16]. These methods usually
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need a capture probe to react with free radicals to form a detectable product, followed by
solid-liquid separation and measurement, and could not carry out the rapid and in-situ
detection of •OH in heterogeneous Fenton catalysis, which is not efficient for the evaluation
of the catalytic capacity of catalysts.

Chemiluminescence (CL) is an optical phenomenon in which excited-state species
generated through chemical reactions release energy (>45 kcal·mol−1) in the form of
photons. CL is a well-suited method for the rapid detection of free radicals due to its fast
detection speed and high sensitivity [17–22]. We have previously built a continuous flow
CL method for rapid and dynamic monitoring of superoxide radicals in TiO2 photocatalysis
by using the luminol CL system [23]. However, now there are currently no suitable known
CL methods for rapid and in-situ detection of •OH in heterogeneous Fenton catalysis,
which is largely because the pH value of the heterogeneous Fenton system is incompatible
with the current CL reactions. Therefore, constructing a novel CL method suited to the
heterogeneous Fenton system on the basis of the new principle of CL reaction would
significantly contribute to efficiently evaluating the catalytic capacity of catalysts by rapid
and in-situ detection of •OH.

Cigarette tar is the condensate product from incomplete combustion of tobacco under
high-temperature and anoxic conditions. It has an abundance of various compounds, and
though a fraction derives from the original composition of tobacco, most of the components
are the products generated from cigarette combustion. To date, research has mainly focused
on the hazardous components and their toxicological implications pertinent to cigarette
tar [24,25]. In our previous study, we reported the CL property of tobacco extract [26].
For cigarette tar, there are probably some chemiluminophores directly transferred from
tobacco. More importantly, however, is that an abundance of fused polycyclic compounds
is produced in cigarette tar during combustion, which might be favorable for the chemical
transformation of chemiluminophores with more aromaticity comparable to the current
CL probes. This might eventually improve the luminous efficiency of cigarette tar in
comparison with tobacco.

Based on the above analysis, our objective in this current study has been to develop
a new method for efficiently evaluating the catalytic capacity of catalysts through rapid
and in-situ detection of •OH. Therefore, we first explored the CL properties of cigarette
tar-methanol extracts (CTME) and then examined the feasibility of the CTME CL method
for the rapid and in-situ detection of •OH. Finally, the CTME CL method was demon-
strated to be able to efficiently evaluate the catalytic capacity of catalysts in heterogeneous
Fenton catalysis.

2. Materials and Methods
2.1. Chemicals and Materials

Tetrachloro-1,4-benzoquinone (TCBQ) was purchased from Aladdin Chemistry Co.,
Ltd. (Shanghai, China). FeCl3·6H2O, MnCl2·2H2O, CuCl2·2H2O, CoCl2·6H2O, Rhodamine
B, and thiourea were purchased from Sinopharm Chemical Reagent Co., (Shanghai, China).
A Cambridge filter was purchased from Borgwaldt (Hamburg, Germany). A Millipore
membrane was obtained from ANPEL Laboratory Technologies Inc. (Shanghai, China).
Ultrapure water (>18.2 MΩ) was used throughout all experiments.

2.2. Preparation of Cigarette-Tar-Methanol Extracts (CTME)

The cigarettes were made as follows: ripe fresh tobacco leaves were cured by three-
stage-curing (yellowing, color fixing, and vein drying) procedures detailed in a previous
report [26]. After curing, the leaves were cleaned through dust removal using a brush
and then left to regain moisture for 10 h at room temperature. Then the tobacco leaves
were cut into shreds after removing veins and made into cigarettes using a cigarette rolling
machine. Each cigarette was about 70 mm in length, 27.5 mm in circumference, and 1.1 g in
weight. In order to obtain the cigarette tar, 20 cigarettes were placed on a smoke machine
(Borgwaldt, Germany), and the Cambridge filter was used to trap the particulate matter
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of the mainstream smoke. Then the filter was cut into strips, added to 40 mL of methanol,
sonicated for 20 min, and filtered through 0.45 µm Millipore membrane to obtain the
CTME (filtrate) for further experimentation. The final mass concentration of CTME used
throughout the experiments was about 4.0 mg/mL.

2.3. Synthesis of Catalysts

Mesoporous MnFe2O4 and CoFe2O4 nanospheres were prepared by a modified hy-
drothermal method previously reported [27]. Typically, 1.35 g of FeCl3·6H2O and the
corresponding transition metal salts (1.61 g MnCl2·2H2O and 2.37 g CoCl2·6H2O) with a
molar ratio of 2:1 were dissolved in ethylene glycol (40 mL) containing 3.6 g of sodium
acetate. The mixture was then covered and stirred vigorously on a magnetic stirrer for
30 min, and once a clear yellow solution was obtained, the solution was transferred to a
Teflon-lined stainless-steel autoclave. Then, the autoclave was heated slowly to 200 ◦C
and maintained for 8 h. The products were separated by applying an external magnetic
field after the solution was cooled down to room temperature. The precipitate was washed
several times with ethanol and dried under vacuum at 60 ◦C for 12 h. The FeOCl nanosheet
was synthesized by heating FeCl3·6H2O at a rate of 10 ◦C·min−1 to 220 ◦C and annealing
for 2 h, as previously reported [28].

