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Abstract: The effects of herbicides on non-target organisms in paddy fields have become a popular
research topic. As a widely used herbicide, it is necessary to explore the potential toxicity of metam-
ifop in non-target organisms, especially aquatic animals, in co-culture mode. In the present study,
we evaluated the effects of metamifop (0, 0.2, 0.4, 0.6, and 0.8 mg/L) on the defense system (antioxi-
dation, immunity, and apoptosis) in Monopterus albus. Reactive oxygen species (ROS) production,
malondialdehyde (MDA) content, and protein carbonylation (PCO) increased significantly (p < 0.05)
with the increasing metamifop concentration, resulting in oxidative damage. In the antioxidant
system, superoxide dismutase (SOD) and catalase (CAT) activities increased significantly (p < 0.05)
in the 0.2 mg/L treatment group compared with the control group, and decreased in 0.4, 0.6, and
0.8 mg/L treatment groups. Glutathione peroxidase (GPX) activity decreased significantly (p < 0.05)
with the increasing metamifop concentration. In the immune system, white cell number (WCN)
increased significantly (p < 0.05) in 0.2 mg/L treatment group, and then decreased with the increase
in metamifop concentration. Compared with control group, acid phosphatase (ACP) activity not
only increased significantly (p < 0.05) in 0.2 mg/L treatment group, but also decreased significantly
(p < 0.05) compared with the increase in metamifop concentration. However, in all treatment groups,
alkaline phosphatase (AKP) activity was significantly lower than that in the control group (p < 0.05).
In the inflammatory response, TNF-α and IL-1β expression levels in the NF-κB signaling pathway
decreased significantly (p < 0.05) with the increase in metamifop concentration, while IL-8 expression
level in the same signaling pathway increased significantly (p < 0.05) in treatment groups. The
expression levels of genes related to apoptosis showed that apoptosis was promoted after exposure
to metamifop. The results of the present study show that metamifop induced oxidative damage via a
high level of ROS production, and then inhibited or damaged the defense systems of M. albus.

Keywords: herbicides; oxidative stress; antioxidation; immunity; inflammation; apoptosis

1. Introduction

Rice is a staple grain. In 2021, the rice planting areas in China reached approximately
29.93 million km2 [1]. Weeds threaten rice growth, and competition in growth areas between
weeds and rice reduces the emergence rate and yield of rice by 50% and 57%, respectively [2].
To promote rice yield, herbicides are extensively applied for weed management in paddy
fields. Aryloxy phenoxy propionate (AOPP) is a series of frequently used herbicides. As a
new AOPP herbicide, metamifop is widely used in paddy fields. Metamifop inhibits acetyl-
CoA carboxylase (ACCase) activity in vivo, and disturbs lipid synthesis, resulting in weed
elimination [3]. With the advancement in green agricultural development, various planting-
breeding models based on paddy fields have been popularized, such as the rice−shrimp
model, rice−carp model, and rice−eel model [4–6]. However, using herbicides in paddy
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fields threatens the health of aquatic animals in co-culture models. Given that the half-life
of metamifop in paddy fields is 21.5–40.8 d, and the application of metamifop in China is
180–270 g. a.i./hm2, it is pertinent to explore the toxicity of metamifop to aquatic animals
in co-culture models [7].

