Exposure of Reproductive-Aged Women to Multiple Metals and Its Associations with Unexplained Recurrent Miscarriage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection
2.3. Measurement of Metals
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Participants
3.2. Metal Concentration Differences between Controls and Women with uRM
3.3. Correlations among Exposures to Multiple Metals
3.4. Association between Metal Concentrations and Miscarriage
3.5. WQS Regression Analysis of the Association between Blood Metal Concentrations and the Risk of Miscarriage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The ESHRE Guideline Group on RPL; Bender Atik, R.; Christiansen, O.B.; Elson, J.; Kolte, A.M.; Lewis, S.; Middeldorp, S.; Nelen, W.; Peramo, B.; Quenby, S.; et al. ESHRE guideline: Recurrent pregnancy loss. Hum. Reprod. Open 2018, 2018, hoy004. [Google Scholar] [CrossRef] [PubMed]
- Rasmark Roepke, E.; Matthiesen, L.; Rylance, R.; Christiansen, O.B. Is the incidence of recurrent pregnancy loss increasing? A retrospective register-based study in Sweden. Acta Obstet. Gynecol. Scand. 2017, 96, 1365–1372. [Google Scholar] [CrossRef]
- Quenby, S.; Gallos, I.D.; Dhillon-Smith, R.K.; Podesek, M.; Stephenson, M.D.; Fisher, J.; Brosens, J.J.; Brewin, J.; Ramhorst, R.; Lucas, E.S.; et al. Miscarriage matters: The epidemiological, physical, psychological, and economic costs of early pregnancy loss. Lancet 2021, 397, 1658–1667. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Majid, S.; Niamat Ali, M.; Taing, S.; El-Serehy, H.A.; Al-Misned, F.A. Evaluation of etiology and pregnancy outcome in recurrent miscarriage patients. Saudi J. Biol. Sci. 2020, 27, 2809–2817. [Google Scholar] [CrossRef]
- Krieg, S.A.; Shahine, L.K.; Lathi, R.B. Environmental exposure to endocrine-disrupting chemicals and miscarriage. Fertil. Steril. 2016, 106, 941–947. [Google Scholar] [CrossRef]
- Brown, S. Miscarriage and its associations. Semin. Reprod. Med. 2008, 26, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Gundacker, C.; Hengstschläger, M. The role of the placenta in fetal exposure to heavy metals. Wien. Med. Wochenschr. 2012, 162, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Amadi, C.N.; Igweze, Z.N.; Orisakwe, O.E. Heavy metals in miscarriages and stillbirths in developing nations. Middle East. Fertil. Soc. J. 2017, 22, 91–100. [Google Scholar] [CrossRef]
- Liang, G.; Gong, W.; Li, B.; Zuo, J.; Pan, L.; Liu, X. Analysis of Heavy Metals in Foodstuffs and an Assessment of the Health Risks to the General Public via Consumption in Beijing, China. Int. J. Environ. Res. Public Health 2019, 16, 909. [Google Scholar] [CrossRef]
- Iqbal, S.; Ali, I.; Rust, P.; Kundi, M.; Ekmekcioglu, C. Selenium, Zinc, and Manganese Status in Pregnant Women and Its Relation to Maternal and Child Complications. Nutrients 2020, 12, 725. [Google Scholar] [CrossRef]
- IRIS. Selenium and Compounds; CASRN 7782-492; Intergrated Risk Information System (IRIS) Program; U.S. Environmental Protection Agency: Washington, DC, USA, 2006.