2.4. CL Measurements

CL kinetic curves were recorded in batch experiments, which were conducted in a
static system consisting of a glass cuvette and a BPCL Ultra-Weak Luminescence Analyzer
(Institute of Biophysics, Chinese Academy of Sciences, Beijing, China). Briefly, for each
CL reaction, 100 µL of CTME and involved reagents were respectively added into a glass
cuvette. Then 100 µL of co-reaction reagent was injected using a microsyringe in the upper
injection pore to trigger a CL reaction. For the measurement of the CL spectrum, a series
of high-energy optical filters (440, 460, 475, 490, 505, 535, 555, 575, 590, and 605 nm) were
utilized to screen the CL intensities of CTME CL systems, respectively.

2.5. Degradation of Rhodamine B

The degradation of Rhodamine B by different types and concentrations of catalysts in
heterogeneous Fenton catalysis was conducted as follows. A total of 10 µL of Rhodamine
B (5.0 mg/mL) was added into 5.0 mL of three kinds of catalysts (1.0 mg/mL ) or into
different concentrations of FeOCl nanosheet (0.05, 0.08, 0.1, 0.2 and 0.5 mg/mL), followed
by adding 500 µL of H2O2 (1.0 mol/L). After 10 min, 500 µL of ascorbic acid (0.5 mol/L)
was added to the mixture to stop the reaction. Then the mixture was filtered through a
0.45 µm membrane, and the filtrate containing the residual Rhodamine B was measured on
the UV-vis spectrophotometer.

3. Results
3.1. CL Property of CTME

We have previously studied the CL behavior of tobacco-methanol extract (TME) with
the Fe2+/H2O2 system [26]. Herein, the CL characteristics of CTME with the Fe2+/H2O2
system were also investigated. As shown in Figure 1a, the CL emissions of CTME with
the Fe2+/H2O2 system were generated at different pH levels ranging from 0 to 14. Results
indicated that CTME could undergo CL reactions with Fe2+/H2O2 system in acidic, neutral,
and alkaline media as with the TME [26]. CTME exhibited slow CL reactions, which
had almost a plateau of long-lasting weak emissions at pH ≤ 2, while there were fast CL
reactions for TME, and the CL intensity reached the maximum at pH = 1 [26]. As pH
increased, however, the CL intensity of CTME increased until pH 4 and remained stable
from pH 4 to 10. From pH 11 to 14, the CL intensity of CTME escalated and then declined
drastically. The maximum of CL intensity for CTME was at pH = 12, which was about
three times higher than at pH 4 through 10. In contrast, the CL intensity for TME began to
decrease at pH > 1 and increased to the maximum at pH = 9 once again [26]. Thereafter,
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the CL intensity declined [26]. The results show the different CL characteristics between
CTME and TME, indicating that the chemiluminophores within CTME and TME were
probably different in quantity and type. In addition, the luminescent efficiency of CTME
and TME was also examined (Figure S1). The CL intensity of CTME was about two to
three times greater than TME at the same mass concentration. This further implied that
the process of combustion that generated cigarette tar from tobacco probably changed the
chemiluminophores both in quantity and types, which lead to higher luminescent efficiency
of CTME than TME.
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To further examine the CL behavior of CTME with Fe2+/H2O2, CL spectrums of
CTME-Fe2+/H2O2 were conducted in acidic, neutral, and alkaline media, respectively
(Figure 1b–d). In an acidic medium with 0.1 mM of H2SO4 solution, there were two peaks,
one centered at 490 nm and the other at 575 nm (Figure 1b). In H2O as the neutral medium,
two maximum peaks appeared at about 490 nm and 590 nm (Figure 1c). The variation
of wavelength shifted from 575 nm in an acidic medium to 590 nm in a neutral medium,
which could probably be attributed to the change in pH value. In the 0.01 mol/L of NaOH
solution representative of the alkaline medium, there was an additional peak relative to
the two peaks at 490 nm and 590 nm that emerged at 535 nm (Figure 1d). Furthermore,
the CL intensity of peak at 490 nm escalated as pH increased, while the CL intensity at
590 nm in neutral and alkaline media was almost identical but larger than that at 575 nm
in the acidic medium. The CL intensities at 590 nm (or 575 nm in an acidic medium) were
larger than those at 490 nm regardless of the pH value. CL intensity at 535 nm in an
alkaline medium was higher than those both at 490 nm and 590 nm, which is most likely
the reason that there was a maximum CL intensity in the 0.01 mol/L of NaOH solution.
Overall, approximately three kinds of potential emitting species in CTME participated in
CL reactions with Fe2+/H2O2, and the emission wavelength at 490 nm and 590 nm could
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undergo CL reactions regardless of the pH value for some of the species. This is intriguing
given that the conventional CL reactions are usually restricted by pH value. Meanwhile,
the emitting species corresponding to the emission wavelength at 535 nm tended to take
place CL reaction in alkaline media (e.g., pH = 12), but not in acidic and neutral solutions.