Previous studies have shown that steady-state reactive oxygen species (ROS) levels
in vivo are usually disturbed by herbicides [8,9]. Appropriately increasing ROS levels pro-
motes immunity, wound repair, and growth, while excessive free radicals damage cellular
constituents via processes such as lipid peroxidation, protein carbonylation, and DNA
mutation [8,10]. Moreover, a high level of ROS leads to apoptosis or even necrosis [11].
Apoptosis is a form of spontaneous programmed cell death regulated by genes to main-
tain homeostasis and better adapt to the living environment [12]. When organisms suffer
from exogenous pollution, ROS are overproduced, and organisms may spontaneously
form a detoxification mechanism called “oxidative stress” [11]. In the antioxidant system,
antioxidant-related enzymes such as superoxide dismutase (SOD), glutathione peroxidase
(GPX), and catalase (CAT) perform primary functions [13]. The immune response to ox-
idative stress is also important in aquatic animals [14,15]. Fish maintain a low level of
acquired immunity, and innate immunity is their main defense system against pathogen
infection [16]. The activation of immune-related enzymes is the first line of defense against
exogenous stress in vivo. Acid phosphatase (ACP) and alkaline phosphatase (AKP) are
important hydrolytic enzymes in fish [17,18]. These two enzymes are not only involved
in the digestion, absorption, and transportation of nutrients, but also constitute an impor-
tant detoxification system in fish that significantly affect their immune and antioxidant
systems [19,20]. The liver is the main detoxification organ in fish and the main enrich-
ment site of exogenous pollutants, but exogenous pollutants can inhibit the activity of
liver metabolic enzymes [21]. Therefore, the activities of ACP and AKP in liver are more
significantly affected by exogenous pollutants, and are important indexes to measure the
immune response. Cellular immunity is an equally as essential part of the immune defense
system as immune-related enzymes. Leukocytes (white blood cells, WBCs) are an impor-
tant cellular immune factor, and lymphocytes, macrophages, and granulocytes are the main
forms of WBCs. WBC synthesize antibacterial compounds and destroy pathogens [22].
The inflammatory response is an innate immune defense response of fish via oxidative
stress, ultraviolet light, pathogen infection, and mechanical injury [23]. The inflammatory
response is a beneficial process to contain and eliminate pathogens. However, an excessive
inflammatory response can cause an inflammatory storm, inducing apoptosis, scorch death,
necrosis, and other lesions [24].

Monopterus albus is an important commercial freshwater species in China and is popular
because of its good texture and nutrition. As the main breeding object in the rice−eel model,
M. albus is vulnerable to metamifop stress [25]. The effects of metamifop on the endocrine
and ammonia metabolism in M. albus have been studied before [26,27]. However, the toxic
mechanism of metamifop in M. albus is unclear. In this study, the potential toxicity and
toxic mechanism of metamifop in M. albus were revealed by measuring relevant physiolog-
ical and biochemical indexes, histological observation, and analyzing gene expression in
M. albus after a 96 h exposure to metamifop.

2. Materials and Methods
2.1. Chemicals

Metamifop (C23H18CIFN2O4, CAS: 256412-89-2) was purchased from Hubei Jiangmin
Taihua Chemical Co., Ltd. (Hubei, China). According to the method of Zhao et al. [28], a
1000 mg/L metamifop stock solution was prepared with de-chlorinated water, and 0.08%
acetone and 0.0008% Tween-80 (v/v) was used for solubilization. Then, the metamifop
stock solutions were diluted with processed de-chlorinated water (including 0.08% acetone
and 0.0008% Tween-80 (v/v)).
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2.2. Experimental Design

Healthy juvenile M. albus (12.60 ± 0.91 g in weight, 26.34 ± 0.78 cm in length) with
strong vitality and no damage to the body surface were collected from Luoma Lake, Jiangsu
Province, China. After the M. albus were transported to the laboratory, they were placed in
a spare tank immediately to adapt to the water. The first 48 h were a settling-in period to
minimize the stress caused by environmental changes. Then, during the acclimation period,
the M. albus were placed in a polyethylene tank (5 m × 0.8 m × 0.4 m, water depth 0.3 m)
at College of Modern Fisheries Industry (Huaiyin Normal University, Huai’an, China)
for 1 week, where the pH, dissolved oxygen, water temperature, and photoperiod were
7.8 ± 0.1, 9.0 ± 0.5 mg/L, 20 ± 2 ◦C, and 14:10 (light:dark), respectively. Fish were fed
with earthworms once a day at 7:30 p.m. In addition, the mortalities during the acclimation
period were 2–5%. The conditions during the acclimation period were in line with the
standards of OECD (2019) [29]. De-chlorinated water was used for the blank group, and
the processed de-chlorinated water (containing 0.0008% Tween and 0.08% acetone) was
used as the negative control. According to previous studies by our laboratory, the 96 h
LC50 of metamifop to M. albus was 0.785 mg/L [26,27]. Combined with the application of
metamifop in paddy fields [7], 0.2, 0.4, 0.6, and 0.8 mg/L metamifop were set as treatment
groups. The 1000 mg/L metamifop stock solutions were diluted as 250, 500, 750, and
1000 mg/L to add into 12 L experimental water. A quantity of 9.6 mL diluted solution of
each concentration was added into each treatment group to ensure the content of acetone
and Tween-80 were equal to those in the negative control. Actual metamifop concentrations
in water were determined by high performance liquid chromatography (HPLC). A total
of 144 healthy M. albus were randomly divided into 6 groups (blank group, negative
control, and four treatment groups) with 3 replicates. The M. albus were placed in culture
tanks with volume specification of 40 cm × 30 cm × 15 cm and water depth of 10 cm.
The tanks used in the experiment were covered with gauze to prevent the M. albus from
escaping, and tiles were used as shelter. Physicochemical parameters of water were pH
7.8 ± 0.1, 9.0 ± 0.5 mg/L dissolved oxygen, 20 ± 2 ◦C temperature, and a 14:10 (light:dark)
photoperiod. The experimental water was updated every 24 h, and the metamifop solution
was re-added to maintain the metamifop concentration. No feeding was performed during
the experiment.

