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Abstract: Early-life exposure to environmental neurotoxicants is known to have lasting effects on or-
ganisms. In this study, we aim to investigate the impacts of PQ exposure during early developmental
stages and adult re-challenge in aged mice on non-motor neurobehavior. Two mouse models, which
were exposed once during early life stage and re-exposure at adulthood, were created to explore
the long-term effects of PQ on non-motor neurobehavior. As the results showed, early-life exposure
to PQ caused impairment in working memory and cognitive ability in aged male mice, but not in
female mice, exhibiting a sex-specific impairment. Moreover, male mice that were re-challenged with
PQ at adulthood following early-life exposure also exhibited non-motor neurobehavioral disorders.
Notably, re-exposure to PQ exacerbated neurobehavioral disorders and anxiety levels compared to
single exposure during different life stages. Collectively, early-life exposure to PQ can result in irre-
versible impairments in non-motor neurobehavior and increase susceptibility to subsequent insults
in male mice, but not in female mice, suggesting greater sensitivity in male rodents to PQ-induced
non-motor neurobehavioral deficits.

Keywords: paraquat; early-life; non-motor neurobehavior; gender differences; late life

1. Introduction

Paraquat (1, 1-dimethyl-4, 4-bipyridium dichloride, PQ) is a broad-spectrum herbicide
that is widely used in agricultural production with a low cost, high efficiency and non-
selectivity [1,2]. However, the high solubility of PQ in soil poses a significant risk of soil and
water contamination [3,4]. Even though it has been banned in more than 67 counties with
reasons related to health and environmental hazards, high toxicity, and a lack of antidote
that is frequently mentioned, PQ is still widely used in many other regions, particularly
in Latin America and Asia [5]. Notably, the structure of PQ is similar to that of MPP+, the
toxic metabolite of 1-methyl-4-phenylpyridinium (MPTP) [6], which is a neurotoxicant.
Numerous epidemiological studies have shown that the prolonged exposure to low doses of
PQ through farming, food and drinking water significantly increased the risk of Parkinson’s
disease (PD), Alzheimer’s disease (AD) and other chronic neurodegenerative diseases [7–9].
Animal models have revealed that PQ can penetrate the blood–brain barrier of rodents,
with the half-life lasting for 28 days [1], and can accumulate in various brain regions,
including the hippocampus and cerebellum, potentially leading to selective attacks on
dopamine neurons and PD-like symptoms [10]. Its neurotoxicity may be related to oxygen
stress, mitochondrial abnormalities and energy dysfunction [11].
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Parkinson’s disease (PD) is an age-related chronic progressive neurodegenerative
disease, with the prominent feature of selective deterioration of dopaminergic neurons in
the substantia nigra pars compacta (SNpc) of the midbrain [12,13], resulting in a reduction in
dopamine (DA) levels in the striatum, which plays a key role in regulating the physiological
functions of the central nervous system. Currently, PD is increasingly recognized as a
systemic disorder [14], with the primary symptoms being static tremor, stiffness, slow
movement and postural instability, among which non-motor deficits form an important
part of the syndrome, including depression, anxiety, autonomic and cognitive impairment
occurring in PD patients [13,14].

Although PD is typically considered an adult-onset disease, the possibility that it may
be related to insults that occur earlier in life has been raised. Exposure to environmental
contaminants during critical periods of neurodevelopment may induce profound influence
and predispose individuals to developing PD [15]. Notably, the immature blood–brain
barrier during early life stages, such as the embryonic, fetal and neonatal stages, leave the
nervous system more susceptible to toxic effects of environmental neurotoxins [16]. Studies
on animal models have provided compelling evidence that a range of environmental factors
(pesticides like PQ or maneb (MB)) during the perinatal [17] and prenatal periods [18]
can either directly cause a reduction in dopamine neurons, or increase susceptibility to
degeneration with subsequent environmental insults, suggesting a potential relevance of
PD on the fetal basis of adult disease. Several rodent studies have shown that PQ exposure
during the postnatal period can reduce locomotor activity, rendering it more vulnerable
to subsequent adult re-challenge with the same pesticides [17,19]. However, few studies
have explored the impacts of early-life PQ exposure on non-motor neurobehavior in later
life stages.