3.2. •OH Detection

In our previous study, hydroxyl radical (•OH) was confirmed to be responsible for
the CL reaction of TME. In our present study, a universal •OH scavenger thiourea was
added to the CTME-Fe2+/H2O2 system to investigate the role of •OH in the CTME CL
reaction (Figure S2). CL signals were completely inhibited by adding thiourea in acidic,
neutral, and alkaline mediums, meaning that •OH played a crucial role in the CTME CL
reaction. To verify the feasibility of the CTME CL method for determining •OH, a typical
•OH-generating system, tetrachloro-1,4-benzoquinone (TCBQ)/H2O2, was adopted to
conduct a CTME CL reaction [29]. The CL phenomenon of CTME was first investigated by
mixing with TCBQ/H2O2 system in acidic, neutral, and alkaline media. CL emissions were
all produced by CTME-TCBQ/H2O2 systems (Figure S3), indicating that •OH triggering
CTME CL reactions in this system occurred in acidic, neutral, and alkaline solutions. Then
the relationship between the CL intensity of CTME and the amount of •OH was conducted.
Different •OH amounts were indirectly made by changing the TCBQ concentration due to
its short lifetime. As shown in Figure 2, the CL intensity of CTME exhibited a linear increase
with TCBQ concentrations (R2 = 0.99) in acidic, neutral, and alkaline media, confirming
that the CL intensity of CTME was •OH concentration-dependent in TCBQ/H2O2 systems.
These results also confirmed that the CTME CL method could achieve the rapid and in-situ
detection of •OH in a semi-quantitative way.
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3.3. Evaluation of the Catalytic Capacity of Catalysts

The heterogeneous Fenton catalytic reaction has been a research hotspot for water
treatment technology due to its advantages in comparison with other AOPs [6]. Now
researchers are keen on synthesizing various catalysts for heterogeneous Fenton cataly-
sis, and thus the ability to distinguish catalytic capacity is indispensable. The catalytic
capacity of these synthesized catalysts is highly dependent on •OH production. Herein,
we attempted to evaluate the catalytic capacity of the three different catalysts (FeOCl,
CoFe2O4, and MnFe2O4) under the same experimental conditions, and then the same cata-
lysts (FeOCl) with different concentrations by determining the amount of •OH in-situ and
rapidly with the CTME CL method. Of the three catalysts shown in Figure 3a, the highest
CL intensity was derived from FeOCl, which was much more intense than CoFe2O4 and
MnFe2O4, but the CL intensity of MnFe2O4 is only slightly larger than that of CoFe2O4.
For individual FeOCl (Figure 3b), the CL intensity of CTME increased as the concentra-
tion of FeOCl increased, and there was a good correlation between them (R2 = 0.98). In
addition, degradation efficiencies of Rhodamine B with different types and concentrations
of catalysts were also performed under the same conditions (Figure S4). The order of
Rhodamine B degradation efficiency for three catalysts was FeOCl > MnFe2O4 > CoFe2O4
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(Figure S4a), in accordance with the CL intensity in Figure 3a. Figure S4b showed that the
degradation efficiency of Rhodamine B increased with the FeOCl concentration, which
was also consistent with the CL intensity in Figure 3b. The combined results in Figure 3
and Figure S4 strongly confirmed that the CTME CL method could efficiently evaluate the
catalytic capacity of catalysts in heterogeneous Fenton catalysis.
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4. Conclusions

In this work, the CL property of CTME was examined with •OH at different pH values,
and subsequently achieved the rapid and in-situ detection of •OH in a semi-quantitative
way in acidic, neutral, and alkaline media. Then the CTME CL method was successfully
used to evaluate the catalytic capacity of catalysts in heterogeneous Fenton catalysis. Given
that numerous catalysts have been synthesized for heterogeneous Fenton catalysis, the
CTME CL method provides a convenient tool for the efficient evaluation of the catalytic
capacity. In addition, the chemiluminophores within CTME are also intriguing and worthy
of further research.
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