2.3. Sample Collection

After a 96 h exposure to metamifop, the M. albus were anesthetized with MS-222
(Sigma-Aldrich Co., St. Louis, MO, USA). Blood samples were collected by severing the
caudal peduncle to obtain the white blood cell count. Then, the M. albus were decapitated
on ice, and liver tissues were collected, frozen in liquid nitrogen, and stored at −80 ◦C for
further analyses of other biochemical indexes and histological observation.

2.4. White Blood Cell Count

A white blood cell dilution kit (Beijing Solarbio Science & Technology Co., Ltd., Beijing,
China) was used for WBC counting, and the following steps were performed according
to the instructions: 20 µL of blood was added into a 0.38 mL white blood cell dilution
and mixed well. After all mature red blood cells were dissolved in the white blood cell
dilution, 10 µL of the mixed solution was added to a hemocytometer, and white blood cells
were counted under a microscope (XSP-10CA, Shanghai Youke Instrumentation Co., Ltd.,
Shanghai, China). Then, the number of white blood cells in the blood was calculated. Three
replicates of each group were performed.

2.5. ROS Production Assay

Liver tissues were homogenized in 0.4 mL of Tris buffer (10 mmol/L Tris-HCl,
0.1 mmol/L EDTA-2Na, 10 mmol/L sucrose, and 0.8% NaCl, pH = 7.4) on ice and cen-
trifuged at 12,000 rpm for 10 min at 4 ◦C to obtain the supernatant for testing. Dimethyl
sulfoxide (DMSO, C2H6SO, CAS: 67-68-5, Beijing Solarbio Science & Technology Co., Ltd.,
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Beijing, China) was dissolved in 20 µL of supernatant, 5 µL of 2′, 7′-Dichlorofluorescin
diacetate (DCFH-DA, C24H16Cl2O7, CAS: 4091-99-0, Beijing Solarbio Science & Technology
Co., Ltd., Beijing, China), and 100 µL of normal saline at a final concentration of 10 µmol/L,
and this reaction system was incubated at 37 ◦C for 30 min under shade. Then, the optical
density (OD) was determined with a microplate reader (Varioskan Lux, Thermo Scientific
Co., Ltd., Singapore) at 485/530 nm (excitation wavelength/emission wavelength). The
Tris buffer was determined as background fluorescence. ROS production was presented in
florescence units [30]. Three replicates of each group were performed.

2.6. Related Enzyme Activity, MDA Content, and PCO Content Assay

ACP activity, AKP activity, SOD activity, GPX activity, CAT activity, MDA content, and
PCO content in the liver were all determined following the instructions of the kits obtained
from Beijing Solarbio Science & Technology Co., Ltd. (Beijing, China). Three replicates of
each group were performed.

2.7. Histological Analysis

Liver tissues were fixed in a 4% paraformaldehyde solution for 24 h. The fixing
solution was cleared with 70% ethanol. Then, the samples were dehydrated with 70%
ethanol for 40 min, 80% ethanol for 40 min, 95% ethanol for 1 h, and 100% ethanol for 1 h.
After dehydrating, the samples were soaked in a mixture of xylene and ethanol (1:1) for
30 min, and then in xylene for 1 h. The processed samples were embedded in paraffin at
55 ◦C, followed by sectioning and baking, and 5 µm paraffin sections were obtained. Then,
a part of each section was stained with hematoxylin & eosin (H&E), sealed with natural
gum, and finally observed under a light microscope (Leica DM2000 LED, Leica Instruments
Co., Ltd., Wetzlar, Germany) and photographed with a 3DHISTECH scanner (Jinan Tangier
Electronics Co., Ltd., Jinan, China).