Gender is a significant risk factor for Parkinson’s disease, which is attributed to
hormonal factors. Estrogens have been proven to enhance synaptic plasticity, reduce β-
amyloid and counteract the expression of pro-apoptotic factors, owning to the properties
of antioxidant benefits and neuroprotective function [20]. As studies have shown, men
are twice as likely to develop Parkinson’s disease [21], with 1.5 times the prevalence [22]
compared to women. In addition, male PD patients generally experience an earlier onset
age, faster disease progression [14,23] and more severe dopaminergic demineralization [24].
These gender differences have also been observed in animal models of PD. Several studies
have revealed that female rodents are less susceptible than males to the behavioral and
neurodegenerative effects of DA-targeting toxins, such as MTPT and 6-hydroxydopamine
(6-OHDA) [25–27]. Collectively, numerous findings have shown that the protection against
PQ in females is conferred post-puberty, suggesting that maturation of reproductive systems
may play a role in this response. However, limited research has focused on the effects of
early-life exposure to PQ on non-motor behavior in animals of different genders.

Herein, we conduct animal experiments to investigate the impacts of early-life PQ
exposure on non-motor neurobehavioral outcomes in male and female mice. Further, we
focus on the differences of age and re-challenge after PQ exposure to establish a direct
causal relationship between PQ exposure and impairments of non-motor neurobehavior in
animal models. Our findings provide experimental evidence for assessing potential risks of
PQ exposure at different life stages in humans.

2. Materials and Methods
2.1. Animal Model and Chemicals

Pregnant C57BL/6 mice were purchased from Shanghai Institute for Food and Drug
Control, and mice were provided with diet and water ad libitum. Animals were maintained
in standard conditions (12 h light/dark cycle) at a constant temperature (18–22 ◦C) and
humidity (40–50%). All animal care and experimental procedures were conducted in
accordance with Fudan University ethical guidelines. PQ was provided by Sigma-Aldrich
(Milan, Italy), diluted with saline. Five days after birth, the mice were randomly divided.
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2.2. Experimental Design and Exposure Protocols
2.2.1. PQ Exposure in Early Life of Male and Female Mice

Both 5-day-old male and female pups were divided into two groups: NS group
(n = 11–15 female mice/group, n = 9–18 male mice/group) or PQ group (n = 14–16 female
mice/group, n = 8–23 male mice/group). Mice from NS group received intraperitoneal (i.p.)
treatment of saline, and mice from PQ group were exposed to 0.8 mg/kg PQ every day (i.p.);
the exposure time was 15 days. The dose (0.8 mg/kg) and duration of PQ exposure (15 days)
were determined based on previous research on early-life PQ exposure in mice [28], together
with our pretest. At 22 months old, all animals from the two groups were subjected to
behavioral tests, including organ coefficient detection, y-maze spontaneous alternation,
passive avoidance test and elevated plus maze test (Figure 1a).
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Figure 1. The protocols for animal treatment and processing that were employed in this study.
The experimental schedules of early-life exposure model (a) and re-challenge model (b) are
exhibited, respectively.

2.2.2. PQ Re-Exposure at Adulthood in Male Mice

Male mice were randomly divided into four groups, and exposed to either saline or
PQ during early PN period (PN day 5–19) or in adulthood (8 months), respectively. The
experimental schedule comprised four groups as follows:

a. NS + NS group (treated with saline at both PN period and adulthood, n = 9–18);
b. NS + PQ group (treated with saline at PN period and with PQ at adulthood, n = 8–15);
c. PQ + NS group (treated with PQ at PN period and with saline at adulthood, n = 8–23);
d. PQ + PQ group (treated with PQ at both PN period and adulthood, n = 15–18).