- Wang, Y.; Wu, F.; Liu, Y.; Mu, Y.; Giesy, J.P.; Meng, W.; Hu, Q.; Liu, J.; Dang, Z. Effect doses for protection of human health predicted from physicochemical properties of metals/metalloids. Environ. Pollut. 2018, 232, 458–466. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, L.; Chen, Y.; Zhang, S.; Zhuang, T.; Wang, L.; Xu, M.; Zhang, N.; Liu, S. Elevated non-essential metals and the disordered metabolism of essential metals are associated to abnormal pregnancy with spontaneous abortion. Environ. Int. 2020, 144, 106061. [Google Scholar] [CrossRef] [PubMed]
- Ghneim, H.K.; Al-Sheikh, Y.A.; Alshebly, M.M.; Aboul-Soud, M.A. Superoxide dismutase activity and gene expression levels in Saudi women with recurrent miscarriage. Mol. Med. Rep. 2016, 13, 2606–2612. [Google Scholar] [CrossRef]
- Al-Sheikh, Y.A.; Ghneim, H.K.; Alharbi, A.F.; Alshebly, M.M.; Aljaser, F.S.; Aboul-Soud, M.A.M. Molecular and biochemical investigations of key antioxidant/oxidant molecules in Saudi patients with recurrent miscarriage. Exp. Ther. Med. 2019, 18, 4450–4460. [Google Scholar] [CrossRef]
- Sami, A.S.; Suat, E.; Alkis, I.; Karakus, Y.; Guler, S. The role of trace element, mineral, vitamin and total antioxidant status in women with habitual abortion. J. Matern. Fetal Neonatal Med. 2021, 34, 1055–1062. [Google Scholar] [CrossRef]
- Ajayi, O.O.; Charles-Davies, M.A.; Arinola, O.G. Progesterone, selected heavy metals and micronutrients in pregnant Nigerian women with a history of recurrent spontaneous abortion. Afr. Health Sci. 2012, 12, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, H.; Alrashed, M.; Malik, A.; Alanazi, S.T.; Alenzi, N.D.; Ali, M.N.; AlJaser, F.S.; Altoum, G.H.; Hijazy, S.M.; Alfadhli, R.A.; et al. A unique investigation of thallium, tellurium, osmium, and other heavy metals in recurrent pregnancy loss: A novel approach. Int. J. Gynaecol. Obstet. 2022, 160, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.A.; Hegazy, N.; Amer, N.; Gaber, K.; Youssef, A.; Sharaf, N.; Diab, N.A.M. The role of cadmium exposure on spontaneous abortion. World J. Med. Sci. 2012, 7, 6. [Google Scholar]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Banerjee, A.; Padh, H.; Nivsarkar, M. Role of the calcium channel in blastocyst implantation: A novel contraceptive target. J. Basic. Clin. Physiol. Pharmacol. 2009, 20, 43–53. [Google Scholar] [CrossRef]
- Whitaker, M. Calcium at fertilization and in early development. Physiol. Rev. 2006, 86, 25–88. [Google Scholar] [CrossRef]
- Tesarik, J. Calcium signaling in human preimplantation development: A review. J. Assist. Reprod. Genet. 1999, 16, 216–220. [Google Scholar] [CrossRef]
- Milman, N.; Paszkowski, T.; Cetin, I.; Castelo-Branco, C. Supplementation during pregnancy: Beliefs and science. Gynecol. Endocrinol. 2016, 32, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Borella, P.; Szilagyi, A.; Than, G.; Csaba, I.; Giardino, A.; Facchinetti, F. Maternal plasma concentrations of magnesium, calcium, zinc and copper in normal and pathological pregnancies. Sci. Total Environ. 1990, 99, 67–76. [Google Scholar] [CrossRef]
- Shen, P.J.; Gong, B.; Xu, F.Y.; Luo, Y. Four trace elements in pregnant women and their relationships with adverse pregnancy outcomes. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 4690–4697. [Google Scholar] [PubMed]