2.8. Gene Expression

Total RNA was extracted from the liver samples with TRIzol reagent (CoWin Biotech
Co., Ltd., Taizhou, China). Nano drop, Qubit 2.0, and Agilent 2100 were used to analyze
the purity, concentration, and integrity of the RNA samples, respectively. Single-strand
cDNA was synthesized using the HiFiScript cDNA Synthesis Kit (CoWin Biotech Co., Ltd.,
Taizhou, China) following the instructions. The LightCycler® 480 II RT-qPCR instrument
(Roche, Switzerland) was used to detect gene transcripts. Primer 6.0 software was used to
design primers (Table 1). A quantity of 20 µL of reaction system included 10 µL of SYBR
Premix Ex Taq (2×), 2 µL of each primer, 2 µL of cDNA, and 6 µL of ddH2O. Cycling was
performed at 95 ◦C for 5 min, followed by 40 cycles at 95 ◦C for 10 s, 60 ◦C for 30 s, and
72 ◦C for 30 s. The 2−∆∆Ct method was used to analyze the data. Three replicates of each
group were performed.

Table 1. The primers for qRT-PCR in Monopterus albus.

Genes Primer Sequence (5′–3′)

Bax
F: GGAGCAAGGTGGCTGGGTAA
R: GTGGACTCCCAATCCTTAGACA

Bcl-2b
F: AGCCCACAAAACCACCACA
R: GACCACACAACCACCATCTCA

caspase-9 F: ATGTTGATGATGGTTGGTGCC
R: CTTTGCGTGGGTGATGCTT

caspase-3 F: GGTTCTGACCCTTACCGCTAC
R: TGTCCCATCTGCTAACGTGGA

TNF-α
F:CCTTAGCCACACAGTGATGCG
R:CCCAGGCTCATCTTCCAGGT

IL-1β
F:ACCTCATTATCGCCACGGAG
R:ATTTTACGGTTGTCGCTGCC
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Table 1. Cont.

Genes Primer Sequence (5′–3′)

IL-8
F:TACTGGTTCTGCTTACTGTCGC
R:CAAATCTTTTGCCCATCCCT

β-actin F:TCAACACGCCTGCCATGTAT
R:CGCTCAGCTGTGGTAGTGAA

2.9. Statistical Analysis

All data are presented as mean ± standard deviation (mean ± SD). Prior to data
analysis, normality of the data was tested with the Shapiro−Wilk test, and homogeneity of
variances was tested using Leven’s test. The data were analyzed using one-way ANOVA,
followed by Duncan’s multiple comparison. p < 0.05 was considered statistically significant.
All statistical analyses were performed using SPSS 26.0 software. All figures were drawn
with GraphPad Prism 9.

3. Results
3.1. Solvent and Metamifop in Water

The statistical analysis showed that the solvent had no influence on the indexes in the
present study. Thus, the negative control was set as the control group. The HPLC analysis
of treatment groups showed that the actual metamifop concentrations ranged from 93%
to 120% of all nominal concentrations (Table 2). Since the water in treatment groups was
updated daily and metamifop concentrations were measured before and after the water
update, the actual concentrations could be represented as nominal concentrations.

Table 2. Actual metamifop concentration in experimental water over 24 h.

Actual Concentration
(mg/L)

Nominal Metamifop Concentration (mg/L)

0.2 0.4 0.6 0.8

0 h 0.24 ± 0.02 0.43 ± 0.04 0.66 ± 0.02 0.85 ± 0.01
24 h 0.19 ± 0.01 0.38 ± 0.04 0.56 ± 0.05 0.76 ± 0.03

The data are presented as mean ± SD, three replicates of each group (n = 3).

3.2. Effects of Metamifop on ROS Production, MDA Content, and PCO Content

ROS production, MDA content, and PCO content all increased with the increasing
metamifop concentration (Figure 1). In addition, the three indexes of the treatment groups
were all significantly higher than those of the control group (p < 0.05).