During the PN period, animals were administered PQ (0.8 mg/kg) or equivalent
saline via i.p. injections on their fifth day of life and continued for fifteen days. During
adulthood, animals were exposed to PQ (10 mg/kg) or equivalent saline via i.p. injections at
8 months of age every other day for a total of 10 injections. This PQ exposure concentration
(10 mg/kg) is reported to accelerate the loss of midbrain dopaminergic neurons [1]. At
22 months of age, each group underwent behavioral tests, including organ coefficient
detection, y-maze spontaneous alternation, passive avoidance test and elevated plus maze
test. This experimental schedule was performed to investigate whether early PN exposure
to the PQ renders neurobehavior of mice more susceptible to a re-challenge at adulthood
(Figure 1b).

2.3. Y-Maze Spontaneous Alternation Test

The Y-maze spontaneous alternation test was used to evaluate spatial working memory
in aged mice [29]. The Y-maze consisted of three arms (35 cm long, 5 cm wide and 15 cm
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high) and converged on an equilateral triangular at the central area. Mouse were placed
individually in the center of the maze at random and were allowed to explore freely
for 5 min. Activity of each mouse was tracked and recorded with the manufacture’s
software. The maze was thoroughly cleaned between sessions. Consecutive entries into all
three arms were considered as an alternation. The maximum spontaneous alternation was
calculated by subtracting 2 from the total number of arms entered. The percent spontaneous
alternation was defined as (actual alternations/maximum alternations) × 100%.

2.4. Passive Avoidance Test

The passive avoidance test was used to assess the learning and memory of aged
mice [30]. We conducted passive avoidance test using a shuttle box, which is composed
of two distinct chambers with a grid floor, one dark and one illuminated, separated by a
guillotine door. The trial involved two separate trials. During the initial training trial, each
mouse was located in the illuminated room and after 10 s, the guillotine door was opened.
As soon as the mice entered the dark compartment, the door was closed immediately, and
an electric foot shock (0.5 mA for 5 s) was delivered through the grid floor. Then, the door
opened, allowing for the mice to escape into the light chamber. A total of 24 h after the
acquisition trial, the mice were placed in the illuminated compartment again as training,
and the latency to enter the dark chamber was recorded. The latency in both acquisition
and retention trials was measured, with a maximum of 300 s.

2.5. Elevated plus Maze Test

The elevated plus maze test was utilized to evaluate the impact of PQ on the anxiety of
aged mice [29]. The apparatus consisted of four arms with two open arms (25 × 5 cm) and
two closed arms (25 × 5 cm), all symmetrical to the central platform (5 × 5 cm), elevated
approximately 30 cm off the floor surface. Each mouse was placed on the center platform
facing an open arm individually, and was allowed to freely explore the maze for 5 min.
Each of the animal’s exploration was traced and recorded using the manufacture’s software.
Several variables, including the total number of entries, time spent in open and closed arms,
were analyzed.

2.6. Mice Organ Coefficient Detection

After completing behavioral tests, the mice were weighted and then euthanized for
organ dissection. The brain, heart, liver, kidney and lungs were excised and weighed
after, excluding the adipose tissue, to calculate organ coefficients. Organ coefficients were
calculated as the ratio of organ wet weight to body weight.

2.7. Statistical Analysis

All data from this study were analyzed using one-way ANOVA. Following significant
ANOVA, for further comparison, multiple post hoc comparisons were carried out using
Least Significant Difference (LSD) test (p < 0.05). The results were reported as mean ± stan-
dard error of the mean (S.E.M), with p < 0.05 denoting statistical significance. Analysis was
performed using IBM SPSS Statistics 22, and all graphics were created using the GraphPad
Prism 8.0.

