Impact of Insecticides at Sublethal Concentrations on the Enzyme Activities in Adult Musca domestica L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Insects and Insecticide Treatments
2.3. Assay of Enzyme Activities
2.4. Data Analysis.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lykogianni, M.; Bempelou, E.; Karamaouna, F.; Aliferis, K.A. Do pesticides promote or hinder sustainability in agriculture? The challenge of sustainable use of pesticides in modern agriculture. Sci. Total Environ. 2021, 795, 148625. [Google Scholar] [CrossRef] [PubMed]
- Zikankuba, V.L.; Mwanyika, G.; Ntwenya, J.E.; James, A. Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food Agric. 2019, 5, 1601544. [Google Scholar] [CrossRef]
- Casu, V.; Tardelli, F.; De Marchi, L.; Monni, G.; Cuccaro, A.; Oliva, M.; Freitas, R.; Pretti, C. Soluble esterases as biomarkers of neurotoxic compounds in the widespread serpulid Ficopomatus enigmaticus (Fauvel, 1923). J. Environ. Sci. Health B 2019, 54, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Indira Devi, P.; Manjula, M.; Bhavani, R.V. Agrochemicals, Environment, and Human Health. Annu. Rev. Environ. Resour. 2022, 47, 399–421. [Google Scholar] [CrossRef]
- Lalouette, L.; Pottier, M.A.; Wycke, M.A.; Boitard, C.; Bozzolan, F.; Maria, A.; Demondion, E.; Chertemps, T.; Lucas, P.; Renault, D.; et al. Unexpected effects of sublethal doses of insecticide on the peripheral olfactory response and sexual behavior in a pest insect. Environ. Sci Pollut. Res. Int. 2016, 23, 3073–3085. [Google Scholar] [CrossRef]
- de França, S.M.; Breda, M.O.; Barbosa, D.R.S.; Araujo, A.M.N.; Guedes, C.A. The Sublethal Effects of Insecticides in Insects. In Biological Control of Pest and Vector Insects; Shields, V.D.S., Ed.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef] [Green Version]
- Müller, C. Impacts of sublethal insecticide exposure on insects—Facts and knowledge gaps. Basic Appl. Ecol. 2018, 30, 1–10. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Z.; Cui, K.; Zhao, Y.; Han, J.; Liu, F.; Mu, W. Effects of Sublethal Concentrations of Cyantraniliprole on the Development, Fecundity and Nutritional Physiology of the Black Cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). PLoS ONE 2016, 11, e0156555. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-Y.; Chen, Y.-T.; Wang, Q.-Y.; Zheng, L.-Z.; Fu, J.-W.; Shi, M.-Z. Sublethal and Transgenerational Toxicities of Chlorfenapyr on Biological Traits and Enzyme Activities of Paracoccus marginatus (Hemiptera:Pseudococcidae). Insects 2022, 13, 874. [Google Scholar] [CrossRef]
- Bass, C.; Jones, M. Editorial overview: Pests and resistance: Resistance to pesticides in arthropod crop pests and disease vectors: Mechanisms, models and tools. Curr. Opin. Insect. Sci. 2018, 27, 4–7. [Google Scholar] [CrossRef]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. Int. 2015, 22, 5–34. [Google Scholar] [CrossRef]
- Sparks, T.C.; Crossthwaite, A.J.; Nauen, R.; Banba, S.; Cordova, D.; Earley, F.; Ebbinghaus-Kintscher, U.; Fujioka, S.; Hirao, A.; Karmon, D.; et al. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification—A tool for resistance management. Pestic. Biochem. Physiol. 2020, 167, 104587. [Google Scholar] [CrossRef] [PubMed]
- Eremina, O.Y. Chlorfenapyr—Perspective pyrrole insecticide for combating resistant synanthropic insects. Pest. Manag. 2017, 1, 41–49. (In Russian) [Google Scholar]