3.3. Effects of Metamifop on Enzyme Activity

SOD and CAT activities first increased and then decreased with the increasing metam-
ifop concentration (Figure 2A,B). In the 0.2 mg/L treatment group, SOD and CAT activities
were significantly higher than those in the control group (p < 0.05). In 0.6 and 0.8 mg/L
treatment groups, SOD and CAT activities were significantly lower than those in the control
group (p < 0.05), while the two enzymes’ activities were lower in the 0.4 mg/L treatment
group than in the control group, without a significant difference (p > 0.05). GPX activity
decreased with the increasing metamifop concentration (Figure 2C). GPX activity in all
treatment groups was significantly lower than that in the control group (p < 0.05).

ACP activity first increased and then decreased with the increasing metamifop con-
centration (Figure 3A). ACP activity in the 0.2 mg/L treatment group was significantly
higher than that in the control group (p < 0.05), and ACP activities in 0.4, 0.6, and 0.8 mg/L
treatment groups were lower than those in the control group without significant differences
(p > 0.05). AKP activity decreased with the increase in metamifop concentration (Figure 3B)
and was significantly lower in all treatment groups than in the control group (p > 0.05).
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3.4. Efftct of Metamifop on White Cell Number

As shown in Figure 3C, white cell number (WCN) increased as the metamifop con-
centration increased, where WCN first increased and then decreased. In the 0.2 mg/L
treatment group, WCN was significantly higher than that in the control group (p < 0.05).
In 0.4, 0.6, and 0.8 mg/L treatment groups, WCN was significantly lower than that in the
control group (p < 0.05).

3.5. Effect of Metamifop on Histology

After a 96 h exposure to metamifop, the histological observations of liver tissues are
shown in Figure 4. Hepatocytes in the control group were arranged neatly around central
venous, hepatocytes were structurally intact, and intercellular boundaries were clear. In
the 0.2 mg/L treatment group, hepatocyte vacuolation increased and the central venous
enlarged. With the increasing metamifop concentration, the central venous was distorted
and enlarged, arrangement of hepatocytes was disordered, hepatocytes were swollen,
hepatocyte vacuolation increased, and liver tissues were damaged.
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CV: Central venous. Scale bar = 100 µm.

3.6. Effects of Metamifop on Inflammatory-Related Genes

The effects of metamifop on the expression levels of inflammatory-related genes are
shown in Figure 5. TNF-α expression levels in treatment groups were significantly lower
than those in control group (p < 0.05). IL-1β expression levels decreased with the increasing
metamifop concentration and decreased significantly compared with the control group
(p < 0.05). IL-8 expression level first decreased and then increased with the increasing
metamifop concentration. IL-8 expression levels in all treatment groups were significantly
lower than those in the control group (p < 0.05).
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3.7. Effects of Metamifop on Apoptosis-Related Genes

The effects of metamifop on the expression levels of apoptosis-related genes are shown
in Figure 6. The expression levels of Bax, Bcl-2b, and caspase9 first decreased and then
increased with the increasing metamifop concentration, while the expression levels of
the three genes in all treatment groups were significantly lower than that in the control
group (p < 0.05). caspase3 expression levels showed a similar trend with the increasing
metamifop concentration. However, in the 0.8 mg/L treatment group, caspase3 expression
level was significantly higher than that in the control (p < 0.05), and in 0.2, 0.4, and 0.6 mg/L
treatment groups, the expression levels were significantly lower than those in the control
group (p < 0.05). In addition, although the expression levels of Bcl-2b and Bax decreased,
the ratio of Bax to Bcl-2b increased with the increasing metamifop concentration. Moreover,
the ratios in 0.4, 0.6, and 0.8 mg/L treatment groups were 1.45, 1.72, and 2.07, respectively,
which were higher than that in control group.
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4. Discussion

Herbicide abuse in recent decades has negatively affected non-target organisms, lead-
ing to suppression of defense responses or even damage to defense systems, including the
antioxidant and immune systems, in aquatic animals [11,14]. Metamifop is a widely used
herbicide in paddy fields, and its application has reached 180 g a.i./hm2 [7], which exceeds
the exposure doses used in the present study. As an important commercial aquatic animal
in the rice−fish co-culture model in China, it is necessary to explore the toxic mechanism
of metamifop in M. albus.