3. Results
3.1. Exposure to PQ Has No Impact on Body Weight and Organ Coefficients in Aged Mice

To investigate the systemic toxic effects of PQ in mice, body weight and organ coeffi-
cients were detected in our two models. No significant differences were observed in body
weight and organ coefficients of brain, heart, liver, kidney and lung between NS and PQ
groups, in either male or female mice (Figure S1), suggesting that the dose of 0.8 mg/kg
PQ exposure did not result in systemic toxicity. In the re-challenge model of mice, no
significant differences were observed in body weight and organ coefficients of the brain,



Toxics 2023, 11, 842 5 of 14

heart, kidney and lung, despite some fluctuations in liver coefficients (Figure S1). Overall,
exposure to PQ in this study did not result in systemic toxicity in C57BL/6 mice.

3.2. Exposure to PQ during Early Life Elicits Sex-Specific Abnormal Non-Motor Neurobehavior in
Aged Mice

To investigate gender differences in early-life exposure to PQ, we conducted a batch
of behavioral experiments on aged male and female mice, following 15 consecutive days of
exposure to 0.8 mg/kg PQ during the PN period.

The Y-maze test was carried out to determine the impact of PQ on the development
of spatial working memory. Significant statistical differences were observed in actual
alternation ratios (p < 0.001, Figure 2A), and maximum alternations (p < 0.05, Figure 2B) in
male mice between NS and PQ groups, exhibiting a reduction in actual alternation and an
increase in maximum alternations; however, these differences were not observed in female
mice (Figure 2A,B). In the PQ exposure groups, the maximum alternations in male mice
were significantly increased compared to female mice (p < 0.001, Figure 2B). These data
indicate that exposure to 0.8 mg/kg PQ at early life stage (PN day 5–19) impacts short-term
memory in late-life male mice, but not in female mice.
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Figure 2. Early-life PQ exposure induced gender-specific abnormal non-motor behavior in aged
mice among NS and PQ groups. In Y-maze test (n = 8–14 mice/group, A,B), locomotor activ-
ity was measured by collecting the ratio of actual alternation (A) and the number of maximum
alternations (B), which determine the spatial working memory of mice. In passive avoidance
tests (n = 15–23 mice/group, C–E), the test latency (C), train latency (D) and increased latency (E)
were observed to evaluate the cognitive behavior of mice. In terms of elevated plus maze test
(n = 8–15 mice/group, F–I), closed arm entries (F), open arm entries (H) and the time spent in open (I)
or closed arm (G) were recorded, respectively, to assess the anxiety levels of mice. Data are presented
as mean ± SEM. * p < 0.05, *** p < 0.001 compared between treatment groups. # p < 0.05, ### p < 0.001
compared between sexual groups. ns, no statistically significant (p > 0.05).

The passive avoidance tests were administered to evaluate the impact of PQ on
cognitive behavior. As the results show, significant differences were observed in male
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mice between NS and PQ groups (p < 0.05, Figure 2C; p < 0.001, Figure 2D,E). The test
latency and train latency were comparable between female mice in NS and PQ groups
(Figure 2C,D), with significant differences observed in the increased latency time (p < 0.05,
Figure 2E). In the exposure groups, the test latency and train latency in male mice were
decreased compared to female mice (p < 0.05). Overall, exposure to PQ during early life
stage had less effect on the cognitive behavior of aged female mice.

The elevated plus maze test was conducted to examine the influence of PQ exposure
on the anxiety of mice. However, we did not find any significant differences among all the
groups (Figure 2F–I). Both NS and PQ groups, and male and female groups, had similar
open/closed arm entries (Figure 2F,H) as well as similar times spent in open and closed arm
(Figure 2G,I), suggesting that PQ exposure during early life stage did not cause excessive
anxiety in aged male and female mice.