- Chien, S.-C.; Chien, S.-C.; Su, Y.-J. A fatal case of chlorfenapyr poisoning and a review of the literature. J. Int. Med. Res. 2022, 50, 3000605221121965. [Google Scholar] [CrossRef] [PubMed]
- Levchenko, M.A.; Silivanova, E.A. Synergistic and antagonistic effects of insecticide binary mixtures against house flies (Musca domestica). Regul. Mech. Biosyst. 2019, 10, 75–82. [Google Scholar] [CrossRef]
- Li, X.; Schuler, M.A.; Berenbaum, M.R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 2007, 52, 231–253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, M.; Ma, Z.; You, C.; Gao, X.; Shi, X. Esterase-mediated spinosad resistance in house flies Musca domestica (Diptera: Muscidae). Ecotoxicology 2020, 29, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Li, M.; Li, T.; Liu, N. Molecular and functional characterization of three novel carboxylesterases in the detoxification of permethrin in the mosquito, Culex quinquefasciatus. Insect Sci. 2022, 29, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Serebrov, V.V.; Bakhvalov, S.A.; Glupov, V.V. Induction of esterases in larvae of gypsy moth (Lymantria dispar L.) during infection by fungus metarhizium anisopliae (Metsch.) SOR. Euroasian Entomol. J. 2005, 4, 9–11. (In Russian) [Google Scholar]
- Yan, S.; Cui, F.; Qiao, C. Structure, function and applications of carboxylesterases from insects for insecticide resistance. Protein Pept. Lett. 2009, 16, 1181–1188. [Google Scholar] [CrossRef]
- Feng, X.; Liu, N. Functional Analyses of House Fly Carboxylesterases Involved in Insecticide Resistance. Front. Physiol. 2020, 11, 595009. [Google Scholar] [CrossRef]
- Grigoraki, L.; Balabanidou, V.; Meristoudis, C.; Miridakis, A.; Ranson, H.; Swevers, L.; Vontas, J. Functional and immunohistochemical characterization of CCEae3a, a carboxylesterase associated with temephos resistance in the major arbovirus vectors Aedes aegypti and Ae. Albopictus. Insect Biochem. Mol. Biol. 2016, 74, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, J.; Lu, M.; Ma, Z.; Cai, C.; Wang, Y.; Zhang, X. Bacterial Expression and Kinetic Analysis of Carboxylesterase 001D from Helicoverpa armigera. Int. J. Mol. Sci. 2016, 17, 493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, S.B.; Dolden, T.A.; Moores, G.D.; Kristensen, M.; Lewis, T.; Devonshire, A.L.; Williamson, M.S. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem. J. 2001, 3, 175–181. [Google Scholar] [CrossRef]
- Feyereisen, R.; Dermauw, W.; Van Leeuwen, T. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pestic. Biochem. Physiol. 2015, 121, 61–77. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, S.H. Invertebrate acetylcholinesterases: Insights into their evolution and non-classical functions. J. Asia-Pac. Entomol. 2018, 21, 186–195. [Google Scholar] [CrossRef]
- Freitas, A.P.; Santos, C.R.; Sarcinelli, P.N.; Silva Filho, M.V.; Hauser-Davis, R.A.; Lopes, R.M. Evaluation of a Brain Acetylcholinesterase Extraction Method and Kinetic Constants after Methyl-Paraoxon Inhibition in Three Brazilian Fish Species. PLoS ONE 2016, 11, e0163317. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.A.; Akram, W.; Iqbal, J.; Naeem-Ullah, U. Thiamethoxam Resistance in the House Fly, Musca domestica L.: Current Status, Resistance Selection, Cross-Resistance Potential and Possible Biochemical Mechanisms. PLoS ONE 2015, 10, e0125850. [Google Scholar] [CrossRef] [Green Version]