- Yıldırım, E.; Derİcİ, M.K. The effect of heavy metals on miscarriage. J. Clin. Obstet. Gynecol. 2019, 29, 31–38. [Google Scholar] [CrossRef]
- Simsek, M.; Naziroglu, M.; Simsek, H.; Cay, M.; Aksakal, M.; Kumru, S. Blood plasma levels of lipoperoxides, glutathione peroxidase, beta carotene, vitamin A and E in women with habitual abortion. Cell Biochem. Funct. 1998, 16, 227–231. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Z.; Xiao, L.; Jiang, X.; Chen, D.; Wei, Y. Meta-analysis of the effect of the maternal vitamin D level on the risk of spontaneous pregnancy loss. Int. J. Gynaecol. Obstet. 2017, 138, 242–249. [Google Scholar] [CrossRef]
- Goncalves, D.R.; Braga, A.; Braga, J.; Marinho, A. Recurrent pregnancy loss and vitamin D: A review of the literature. Am. J. Reprod. Immunol. 2018, 80, e13022. [Google Scholar] [CrossRef]
- Rayman, M.P. The importance of selenium to human health. Lancet Lond. Engl. 2000, 356, 233–241. [Google Scholar] [CrossRef]
- Rayman, M.P. The argument for increasing selenium intake. Proc. Nutr. Soc. 2002, 61, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Giadinis, N.; Koptopoulos, G.; Roubles, N.; Siarkou, V.; Papasteriades, A. Selenium and vitamin E effect on antibody production of sheep vaccinated against enzootic abortion (Chlamydia psittaci). Comp. Immunol. Microbiol. Infect. Dis. 2000, 23, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Zachara, B.A. Selenium in Complicated Pregnancy. A Review. Adv. Clin. Chem. 2018, 86, 157–178. [Google Scholar] [CrossRef]
- Showell, M.G.; Mackenzie-Proctor, R.; Jordan, V.; Hart, R.J. Antioxidants for female subfertility. Cochrane Database Syst. Rev. 2020, 8, CD007807. [Google Scholar] [CrossRef]
- Abdulah, R.; Noerjasin, H.; Septiani, L.; Mutakin; Defi, I.R.; Suradji, E.W.; Puspitasari, I.M.; Barliana, M.I.; Yamazaki, C.; Nakazawa, M.; et al. Reduced serum selenium concentration in miscarriage incidence of Indonesian subjects. Biol. Trace Elem. Res. 2013, 154, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Zhang, L.; Sa, P.; Luo, J.; Li, M. Transcriptomic analysis reveals the effects of maternal selenium deficiency on placental transport, hormone synthesis, and immune response in mice. Metallomics 2022, 14, mfac062. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cheng, W.; Zhang, L. Maternal selenium deficiency suppresses proliferation, induces autophagy dysfunction and apoptosis in the placenta of mice. Metallomics 2021, 13, mfab058. [Google Scholar] [CrossRef]
- Barrington, J.W.; Lindsay, P.; James, D.; Smith, S.; Roberts, A. Selenium deficiency and miscarriage: A possible link? Br. J. Obstet. Gynaecol. 1996, 103, 130–132. [Google Scholar] [CrossRef]
- Barrington, J.W.; Taylor, M.; Smith, S.; Bowen-Simpkins, P. Selenium and recurrent miscarriage. J. Obstet. Gynaecol. 1997, 17, 199–200. [Google Scholar] [CrossRef]
- Nicoll, A.E.; Norman, J.; Macpherson, A.; Acharya, U. Association of reduced selenium status in the aetiology of recurrent miscarriage. Br. J. Obstet. Gynaecol. 1999, 106, 1188–1191. [Google Scholar] [CrossRef] [PubMed]