3.3. Re-Exposure to PQ at Adulthood after PN Exposure Aggravated Spatial Working Memory
Impairment in Aged Male Mice

The Y-maze task is a widely used test to assess spatial recognition memory in rodents
by allowing for continuous spontaneous alternation [31]. Significant statistical discrepancies
were observed between NS + NS group and other exposure groups. To detail, NS + PQ,
PQ + NS and PQ + PQ mice exhibited a decrease in maximum alternations (all p < 0.05,
Figure 3A) and an increase in actual alternation ratios (all p < 0.001, Figure 3B) when
compared to NS + NS group, suggesting the impairment of spatial working memory
induced by PQ exposure whether in early life stage or adulthood. Remarkably, the PQ + PQ
group showed a reduction compared to NS + PQ and PQ + NS groups (p < 0.05, Figure 3B),
which emphasized an increased risk of re-exposure to PQ on neurobehavior disorder. These
results suggest that PQ exposure at different stages of life impairs spatial working memory
in late-life male mice, with a greater impact seen in those exposed to PQ repeatedly during
both PN period (0.8 mg/kg PQ, PN days 5–19) and adulthood (10 mg/kg PQ, 8 months).
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Figure 3. PQ exposure in different life stages impaired spontaneous alternation in aged male mice in
the Y-maze test. The number of maximum alternations (A) and the ratio of actual alternation (B) in
the maze were reported, which indicate the spatial working memory of mice. Data are presented as
mean ± SEM. n = 7–15 mice/group. * p < 0.05; *** p < 0.001.

3.4. Re-Exposure to PQ at Adulthood after PN Exposure Results in Progressive Cognitive
Impairments in Aged Male Mice

The passive avoidance task was considered a representative approach to evaluating
cognitive behavior in mice (such as short-term reference memory), with a well-established
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experimental procedure [32]. Here, we performed a passive avoidance task on mice to
assess the impact of PQ re-exposure on short-term cognition and memory. The cognitive
ability was evaluated through latency, which involves both training and testing at 24 h
intervals. In this way, we observed notable differences between PQ-treated groups and
control group. Overall, compared to NS + NS group, the latency period was significantly
reduced in NS + PQ (p < 0.05), PQ + NS (p < 0.001) and PQ + PQ (p < 0.05) groups
(Figure 4A). Still, no significant differences were noticed between the groups with different
PQ treatments. Additionally, an increased latency time was shown to be statistically
different between NS + NS group and NS + PQ, PQ + NS, PQ + PQ groups (all p < 0.001,
Figure 4B). Although there was a decreasing trend in the three PQ-treated groups, the
differences were not statistically significant. These findings indicate that male mice treated
with PQ at different stages of life (0.8 mg/kg PQ at PN days 5–19 or 10 mg/kg PQ at
8 months) exhibited deficiencies at a late life stage in passive avoidance tasks.
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Figure 4. PQ exposure at different life stages induced cognitive deficit in aged male mice in the
passive avoidance tests. Test latency (A) and increased latency time (B) were detected in this
experiment, suggesting short-term cognition and memory. Data are presented as mean ± SEM.
n = 15–23 mice/group. * p < 0.05; *** p < 0.001.

3.5. Re-Exposure to PQ at Adulthood after PN Exposure Exacerbated Anxiety in Aged Mice

To evaluate the impact of PQ exposure and re-exposure on emotional response, we
conducted the elevated plus maze test [33] to explore the anxiety level of mice, which is
determined by the number of entries and the time spent in open or closed arms. As shown,
PQ + PQ group exhibited a significant reduction in the number of open arm entries and
time spent in the open arm (Figure 5A,B), and an increase in the time spent in the closed
arm (p < 0.05, Figure 5D), compared to NS + NS group and NS + PQ group, suggesting an
elevated anxiety level in mice who were re-exposed to PQ at adulthood after PN period
exposure. Moreover, although PQ + NS group exhibited a decrease in the number of open
arm entries compared to PQ + PQ group (p < 0.05, Figure 5A), no statistical differences were
observed in other parameters (Figure 5B–D). Thus, we concluded that a single exposure
to PQ during early life stage does not affect the emotional adaptability of adult mice, but
increases their susceptibility to anxiety upon re-exposure to PQ during adulthood. In
general, re-exposure to PQ at adult stages (10 mg/kg PQ at 8 months) after PN period
exposure (0.8 mg/kg PQ at PN days 5–19) exacerbated anxiety levels in late-life male mice.
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Figure 5. PQ exposure at different life stages induced anxiety in aged male mice in the elevated plus
maze tests. The number of entries into the open arm (A) or closed arm (C) and the time spent in the
open arm (B) or closed arm (D) were reported in this experiment, which indicated the anxiety level
of mice. Results are presented as mean ± SEM. n = 8–17 mice/group. * p < 0.05; *** p < 0.001.