- Chang, K.S.; Kim, H.C.; Klein, T.A.; Ju, Y.R. Insecticide resistance and cytochrome-P450 activation in unfed and blood-fed la-boratory and field populations of Culex pipiens pallens. J. Pest. Sci. 2017, 90, 759–771. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, Y.; Ma, Z.; Zhai, D.; Gao, X.; Shi, X. Cytochrome P450 monooxygenases-mediated sex-differential spinosad resistance in house flies Musca domestica (Diptera: Muscidae). Pest. Biochem. Physiol. 2019, 157, 178–185. [Google Scholar] [CrossRef]
- Low, V.L.; Chen, C.D.; Lee, H.L.; Tan, T.K.; Chen, C.F.; Leong, C.S.; Lim, Y.A.L.; Lim, P.E.; Norma-Rashid, Y.; Sofian-Azirun, M. Enzymatic Characterization of Insecticide Resistance Mechanisms in Field Populations of Malaysian Culex quinquefasciatus Say (Diptera: Culicidae). PLoS ONE 2013, 8, e79928. [Google Scholar] [CrossRef]
- Amelia-Yap, Z.H.; Sofian-Azirun, M.; Chen, C.D.; Suana, I.W.; Lau, K.W.; Elia-Amira, N.M.R.; Haziqah-Rashid, A.; Tan, T.K.; Lim, Y.A.L.; Low, V.L. Pyrethroids Use: Threats on Metabolic-Mediated Resistance Mechanisms in the Primary Dengue Vector Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2019, 56, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Aponte, A.; Penilla, R.P.; Rodríguez, A.D.; Ocampo, C.B. Mechanisms of pyrethroid resistance in Aedes (Stegomyia) aegypti from Colombia. Acta Trop. 2019, 191, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.G.; Warren, W.C.; Beukeboom, L.W.; Bopp, D.; Clark, A.G.; Giers, S.D.; Hediger, M.; Jones, A.K.; Kasai, S.; Leichter, C.A.; et al. Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment. Genome Biol. 2014, 15, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, J.C.; Ross, D.H.; Scott, J.G. Insecticide resistance monitoring of house fly populations from the United States. Pestic. Biochem. Physiol. 2019, 158, 61–68. [Google Scholar] [CrossRef]
- Alam, M.; Shah, R.M.; Shad, S.A.; Binyameen, M. Fitness cost, realized heritability and stability of resistance to spiromesifen in house fly, Musca domestica L. (Diptera: Muscidae). Pestic. Biochem. Physiol. 2020, 168, 104648. [Google Scholar] [CrossRef]
- Silivanova, E.A.; Levchenko, M.A.; Bikinyaeva, R.K.; Gavrichkin, A.A. Efficacy of Chlorfenapyr against Musca domestica (Diptera: Muscidae): A Laboratory Study. J. Entomol. Sci. 2019, 54, 38–49. [Google Scholar] [CrossRef]
- Shumilova, P.A.; Sennikova, N.A.; Silivanova, E.A.; Levchenko, M.A. Biological responses in Musca domestica to fipronil and chlorfenapyr exposures. Regul. Mech. Biosyst. 2021, 12, 664–669. [Google Scholar] [CrossRef]
- Ministry of Health of Brazil. Quantification Methodology for Enzyme Activity Related to Insecticide Resistance in Aedes aegypti; Ministry of Health of Brazil, Fundação Oswaldo Cruz: Brasília, Brazil, 2006.
- Glavan, G.; Kos, M.; Božič, J.; Drobne, D.; Sabotič, J.; Kokalj, A.J. Different response of acetylcholinesterases in salt- and detergent-soluble fractions of honeybee haemolymph, head and thorax after exposure to diazinon. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2018, 205, 8–14. [Google Scholar] [CrossRef]
- Brown, A.M. A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet. Comput. Methods Programs Biomed. 2001, 65, 191–200. [Google Scholar] [CrossRef]
- Marasovic, M.; Marasovic, T.; Milos, M. Robust Nonlinear Regression in Enzyme Kinetic Parameters Estimation. J. Chem. 2017, 2017, 6560983. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Manual for Monitoring Insecticide Resistance in Mosquito Vectors and Selecting Appropriate Interventions; World Health Organization: Geneva, Switzerland, 2022; Available online: https://apps.who.int/iris/handle/10665/356964 (accessed on 2 November 2022).