- Kocak, I.; Aksoy, E.; Ustun, C. Recurrent spontaneous abortion and selenium deficiency. Int. J. Gynaecol. Obstet. 1999, 65, 79–80. [Google Scholar] [CrossRef]
- Kumar, K.S.; Kumar, A.; Prakash, S.; Swamy, K.; Jagadeesan, V.; Jyothy, A. Role of red cell selenium in recurrent pregnancy loss. J. Obstet. Gynaecol. 2002, 22, 181–183. [Google Scholar] [CrossRef]
- Ghneim, H.K.; Alshebly, M.M. Biochemical Markers of Oxidative Stress in Saudi Women with Recurrent Miscarriage. J. Korean Med. Sci. 2016, 31, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Thomas, V.V.; Knight, R.; Haswell, S.J.; Lindow, S.W.; van der Spuy, Z.M. Maternal hair selenium levels as a possible long-term nutritional indicator of recurrent pregnancy loss. BMC Womens Health 2013, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Domingo, J.L. Vanadium: A review of the reproductive and developmental toxicity. Reprod. Toxicol. 1996, 10, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Peng, Y.; Zheng, T.; Zhang, B.; Liu, W.; Wu, C.; Jiang, M.; Braun, J.M.; Liu, S.; Buka, S.L.; et al. Effects of trimester-specific exposure to vanadium on ultrasound measures of fetal growth and birth size: A longitudinal prospective prenatal cohort study. Lancet Planet. Health 2018, 2, e427–e437. [Google Scholar] [CrossRef]
- Jiang, M.; Li, Y.; Zhang, B.; Zhou, A.; Zheng, T.; Qian, Z.; Du, X.; Zhou, Y.; Pan, X.; Hu, J.; et al. A nested case-control study of prenatal vanadium exposure and low birthweight. Hum. Reprod. 2016, 31, 2135–2141. [Google Scholar] [CrossRef]
- Hu, J.; Xia, W.; Pan, X.; Zheng, T.; Zhang, B.; Zhou, A.; Buka, S.L.; Bassig, B.A.; Liu, W.; Wu, C.; et al. Association of adverse birth outcomes with prenatal exposure to vanadium: A population-based cohort study. Lancet Planet. Health 2017, 1, e230–e241. [Google Scholar] [CrossRef]
- Jin, S.; Xia, W.; Jiang, Y.; Sun, X.; Huang, S.; Zhang, B.; Zhou, A.; Zheng, T.; Xu, S.; Li, Y. Urinary vanadium concentration in relation to premature rupture of membranes: A birth cohort study. Chemosphere 2018, 210, 1035–1041. [Google Scholar] [CrossRef]
- Baser, E.; Kirmizi, D.A.; Turksoy, V.A.; Onat, T.; Caltekin, M.D.; Kara, M.; Yalvac, E.S. Environmental Exposures in the Etiology of Abortion: Placental Toxic and Trace Element Levels. Z. Geburtshilfe Neonatol. 2020, 224, 339–347. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Y.; Guan, Q.; Xu, L.; Zhao, S.; Duan, J.; Wang, Y.; Xia, Y.; Xu, Q. Exposure to multiple trace elements and miscarriage during early pregnancy: A mixtures approach. Environ. Int. 2022, 162, 107161. [Google Scholar] [CrossRef] [PubMed]
- Hertz-Picciotto, I. The evidence that lead increases the risk for spontaneous abortion. Am. J. Ind. Med. 2000, 38, 300–309. [Google Scholar] [CrossRef]
- Edwards, M. Fetal death and reduced birth rates associated with exposure to lead-contaminated drinking water. Environ. Sci. Technol. 2014, 48, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, D.C. Teratogen update: Lead and pregnancy. Birth Defects Res. Part A Clin. Mol. Teratol. 2005, 73, 409–420. [Google Scholar] [CrossRef]
- Demir, N.; Basaranoglu, M.; Huyut, Z.; Deger, I.; Karaman, K.; Sekeroglu, M.R.; Tuncer, O. The relationship between mother and infant plasma trace element and heavy metal levels and the risk of neural tube defect in infants. J. Matern. Fetal Neonatal Med. Off. J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obs. 2019, 32, 1433–1440. [Google Scholar] [CrossRef] [PubMed]