4. Discussion

In this study, two models of PQ exposure in mice are presented here. In the first model,
male and female pups were exposed to normal saline and PQ (0.8 mg/kg) during the PN
period. The results reveal sex-specific differences: male mice exposed to PQ exhibited
abnormal non-motor neurobehavior, while female mice did not. To further investigate the
effects of early-life PQ exposure on non-motor neurobehavior in a late life stage, the second
model (re-challenge model), in which male mice were exposed to saline or PQ during
early life (PN days 5–19) or adulthood (8 months), respectively, was established. The data
show that male mice exposed to PQ resulted in the impairment of cognitive behavior and
spatial working memory whether during PN period or adulthood. Remarkedly, greater
impairments were observed on these non-motor neurobehaviors in mice’s re-exposure
to PQ. In addition, anxiety levels were significantly increased only in mice that were
re-exposed to PQ. Collectively, these results suggest that PQ exposure at early life stage
can produce progressive and irreversible non-motor neurobehavioral impairments, and
enhance susceptibility to subsequent PQ insults.

PQ is a non-selective herbicide that can contaminate the environment, leading to
human exposure through ingestion of contaminated food and water, inhalation and dermal
contact [34,35]. Taking into account the high levels of circulating PQ (~4.8 µg/mL) linked
to survival in cases of human poisoning [36], as well as the oral LD50 of 150 mg/kg body
weight in rats, together with the pretest, we administered a low dose of PQ (0.8 mg/kg) to
young male and female mice aged PN 5–19. To further investigate the effects of re-challenge
during adulthood, a relatively high dose of 10 mg/kg of PQ was chosen, and this particular
concentration was reported to promote the loss of midbrain dopaminergic neurons [1],
which is reminiscent of what occurs in PD. Based on the results of body weight and organ
coefficients, we can conclude that the concentration of 0.8 mg/kg PQ in early life stage did
not produce systemic toxicity.

It is now widely acknowledged that PD is characterized not only by motor symptoms,
but also by various non-motor symptoms, including anxiety and depression. Non-motor
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symptoms have a greater impact on health-related quality of life than motor abnormal-
ities [37,38]. Furthermore, PD is a neurodegenerative condition that typically onsets in
late life stage, with morbidity potentially linked to earlier life insults. In daily life, diag-
nosing PD can be challenging, and determining the span of exposure is difficult [39]. In
this study, we administered PQ at different life stages in mice, particularly during early
life stage, and observed the effect on aged male and female C57BL/6 mice. During the
development period, PQ exposure greatly influenced cognition and working memory
in male mice, but not in female mice, which aligns with prior studies that reported that
gender differences play a role in PQ tolerance. In detail, the genetic architecture for PQ
susceptibility in Drosophila appears to be related to gender differences, with more than
90% of the associated genes being sex-specific [40]. In T. californicus, males and females
exhibited different transcriptional profiles to PQ, where males expressed over four times
as many genes in response to exposure, including heat shock proteins, antioxidant genes
and protease genes [41]. Additionally, previous evidence suggests that female gonadal
steroids, particularly estrogens, possess potent anti-inflammatory [42,43] and neuropro-
tective effects, and also reduce the cortical infarction volume in stroke rodent models [44].
In addition, estrogens were able to effectively reduce the risk of developing AD or delay
onset in a population study [20]. To rule out the influence of these hormones, we chose to
expose rodents to PQ during early postnatal stage, before the reproductive system fully
develops. Nevertheless, our data still reveal that male mice were more vulnerable than
females to the non-motor neurobehavioral dysfunction induced by PQ, suggesting that
there may be additional underlying mechanisms that play roles in the gender differences
in neurobehavioral abnormalities induced by PQ beyond hormonal protective factors,
which is consistent with the findings of Quinn et al. [45], who discovered that whether the
gonads are present or not, female mice (sex chromosome XX) showed faster food reinforced
instrumental habit formation than male mice (sex chromosome XY), and more research
needs to be carried out on the underlying mechanism. Furthermore, dysregulation of the
nigrostriatal DA system induces non-motor neurobehavior and emotional changes, such
as anxiety and depression. Depression and anxiety are prevalent behavioral symptoms
of PD, with an estimated prevalence of 40%, and both symptoms typically coexist [38,46].
However, research investigating the non-motor neurobehaviors of PD remains limited.
Therefore, pesticide-based PD models might constitute a more reliable system to examine
various aspects of PD [47].