- Carvalho, S.M.; Belzunces, L.P.; Carvalho, G.A.; Brunet, J.L.; Badiou-Beneteau, A. Enzymatic biomarkers as tools to assess environmental quality: A case study of exposure of the honeybee Apis mellifera to insecticides. Environ. Toxicol. Chem. 2013, 32, 2117–2124. [Google Scholar] [CrossRef] [PubMed]
- Rumpf, S.; Hetzel, F.; Frampton, C. Lacewings (Neuroptera: Hemerobiidae and Chrysopidae) and Integrated Pest Management: Enzyme Activity as Biomarker of Sublethal Insecticide Exposure. J. Econom. Entomol. 1997, 90, 102–108. [Google Scholar] [CrossRef]
- Siddiqui, J.A.; Luo, Y.; Sheikh, U.A.A.; Bamisile, B.S.; Khan, M.M.; Imran, M.; Hafeez, M.; Ghani, M.I.; Lei, N.; Xu, Y. Transcriptome analysis reveals differential effects of beta-cypermethrin and fipronil insecticides on detoxification mechanisms in Solenopsis invicta. Front. Physiol. 2022, 13, 1018731. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.A.; Yuan, J.Z.; Wu, J.; Zhuang, P.J.; Wu, X.F.; Tang, Z.H. Kinetic Analysis of Acetylcholinesterase in a Propoxur-Resistant Strain of Housefly (Musca domestica) from Shanghai, China. Pestic. Biochem. Physiol. 2002, 72, 72–82. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, J.; Shi, X.; Liang, P.; Gao, J.; Gao, X. Quantitative and qualitative changes of the carboxylesterase associated with beta-cypermethrin resistance in the housefly, Musca domestica (Diptera: Muscidae). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010, 156, 6–11. [Google Scholar] [CrossRef]
- Li, Q.; Huang, J.; Yuan, J. Status and preliminary mechanism of resistance to insecticides in a field strain of housefly (Musca domestica, L.). Rev. Bras. Entomol. 2018, 62, 311–314. [Google Scholar] [CrossRef]
- Riaz, B.; Kashif, Z.M.; Malik, K.; Ahmad, A.; Majeed, H.N.; Jabeen, F.; Zulhussnain, M.; Ranian, K. Frequency of Pyrethroid Insecticide Resistance kdr Gene and Its Associated Enzyme Modulation in Housefly, Musca domestica L. Populations From Jhang, Pakistan. Front. Environ. Sci. 2022, 9, 806456. [Google Scholar] [CrossRef]
- Ma, Z.; Li, J.; Zhang, Y.; Shan, C.; Gao, X. Inheritance mode and mechanisms of resistance to imidacloprid in the house fly Musca domestica (Diptera:Muscidae) from China. PLoS ONE 2017, 12, e0189343. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Freed, S. Mortality, Biological, and Biochemical Response of Musca domestica (Diptera: Muscidae) to Selected Insecticides. J. Entomol. Sci. 2018, 53, 27–45. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Q.; Ding, J.; Wang, Y.; Zhang, Z.; Liu, F.; Mu, W. Sublethal effects of chlorfenapyr on the life table parameters, nutritional physiology and enzymatic properties of Bradysia odoriphaga (Diptera: Sciaridae). Pestic. Biochem. Physiol. 2018, 148, 93–102. [Google Scholar] [CrossRef]
- Xiao, C.; Luan, S.; Xu, Z.; Lang, J.; Rao, W.; Huang, Q. Tolerance potential of Chilo suppressalis larvae to fipronil exposure via the modulation of detoxification and GABA responses. J. Asia-Pac. Entomol. 2017, 20, 1287–1293. [Google Scholar] [CrossRef]