- Perez-Deben, S.; Gonzalez-Martin, R.; Palomar, A.; Quinonero, A.; Salsano, S.; Dominguez, F. Copper and lead exposures disturb reproductive features of primary endometrial stromal and epithelial cells. Reprod. Toxicol. 2020, 93, 106–117. [Google Scholar] [CrossRef]
- Anttila, A.; Sallmen, M. Effects of parental occupational exposure to lead and other metals on spontaneous abortion. J. Occup. Environ. Med. 1995, 37, 915–921. [Google Scholar] [CrossRef]
- Faikoglu, R.; Savan, K.; Utku, C.; Takar, N.; Zebitay, A.G. Significance of maternal plasma lead level in early pregnancy loss. J. Environ. Sci. Health. Part A Toxic Hazard. Subst. Environ. Eng. 2006, 41, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Gardella, J.R.; Hill, J.A., 3rd. Environmental toxins associated with recurrent pregnancy loss. Semin. Reprod. Med. 2000, 18, 407–424. [Google Scholar] [CrossRef]
- Buck Louis, G.M.; Smarr, M.M.; Sundaram, R.; Steuerwald, A.J.; Sapra, K.J.; Lu, Z.; Parsons, P.J. Low-level environmental metals and metalloids and incident pregnancy loss. Reprod. Toxicol. 2017, 69, 68–74. [Google Scholar] [CrossRef]
- Lindbohm, M.L.; Sallmen, M.; Anttila, A.; Taskinen, H.; Hemminki, K. Paternal occupational lead exposure and spontaneous abortion. Scand. J. Work Environ. Health 1991, 17, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Vigeh, M.; Yokoyama, K.; Kitamura, F.; Afshinrokh, M.; Beygi, A.; Niroomanesh, S. Early pregnancy blood lead and spontaneous abortion. Women Health 2010, 50, 756–766. [Google Scholar] [CrossRef] [PubMed]
- Borja-Aburto, V.H.; Hertz-Picciotto, I.; Rojas Lopez, M.; Farias, P.; Rios, C.; Blanco, J. Blood lead levels measured prospectively and risk of spontaneous abortion. Am. J. Epidemiol. 1999, 150, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Omeljaniuk, W.J.; Socha, K.; Soroczynska, J.; Charkiewicz, A.E.; Laudanski, T.; Kulikowski, M.; Kobylec, E.; Borawska, M.H. Cadmium and Lead in Women Who Miscarried. Clin. Lab. 2018, 64, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Lamadrid-Figueroa, H.; Tellez-Rojo, M.M.; Hernandez-Avila, M.; Trejo-Valdivia, B.; Solano-Gonzalez, M.; Mercado-Garcia, A.; Smith, D.; Hu, H.; Wright, R.O. Association between the plasma/whole blood lead ratio and history of spontaneous abortion: A nested cross-sectional study. BMC Pregnancy Childbirth 2007, 7, 22. [Google Scholar] [CrossRef]
Characteristic | Control (N = 43) | Total uRM (N = 232) | 2M (N = 159) | 3M (N = 42) | ≥4M (N = 31) | p (Total uRM vs. Control) | p (Multiple Comparisons) |
---|---|---|---|---|---|---|---|
Age, year; median (Q1–Q3) | 31.00 (26.00–37.00) | 32.00 (26.00–38.00) | 31.86 (29.00–35.00) | 32.17 (30.00–35.00) | 33.06 (31.00–35.00) | 0.007 | 0.019 a |
BMI, kg/m2; mean (SD) | 21.72 (2.47) | 21.31 (2.45) | 21.26 (2.13) | 21.32 (1.79) | 22.25 (3.39) | 0.313 | 0.078 |
Education Level, n (%) | <0.001 | <0.001 b | |||||
High school or below | 31 (72.1) | 91 (39.2) | 52 (32.7) | 21 (50.0) | 18 (58.0) | ||
College or equivalent | 9 (20.9) | 128 (55.2) | 96 (60.4) | 21 (50.0) | 11 (35.5) | ||