A number of studies have demonstrated that neurodegeneration is associated with
senescence and neurogenic dysfunction caused by neurotoxic agents [48]. PQ can generate
large amounts of reactive oxygen species (ROS) and selectively eradicate dopaminergic
neurons in the substantia nigra [3,49]. Interestingly, a significant loss of dopaminergic
cells appears to require repeated exposures within a relatively short time period—which
is consistent with a “two-hit” hypothesis. Based on the “two-hit” hypothesis, the initial
exposure may sensitize the system to subsequent exposure by activating microglia cells [50].
The neurotoxicity caused by PQ exposure in early life stage can be counteracted by the
repair of the nervous system. However, it may also enhance susceptibility to neurotoxicants
in later life stage, leading to the occurrence of neurodegenerative diseases. The animals were
more susceptible to neuronal damage when re-exposed to PQ at adulthood, accompanied
by impaired motor function [17]. This phenomenon indicates the occurrence of “silent
neurotoxicity”, which was firstly introduced by Reuhl [51], as a proposed mechanism for
adult-onset disease with potential developmental origins. This concept was hypothesized
to be responsible for increases in adult susceptibility to environmental factors, and was
proven to be associated with the occurrence of neurodegenerative diseases [52,53]. A
multiple-hit hypothesis concerning the impact of multiple risk factors on the brain may
be further considered, as it could also play a fundamental role in neurotoxicity [54,55].
The theory postulates that insults to different target sites within a particular brain system,
whether occurring concurrently or cumulatively, can compromise homeostatic and repair
capacities of the system, and thereby increase its vulnerability. Similarly, our findings show
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that developmental exposure to PQ can render neurotoxicity, such as cognition and working
memory impairments, and heighten susceptibility to a following adult re-challenge with
the same toxicant, while the specific mechanism remains to be further studied and clarified.
These findings provide new insights for assessing cumulative toxicity and repeated insults.

The developmental period is a critical phase for central nervous system maturation,
where individuals are highly susceptible to environmental factors, which have been im-
plicated in the pathogenesis of PD, AD or other neurodegeneration diseases [17,56,57].
Studies have shown that PQ is capable of penetrating the blood–brain barrier of rodents
and damage nigrostriatal dopaminergic neurons [3,8], which are crucial for maintaining
normal non-motor neurobehavior. The underlying mechanism may be related to the trans-
portation of microglia, which can uptake PQ into dopaminergic neurons. This process
involves the reduction of PQ2+ to PQ+ by enzymes (like NOX on microglia) so as to enter
the dopamine transporter (DAT) [3,58]. Once crossing the blood–brain barrier, PQ can enter
the neutral amino acid transport system and be transferred to nerve cells in the form of Na+