- Dewer, Y.; Pottier, M.A.; Lalouette, L.; Maria, A.; Dacher, M.; Belzunces, L.P.; Kairo, G.; Renault, D.; Maibeche, M.; Siaussat, D. Behavioral and metabolic effects of sublethal doses of two insecticides, chlorpyrifos and methomyl, in the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Environ. Sci. Pollut. Res. Int. 2016, 23, 3086–3096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roat, T.C.; Carvalho, S.M.; Palma, M.S.; Malaspina, O. Biochemical response of the Africanized honeybee exposed to fipronil. Environ. Toxicol. Chem. 2017, 36, 1652–1660. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Li, M.; Liu, N. Carboxylesterase genes in pyrethroid resistant house flies, Musca domestica. Insect Biochem. Mol. Biol. 2018, 92, 30–39. [Google Scholar] [CrossRef] [PubMed]
- You, C.; Shan, C.; Xin, J.; Li, J.; Ma, Z.; Zhang, Y.; Zeng, X.; Gao, X. Propoxur resistance associated with insensitivity of acetylcholinesterase (AChE) in the housefly, Musca domestica (Diptera: Muscidae). Sci. Rep. 2020, 10, 8400. [Google Scholar] [CrossRef]
- Abobakr, Y.; Al-Hussein, F.I.; Bayoumi, A.E.; Alzabib, A.A.; Al-Sarar, A.S. Organophosphate Insecticides Resistance in Field Populations of House Flies, Musca domestica L.: Levels of Resistance and Acetylcholinesterase Activity. Insects 2022, 13, 192. [Google Scholar] [CrossRef]
- Margus, A.; Piiroinen, S.; Lehmann, P.; Grapputo, A.; Gilbert, L.; Chen, Y.H.; Lindström, L. Sequence variation and regulatory variation in acetylcholinesterase genes contribute to insecticide resistance in different populations of Leptinotarsa decemlineata. Ecol. Evol. 2021, 11, 15995–16005. [Google Scholar] [CrossRef]
- Vang, J.Y.; Breceda, C., Jr.; Her, C.; Krishnan, V.V. Enzyme kinetics by real-time quantitative NMR (qNMR) spectroscopy with progress curve analysis. Anal Biochem. 2022, 658, 114919. [Google Scholar] [CrossRef]
Treatment | Number of Insects | ||||
---|---|---|---|---|---|
Females | Males | ||||
Total | Dead | Total | Dead | ||
Control | 30 | 0 (0%) | 30 | 0 (0%) | |
Chlorfenapyr | 0.015% | 34 | 7 (20.0%) | 49 | 21 (42.9%) |
0.025% | 32 | 13 (40.6%) | 29 | 29 (100%) | |
Fipronil | 0.0005% | 30 | 7 (23.3%) | 40 | 18 (45.0%) |
0.001% | 60 | 43 (71.7%) | 31 | 31 (100%) |
Treatment | n | Vmax, ΔOD/min/mg of Protein | Km, mM of ATC | |
---|---|---|---|---|
Control | 13♂ | 2.48 ± 0.67 | 0.43 ± 0.15 a | |
18♀ | 3.93 ± 2.22 | 1.17 ± 0.88 b | ||
Chlorfenapyr | 0.015% | 12♂ | 2.51 ± 0.50 | 0.40 ± 0.19 a |
0.025% | 10♀ | 4.74 ± 2.44 | 1.36 ± 1.06 b | |
Fipronil | 0.0005% | 12♂ | 3.87 ± 2.76 | 0.76 ± 0.61 ab |
0.001% | 25♀ | 2.86 ± 2.21 | 0.83 ± 0.49 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinareikina, A.; Silivanova, E. Impact of Insecticides at Sublethal Concentrations on the Enzyme Activities in Adult Musca domestica L. Toxics 2023, 11, 47. https://doi.org/10.3390/toxics11010047
Kinareikina A, Silivanova E. Impact of Insecticides at Sublethal Concentrations on the Enzyme Activities in Adult Musca domestica L. Toxics. 2023; 11(1):47. https://doi.org/10.3390/toxics11010047
Chicago/Turabian StyleKinareikina, Anna, and Elena Silivanova. 2023. "Impact of Insecticides at Sublethal Concentrations on the Enzyme Activities in Adult Musca domestica L." Toxics 11, no. 1: 47. https://doi.org/10.3390/toxics11010047
APA StyleKinareikina, A., & Silivanova, E. (2023). Impact of Insecticides at Sublethal Concentrations on the Enzyme Activities in Adult Musca domestica L. Toxics, 11(1), 47. https://doi.org/10.3390/toxics11010047