Graduate school or above | 3 (7.0%) | 13 (5.6) | 11 (6.9) | 0 | 2 (6.5) | ||
Parity, n (%) | 0.062 | 0.282 | |||||
Nulliparous | 36 (83.7) | 162 (69.8) | 110 (69.2) | 29 (69.0) | 23 (74.2) | ||
Multiparous | 7 (16.3) | 70 (30.2) | 49 (30.8) | 13 (31.0) | 8 (25.8) |
Elements | Control (N = 43) | Total RM (N = 232) | 2M (N = 159) | 3M (N = 42) | ≥4M (N = 31) | p (Control vs. Total RM) | p (Multiple Comparisons) | p (Adjusted) |
---|---|---|---|---|---|---|---|---|
Na (mg/L) | 3035.51 (2832.09–3117.59) | 3062.54 (2877.45–3235.85) | 3092.00 (2906.18–3248.21) | 2957.35 (2834.82–3186.39) | 3065.49 (2877.42–3206.23) | 0.064 | 0.072 | - |
Mg (mg/L) | 21.55 (19.95–23.11) | 20.57 (18.05–22.49) | 20.48 (17.94–22.35) | 20.60 (18.80–23.18) | 20.60 (17.63–22.98) | 0.052 | 0.228 | - |
K (mg/L) | 183.29 (164.35–194.30) | 166.32 (147.80–195.76) | 166.55 (148.74–196.86) | 171.47 (148.02–201.511) | 154.31 (134.62–178.10) | 0.059 | 0.076 | - |
Ca (mg/L) | 104.37 (96.11–108.20) | 92.96 (83.52–102.47) | 93.02 (84.69–102.24) | 92.61 (85.59–106.48) | 92.47 (79.04–102.00) | <0.001 | 0.002 | 0.006 (control vs. ≥4M); 0.002 (control vs. 2M) |
V (μg/L) | 0.15 (0.09–0.23) | 0.23 (0.13–0.32) | 0.23 (0.13–0.32) | 0.21 (0.13–0.30) | 0.21 (0.03–0.29) | 0.013 | 0.069 | - |
Cr (μg/L) | 1.49 (0.64–3.22) | 1.74 (0.62–4.53) | 1.75 (0.68–4.55) | 1.79 (0.69–5.39) | 1.33 (0.06–3.29) | 0.956 | 0.727 | - |
Mn (μg/L) | 1.43 (0.99–2.39) | 2.27 (0.56–4.38) | 2.26 (0.58–4.22) | 2.29 (0.60–5.10) | 2.39 (0.04–4.17) | 0.105 | 0.394 | - |
Fe (μg/L) | 990.315 (2832.09–3117.59) | 1222.02 (962.23–1557.26) | 1205.75 (981.97–1521.93) | 1408.14 (873.45–1846.25) | 1123.82 (917.60–1400.30) | 0.064 | 0.198 | - |
Co (μg/L) | 0.44 (0.37–0.72) | 0.47 (0.29–0.71) | 0.45 (0.28–0.72) | 0.60 (0.37–0.82) | 0.49 (0.27–0.71) | 0.639 | 0.264 | - |
Ni (μg/L) | 5.02 (0.97–14.27) | 11.63 (1.75–26.60) | 10.53 (1.02–24.00) | 17.46 (4.25–32.78) | 10.45 (2.23–23.66) | 0.055 | 0.051 | - |
Cu (μg/L) | 10,321.86 (8396.07–11,374.16) | 9798.82 (8159.29–10,976.13) | 9933.40 (8180.86–10,978.27) | 9546.22 (8183.17–10,996.32) | 9711.50 (7801.93–10,677.12) | 0.244 | 0.566 | - |
Zn (μg/L) | 907.08 (782.79–1037.49) | 939.02 (807.90–1134.24) | 914.36 (807.24–1131.43) | 1047.81 (869.05–1246.04) | 885.14 (728.82–1090.37) | 0.196 | 0.127 | - |
Se (μg/L) | 131.85 (111.70–148.04) | 117.80 (94.10–138.05) | 118.04 (95.57–13,922) | 115.88 (90.18–143.61) | 124.35 (89.00–131.21) | 0.005 | 0.037 | 0.046 (control vs. 2M) |
Mo (μg/L) | 1.19 (0.96–1.42) | 1.07 (0.85–1.46) | 1.07 (0.85–1.46) | 1.04 (0.92–1.63) | 0.94 (0.70–1.28) | 0.398 | 0.121 | - |
Ag (μg/L) | 0.08 (0.05–0.09) | 0.07 (0.02–0.13) | 0.07 (0.03–0.13) | 0.07 (0.00–0.13) | 0.07 (0.00–0.10) | 0.893 | 0.945 | - |
Sb (μg/L) | 2.47 (2.15–2.88) | 2.51 (2.02–2.94) | 2.53 (1.97–2.95) | 2.28 (1.98–2.83) | 2.65 (2.29–3.13) | 0.742 | 0.346 | - |
Ba (μg/L) | 1.70 (0.74–2.84) | 1.56 (0.02–4.61) | 1.29 (0.02–4.10) | 2.98 (0.02–6.11) | 0.69 (0.02–4.05) | 0.443 | 0.092 | - |
Tl (μg/L) | 0.01 (0.00–0.04) | 0.02 (0.00–0.04) | 0.12 (0.00–0.04) | 0.02 (0.00–0.05) | 0.02 (0.00–0.06) | 0.560 | 0.784 | - |
Pb (μg/L) | 0.01 (0.01–0.37) | 0.28 (0.01–1.28) | 0.18 (0.01–1.29) | 0.63 (0.01–1.74) | 0.34 (0.01–1.15) | 0.002 | 0.010 | 0.045 (control vs. 2M); 0.007 (control vs. 3M) |