Like other pollutants, herbicides induce ROS overproduction in vivo [11]. Low levels
of ROS defend invasion by bacteria and viruses, but excessive ROS levels lead to oxidative
stress or oxidative damage [31]. After a 96 h exposure to metamifop, ROS production
increased with the increasing metamifop concentration, which suggests that metamifop
induced ROS production. A previous study found that mesotrione induced excessive ROS
production in Cyprinus carpio, resulting in oxidative stress and DNA damage [32]. Once
organisms suffer from excessive ROS, the antioxidant system is activated to eliminate the
ROS to maintain homeostasis. SOD, CAT, and GPX are important antioxidant enzymes.
When the antioxidant system is activated, SOD first converts O2

− into H2O2 and O2, and
then CAT and GPX convert H2O2 into harmless H2O and O2 [33,34]. In the present study,
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SOD and CAT activities were higher in the 0.2 mg/L treatment group than those in the
control group, but SOD and CAT activities decreased with the increasing metamifop con-
centration. The results indicate that 0.2 mg/L of metamifop activated the antioxidant
system of M. albus to alleviate antioxidant stress, but the ROS level increased with the in-
creasing metamifop concentration, and the excessive ROS damaged the antioxidant system,
leading to a decrease in the antioxidant capacity. This is similar to a study on cadmium in
Macrobrachium nipponense, wherein after a 96 h exposure to cadmium, low concentrations
of cadmium (0.01 and 0.02 mg/L) activated the antioxidant defense system, and a high
concentration (0.04 mg/L) inhibited the antioxidant defense system [35]. Although GPX
activity did not show a similar trend to that of the SOD and CAT activities, it demonstrated
that the antioxidant capacity decreased with the increasing metamifop concentration. Ex-
cessive ROS damage cellular constituents, and as a final product of lipid peroxidation,
MDA is important for measuring lipid peroxidation and oxidative damage [36]. In the
present study, MDA content increased with the increasing metamifop concentration. A
similar outcome was found in a study of pendimethalin on Oreochromis niloticus [34]. The
increase in MDA content suggests that the antioxidant defense system failed to prevent the
overproduction of free radicals, and the amino acid side chain then underwent irreversible
covalent modification to form carbonyl groups, causing changes in protein structure and
function [37,38]. As another important biomarker of oxidative stress, PCO content indicates
the degree of oxidative stress [39]. In the present study, PCO content increased with the
increasing metamifop concentration. The results show that ROS production increased with
the increasing metamifop concentration, whereby the antioxidant system first participated
in the defense against excessive free radicals. However, when ROS accumulated to such
an extent that they could not be eliminated, free radicals damaged cellular constituents,
inducing lipid peroxidation and protein carbonylation, resulting in oxidative damage.

The immune system is another essential defense system in fish that is as important
as the antioxidant system. In the innate immune system, ACP and AKP are important
hydrolases that promote disease and stress resistance abilities [40] and whose activities
indirectly reflect tissue damage. Thus, ACP and AKP activities are commonly used as
indicators of fish health status. Besides humoral immunity, cellular immunity is another
important part of the innate immune system. Fluctuations in blood parameters are typical
of fish exposed to herbicides [41]. WBCs are a type of immune and self-protective cell that
engulfs and degrades pathogens and tissue debris in fish. When exogenous substances
invade organisms, the number of WBCs significantly increases [22]. In the present study,
ACP activity increased in the 0.2 mg/L treatment group, while it decreased with the in-
creasing metamifop concentration. Moreover, AKP activity decreased with the increasing
metamifop concentration. A previous study showed that dimethoate inhibited ACP and
AKP activities in Danio rerio [42]. In the present study, WCN increased in the 0.2 mg/L treat-
ment group, and then decreased with the increasing metamifop concentration. Previous
studies showed that WCN in Cyprinus carpio L. decreased upon exposure to metribuzin, and
glyphosate also decreased WCN [43,44]. The results of the present study show that M. albus
in 0.2 mg/L treatment group tried to activate the immune system to cope with oxidative
stress. However, oxidative stress intensified with the increasing metamifop concentration,
causing oxidative damage, and probably leading to immune system disruption.