dependence and persist in the mouse brain, with an apparent half-life of approximately
4 weeks [1]. Widdowson reported that the concentration of PQ in the brains of newborn
mice was significantly higher than that of adult and elderly mice when administered with
PQ at different life stages simultaneously [59], suggesting that PQ impairs the integrity
of the blood–brain barrier in newborn mice. To further investigate the potential impact
of developmental insults on Parkinson-like symptoms, we utilized male mice to establish
another PQ exposure model for the following experiments: Male mice were divided ran-
domly into four groups, in which they were exposed to PQ during different life stages, and
the behavioral outcomes were investigated. As PD typically manifests late in life, we raised
mice to old age to explore the non-motor neurobehavior. Compared to saline-treated group,
three PQ-treated groups showed impairments in cognitive behavior and working memory.
Notably, mice that were re-exposed to PQ during adulthood following exposure during the
PN period displayed severe anxiety and deficits in working memory. Despite the absence
of statistically significant differences, a changing trend was observed between PQ + NS
and NS + PQ groups. Recent studies have reported that exposure to PQ during the critical
period of rapid brain development such as fetal or neonatal periods may lead to structural
and functional abnormalities of the central nervous system and impact neurological behav-
ior in adulthood, and further increase the risk of developing PD later in life [15,17], which
is in accordance with our findings. All these data suggest that early-life exposure to PQ can
lead to progressive and permanent neurotoxicity and increases susceptibility to subsequent
re-exposure in adulthood with the same toxicant.

Since significant results have yet to be observed in the effects of single pesticide
exposure, combined exposure models were adopted in many experiments. In a study
conducted by Dirleise Colle, male Swiss mice were exposed to a combination of 0.3 mg/kg
PQ and 1.0 mg/kg MB from postnatal days 5 to 19, and a parallel group was re-challenged
at 3 months of age with 10 mg/kg PQ and 30 mg/kg MB. Their motor function was
evaluated at the postnatal day 138, revealing significant deleterious consequences from
early-life exposure that persisted until adulthood [17]. In another developmental model of
pesticide exposure [18], pregnant mice were exposed to MB (1.0 mg/kg) during gestational
days 10–17, which increased their vulnerability to a re-challenge with PQ (5.0 mg/kg) at the
age of 7–8 weeks. Although most experiments were conducted with youth or middle-aged
mice, we aged the mice to simulate a PD model since PD typically onsets in a late life
stage. Our findings suggest that insults occurring early in development can have long-
term and delayed consequences for the DA system [17], highlighting the importance of
including childhood pesticide exposure in epidemiologic studies and further evaluation in
experimental models.

Although studies have indicated that PQ may play a role in the pathogenesis of PD,
there is currently no research on the relationship between PQ exposure and non-motor
neurobehavior, one of the typical manifestations of PD. This is the first study that focuses
on the impairment of non-motor neurobehavior induced by PQ exposed at different life
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stages in mice using two exposure models. In this study, early-life exposure to PQ resulted
in non-motor neurobehavior symptoms in late-life male mice, but not in female mice,
exhibiting a sex-specific impairment. Notably, re-challenge with PQ at adulthood following
early-life exposure exacerbated non-motor neurobehavior disorders and anxiety in aged
male mice. Our study provides evidence for assessing the potential risks of PQ exposure at
different life stages, especially at childhood, as well as re-exposure at adulthood.

Several limitations need to be mentioned in this study. Firstly, the exposure conditions
are relatively restricted. While we made an effort to simulate potential exposure scenarios, it
was difficult to recreate the multi-, complex exposure environments that humans encounter,
whether in terms of the variety of chemical exposures or the exposure doses of PQ. Secondly,
we merely focused on the neurobehavioral effects on individuals; however, multiple
perspectives at the molecular or cellular level need to be explored to gain insight into the
underlying mechanisms. Last but not least, the phenomena we observed in rodents cannot
be extrapolated directly to humans due to species differences.

5. Conclusions

This study demonstrated that PQ exposure induced sex-specific and progressive
abnormal non-motor neurobehavior in aged C57BL/6 mice, among whom young mice
were found to be more susceptible to PQ exposure than adults. Furthermore, early-life
exposure to PQ increased vulnerability to subsequent insults in male mice compared
to female mice—this finding was obtained from the results of the Y-maze and passive
avoidance tests.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/toxics11100842/s1, Figure S1: Effects of PQ exposure on
body weight and organ coefficients in mice.
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