Elements | Control vs. Total uRM | Control vs. 2M | Control vs. 3M | Control vs. ≥4M | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Crude | Adjusted | Crude | Adjusted | Crude | Adjusted | Crude | Adjusted | |||||||||
OR (95% C.I.) | p | OR (95% C.I.) | p | OR (95% C.I.) | p | OR (95% C.I.) | p | OR (95% C.I.) | p | OR (95% C.I.) | p | OR (95% C.I.) | p | OR (95% C.I.) | p | |
Na (mg/L) | 1.001 (1.000, 1.002) | 0.061 | 1.001 (1.000, 1.002) | 0.058 | 1.001 (1.000, 1.002) | 0.028 | 1.001 (1.000, 1.002) | 0.045 | 1.001 (0.999, 1.003) | 0.240 | 1.001 (0.999, 1.003) | 0.258 | 1.000 (0.999, 1.002) | 0.623 | 1.001 (1.000, 1.003) | 0.153 |
Mg (mg/L) | 0.167 (0.019, 1.465) | 0.106 | 0.135 (0.013, 1.421) | 0.096 | 0.156 (0.017, 1.429) | 0.100 | 0.126 (0.011, 1.424) | 0.094 | 0.374 (0.016, 8.708) | 0.540 | 0.296 (0.009, 9.938) | 0.497 | 0.097 (0.006, 1.698) | 0.110 | 0.127 (0.005, 3.599) | 0.227 |
K (mg/L) | 0.887 (0.346, 2.274) | 0.803 | 0.982 (0.363, 2.655) | 0.972 | 0.669 (0.207, 2.166) | 0.503 | 0.895 (0.248, 3.229) | 0.866 | 2.094 (0.576, 7.604) | 0.262 | 2.142 (0.535, 8.573) | 0.282 | 0.565 (0.129, 2.464) | 0.447 | 0.611 (0.129, 2.903) | 0.536 |
Ca (mg/L) | 0.015 (0.001, 0.185) | 0.001 | 0.012 (0.001, 0.188) | 0.002 | 0.014 (0.001, 0.200) | 0.002 | 0.015 (0.001, 0.281) | 0.005 | 0.025 (0.001, 0.716) | 0.031 | 0.022 (0.001, 0.944) | 0.047 | 0.003 (0.000, 0.145) | 0.003 | 0.003 (0.000, 0.189) | 0.003 |
V (μg/L) | 1.110 (0.869, 1.419) | 0.403 | 1.186 (0.901, 1.560) | 0.223 | 1.140 (0.876, 1.482) | 0.330 | 1.346 (0.989, 1.832) | 0.059 | 1.201 (0.829, 1.739) | 0.333 | 1.130 (0.748, 1.707) | 0.562 | 0.954 (0.652, 1.398) | 0.810 | 1.050 (0.694, 1.588) | 0.817 |
Cr (μg/L) | 0.941 (0.778, 1.137) | 0.526 | 0.965 (0.786, 1.184) | 0.732 | 0.951 (0.775, 1.167) | 0.632 | 1.002 (0.796, 1.261) | 0.987 | 0.961 (0.751, 1.231) | 0.754 | 0.942 (0.708, 1.252) | 0.679 | 0.844 (0.645, 1.104) | 0.216 | 0.881 (0.652, 1.189) | 0.407 |
Mn (μg/L) | 0.990 (0.832, 1.178) | 0.906 | 1.038 (0.856, 1.258) | 0.707 | 1.007 (0.833, 1.217) | 0.944 | 1.109 (0.890, 1.383) | 0.356 | 0.993 (0.769, 1.284) | 0.960 | 0.920 (0.685, 1.235) | 0.578 | 0.889 (0.682, 1.158) | 0.385 | 0.927 (0.699, 1.230) | 0.600 |
Fe (μg/L) | 1.779 (0.830, 3.815) | 0.139 | 1.996 (0.882, 4.521) | 0.097 | 1.810 (0.778, 4.211) | 0.169 | 2.010 (0.800, 5.050) | 0.138 | 1.935 (0.756, 4.951) | 0.169 | 1.751 (0.639, 4.798) | 0.276 | 1.716 (0.587, 5.018) | 0.324 | 1.361 (0.444, 4.174) | 0.590 |
Co (μg/L) | 0.932 (0.657, 1.324) | 0.696 | 0.877 (0.588, 1.306) | 0.518 | 0.869 (0.595, 1.270) | 0.469 | 0.819 (0.525, 1.278) | 0.379 | 1.450 (0.823, 2.555) | 0.199 | 1.353 (0.721, 2.536) | 0.346 | 0.788 (0.462, 1.347) | 0.384 | 0.717 (0.373, 1.377) | 0.317 |
Ni (μg/L) | 1.101 (0.951, 1.275) | 0.199 | 1.092 (0.933, 1.279) | 0.273 | 1.069 (0.917, 1.246) | 0.394 | 1.043 (0.881, 1.235) | 0.625 | 1.296 (1.031, 1.629) | 0.027 | 1.283 (0.999, 1.647) | 0.051 | 1.118 (0.884, 1.414) | 0.353 | 1.158 (0.897, 1.495) | 0.260 |
Cu (μg/L) | 0.495 (0.140, 1.753) | 0.276 | 0.733 (0.205, 2.919) | 0.704 | 0.628 (0.174, 2.269) | 0.477 | 0.924 (0.229, 3.719) | 0.911 | 0.298 (0.045, 1.088) | 0.211 | 0.415 (0.052, 3.315) | 0.407 | 0.255 (0.043, 1.513) | 0.133 | 0.322 (0.039, 2.656) | 0.293 |