The inflammatory response is a direct link between the immune system and injury.
In the present study, the expression levels of three pro-inflammatory factor genes (TNF-α,
IL-1β, and IL-8) were used to measure the immune response. TNF-α, IL-1β, and IL-8 bind to
receptors, triggering the intracellular NF-κB signaling pathway, which triggers the immune
response [19]. Fish tumor necrosis factor (TNF) ligands are produced by macrophages, and
TNF ligands are important for regulating immune function, metabolism, and morphological
development. The main functions of TNF-α in fish involve inflammation, apoptosis, fat
metabolism, and organ regeneration [45–49]. In the present study, TNF-α expression levels
were inhibited after exposure to metamifop. A previous study showed that a high dose
of Nocardia or chronic infection decreased TNF-α expression level in Paralichthys olivaceus,
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indicating that the TNF-α expression level was related to the concentration of influencing
factors and exposure time [50]. IL-1β and IL-8 are essential in the initiation and maintenance
of inflammation [51]. When organisms suffer from the stress of environmental factors, IL-1β
participates in activating the inflammatory response and resisting bacterial infection [52].
IL-8 maintains the inflammatory response to achieve sterilization and then repairs infected
tissues [53]. In the present study, metamifop decreased the expression levels of IL-1β and
IL-8. These results are similar to the effects of glyphosate exposure on gills and intestines
of European seabass and the effects of high concentrations of propiconazole on Danio rerio
embryos [54,55]. The results of the present study indicate that metamifop had a strong
negative effect on the expression levels of pro-inflammatory genes in M. albus, and the
immune capacity of M. albus decreased with the increasing metamifop concentration.
However, IL-8 expression level increased with the increasing metamifop concentration,
indicating that the inflammatory response was actively mobilized to sterilize and repair
infected tissue. This further proved that metamifop caused oxidative damage to the liver
tissues of M. albus, resulting in infection. Therefore, in the case of impaired humoral
and cellular immunity, M. albus initiated the inflammatory response to cope with stress.
Moreover, through histological observation, it can be found that, with the increasing
metamifop concentration, liver tissues were seriously damaged and vacuolated, which also
led to disruption of immunity and antioxidation.

Oxidative stress or oxidative damage further induces cell apoptosis. Bcl-2, Bax and
the caspase family are key genes directly involved in the regulation of apoptosis [56,57].
Bax activates channels of apoptosis-inducing factors in the inner mitochondrial membrane,
so apoptosis-inducting factors such as cytochrome C (Cyt C) enter the cytoplasm and
activate caspase 3 to induce apoptosis [58]. On the contrary, the main function of Bcl-2 is
to inhibit apoptosis. Bcl-2 not only inhibits the formation of apoptosis-inducing factors,
but also fixes the leaked apoptotic premise on the mitochondrial membrane to inactivate
it [59]. When apoptosis occurs, the ratio of Bax to Bcl-2 increases, resulting in the release
of Cyt C from mitochondria. This activates the release of caspase-3 and caspase-9 and
then induces apoptosis [60]. In the present study, expression levels of Bax and Bcl-2b
were inhibited by metamifop, but the ratio of Bax to Bcl-2b increased. At the same time,
expression levels of caspase9 and caspase3 showed a decreasing and then increasing trend
with the increasing metamifop concentration. The results show that expression levels of
caspase9 and caspase3 decreased in 0.2 and 0.4 mg/L treatment groups, and the apoptotic
pathway was not actively involved in the defense response, or it was not initiated. However,
more ROS accumulated in vivo with the increasing metamifop concentration, causing lipid
peroxidation and protein carbonylation, leading to oxidative damage. The antioxidant
and immune systems were unable to cope with the stress, and apoptosis was initiated to
undergo the defense response.

5. Conclusions

Metamifop induced a high level of ROS production, which damaged cellular con-
stituents and liver tissues, resulting in lipid peroxidation and protein carbonylation. Oxida-
tive stress was intensified to oxidative damage with the increasing metamifop concentration,
and the activities of the antioxidant and immune systems were then inhibited or even dis-
rupted. Meanwhile, apoptosis was activated in response to stress induced by metamifop. In
conclusion, metamifop induced oxidative damage and then impaired the defense systems
of M. albus.
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