Zn (μg/L) | 1.001 (1.000, 1.003) | 0.103 | 1.001 (1.000, 1.003) | 0.073 | 1.001 (1.000, 1.003) | 0.157 | 1.001 (1.000, 1.003) | 0.090 | 1.002 (1.000, 1.005) | 0.017 | 1.002 (1.000, 1.004) | 0.047 | 1.001 (0.999, 1.003) | 0.532 | 1.001 (0.999, 1.003) | 0.371 |
Se (μg/L) | 0.154 (0.041, 0.588) | 0.006 | 0.141 (0.033, 0.597) | 0.008 | 0.152 (0.037, 0.622) | 0.009 | 0.168 (0.034, 0.823) | 0.028 | 0.166 (0.032, 0.871) | 0.034 | 0.081 (0.012, 0.543) | 0.010 | 0.103 (0.015, 0.707) | 0.021 | 0.076 (0.008, 0.751) | 0.027 |
Mo (μg/L) | 0.771 (0.384, 1.548) | 0.464 | 0.789 (0.368, 1.650) | 0.514 | 0.805 (0.358, 1.809) | 0.599 | 1.079 (0.431, 2.699) | 0.871 | 1.337 (0.475, 3.767) | 0.582 | 1.005 (0.320, 3.151) | 0.993 | 0.256 (0.072, 0.905) | 0.034 | 0.271 (0.067, 1.098) | 0.067 |
Ag (μg/L) | 0.885 (0.698, 1.122) | 0.312 | 0.838 (0.637, 1.101) | 0.204 | 0.904 (0.699, 1.170) | 0.443 | 0.898 (0.656, 1.229) | 0.502 | 0.843 (0.617, 1.154) | 0.287 | 0.657 (0.445, 0.970) | 0.035 | 0.746 (0.508, 1.096) | 0.136 | 0.721 (0.463, 1.124) | 0.148 |
Sb (μg/L) | 0.669 (0.245, 1.827) | 0.433 | 0.626 (0.230, 1.704) | 0.359 | 0.653 (0.229, 1.861) | 0.425 | 0.630 (0.246, 1.613) | 0.336 | 0.389 (0.077, 1.959) | 0.252 | 0.238 (0.038, 1.497) | 0.238 | 0.947 (0.256, 3.502) | 0.935 | 1.093 (0.252, 4.741) | 0.906 |
Ba (μg/L) | 0.873 (0.758, 1.006) | 0.060 | 0.854 (0.735, 0.992) | 0.039 | 0.852 (0.74, 0.989) | 0.035 | 0.852 (0.723, 1.003) | 0.055 | 0.988 (0.815, 1.197) | 0.901 | 0.924 (0.745, 1.147) | 0.473 | 0.790 (0.638, 0.979) | 0.031 | 0.708 (0.543, 0.923) | 0.011 |
Tl (μg/L) | 1.099 (0.881, 1.372) | 0.402 | 1.129 (0.882, 1.444) | 0.335 | 1.075 (0.846, 1.366) | 0.555 | 1.138 (0.864, 1.500) | 0.357 | 1.174 (0.891, 1.547) | 0.254 | 1.191 (0.866, 1.638) | 0.283 | 1.159 (0.836, 1.607) | 0.377 | 1.097 (0.764, 1.579) | 0.620 |
Pb (μg/L) | 1.188 (1.043, 1.354) | 0.009 | 1.150 (1.003, 1.318) | 0.045 | 1.166 (1.019, 1.333) | 0.025 | 1.152 (0.995, 1.333) | 0.059 | 1.298 (1.088, 1.548) | 0.004 | 1.258 (1.042, 1.519) | 0.017 | 1.215 (1.002, 1.474) | 0.048 | 1.123 (0.905, 1.394) | 0.293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Yan, X.; Tan, J.; Tan, J.; Liu, C.; Yang, P.; Xian, Y.; Wang, Q. Exposure of Reproductive-Aged Women to Multiple Metals and Its Associations with Unexplained Recurrent Miscarriage. Toxics 2023, 11, 830. https://doi.org/10.3390/toxics11100830
Zhang Y, Yan X, Tan J, Tan J, Liu C, Yang P, Xian Y, Wang Q. Exposure of Reproductive-Aged Women to Multiple Metals and Its Associations with Unexplained Recurrent Miscarriage. Toxics. 2023; 11(10):830. https://doi.org/10.3390/toxics11100830
Chicago/Turabian StyleZhang, Yingying, Xi Yan, Jianhua Tan, Jifan Tan, Chunsheng Liu, Pan Yang, Yanping Xian, and Qiong Wang. 2023. "Exposure of Reproductive-Aged Women to Multiple Metals and Its Associations with Unexplained Recurrent Miscarriage" Toxics 11, no. 10: 830. https://doi.org/10.3390/toxics11100830
APA StyleZhang, Y., Yan, X., Tan, J., Tan, J., Liu, C., Yang, P., Xian, Y., & Wang, Q. (2023). Exposure of Reproductive-Aged Women to Multiple Metals and Its Associations with Unexplained Recurrent Miscarriage. Toxics, 11(10), 830. https://doi.org/10.3390/toxics11100830