Association of Urinary Benzene Metabolite and the Ratio of Triglycerides to High-Density Lipoprotein Cholesterol: A Cross-Sectional Study Using the Korean National Environmental Health Survey (2018–2020)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Case Ascertainment
2.3. Assessment of Serum Lipid Profiles
2.4. Measurement of Urinary Metabolites
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agency for Toxic Substances and Disease Registry (ASTDR). Toxicological Profile for Benzene; U.S. Department of Health and Human Services, Public Health Service: Washington, DC, USA, 2007.
- International Agency for Research on Cancer (IARC). Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC Publications: Lyon, France, 1999; Volume 71. [Google Scholar]
- Snyder, R.; Witz, G.; Goldstein, B.D. The toxicology of benzene. Environ. Health Perspect. 1993, 100, 293–306. [Google Scholar] [CrossRef]
- Weisel, C.P. Benzene exposure: An overview of monitoring methods and their findings. Chem. Biol. Interact. 2010, 184, 58–66. [Google Scholar] [CrossRef]
- Vitale, C.M.; Gutovitz, S. Aromatic Toxicity; StatPearls Publishing LLC: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Galbraith, D.; Gross, S.A.; Paustenbach, D. Benzene and human health: A historical review and appraisal of associations with various diseases. Crit. Rev. Toxicol. 2010, 40 (Suppl. S2), 1–46. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ASTDR). Toxicological Profile for Toluene; U.S. Department of Health and Human Services, Public Health Service: Washington, DC, USA, 2017.
- International Agency for Research on Cancer (IARC). OveraIl Evaluations of Carcinogenicity: An Updating of IARC Monographs Volumes 1 to 42; IARC Publications: Lyon, France, 1987; pp. 1–440. [Google Scholar]
- Compendium of Chemical Hazards: Toluene; Public Health England: London, UK, 2015.
- United Nations Environment Programme (UNEP); World Health Organization (WHO); International Labour Organization (ILO). Toluene—Environmental Health Criteria 52; UNEP: Nairobi, Kenya; WHO: Geneva, Switzerland; ILO: Geneva, Switzerland, 1985.
- Laws, A.; Reaven, G.M. Evidence for an independent relationship between insulin resistance and fasting plasma HDL-cholesterol, triglyceride and insulin concentrations. J. Intern. Med. 1992, 231, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Laws, A.; King, A.C.; Haskell, W.L.; Reaven, G.M. Relation of fasting plasma insulin concentration to high density lipoprotein cholesterol and triglyceride concentrations in men. Arterioscler. Thromb. 1991, 11, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Reiner, Z. Managing the residual cardiovascular disease risk associated with HDL-cholesterol and triglycerides in statin-treated patients: A clinical update. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Iwani, N.A.; Jalaludin, M.Y.; Zin, R.M.; Fuziah, M.Z.; Hong, J.Y.; Abqariyah, Y.; Mokhtar, A.H.; Wan Nazaimoon, W.M. Triglyceride to HDL-C Ratio is Associated with Insulin Resistance in Overweight and Obese Children. Sci. Rep. 2017, 7, 40055. [Google Scholar] [CrossRef] [PubMed]
- Murguía-Romero, M.; Jiménez-Flores, J.R.; Sigrist-Flores, S.C.; Espinoza-Camacho, M.A.; Jiménez-Morales, M.; Piña, E.; Méndez-Cruz, A.R.; Villalobos-Molina, R.; Reaven, G.M. Plasma triglyceride/HDL-cholesterol ratio, insulin resistance, and cardiometabolic risk in young adults. J. Lipid Res. 2013, 54, 2795–2799. [Google Scholar] [CrossRef] [PubMed]
- González-Chávez, A.; Simental-Mendía, L.E.; Elizondo-Argueta, S. Elevated triglycerides/HDL-cholesterol ratio associated with insulin resistance. Cir. Cir. 2011, 79, 126–131. [Google Scholar] [PubMed]
- Azarpazhooh, M.R.; Najafi, F.; Darbandi, M.; Kiarasi, S.; Oduyemi, T.; Spence, J.D. Triglyceride/High-Density Lipoprotein Cholesterol Ratio: A Clue to Metabolic Syndrome, Insulin Resistance, and Severe Atherosclerosis. Lipids 2021, 56, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Gaziano, J.M.; Hennekens, C.H.; O’Donnell, C.J.; Breslow, J.L.; Buring, J.E. Fasting triglycerides, high-density lipoprotein, and risk of myocardial infarction. Circulation 1997, 96, 2520–2525. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, J.; Hein, H.O.; Suadicani, P.; Gyntelberg, F. Relation of high TG-low HDL cholesterol and LDL cholesterol to the incidence of ischemic heart disease. An 8-year follow-up in the Copenhagen Male Study. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Kim, J.H.; Lee, B.E.; Hong, Y.C. Urinary benzene metabolite and insulin resistance in elderly adults. Sci. Total Environ. 2014, 482–483, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.M.; Rafiei, N.; Poursafa, P.; Ebrahimpour, K.; Mozafarian, N.; Shoshtari-Yeganeh, B.; Hashemi, M.; Kelishadi, R. Association of benzene exposure with insulin resistance, SOD, and MDA as markers of oxidative stress in children and adolescents. Environ. Sci. Pollut. Res. Int. 2018, 25, 34046–34052. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Park, H.; Kim, M.J.; Kim, S.; Choi, S.; Park, J.; Cho, Y.H.; Hong, S.; Yoo, J.; Cheon, G.J.; et al. Exposure to polycyclic aromatic hydrocarbons and volatile organic compounds is associated with a risk of obesity and diabetes mellitus among Korean adults: Korean National Environmental Health Survey (KoNEHS) 2015–2017. Int. J. Hyg. Environ. Health 2022, 240, 113886. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.H.; Nam, D.J.; Lee, H.C.; Shin, S.S.; Ryoo, J.H. Association between urinary trans,trans-muconic acid and diabetes: A cross-sectional analysis of data from Korean National Environmental Health Survey (KoNEHS) cycle 3 (2015-2017). Ann. Occup. Environ. Med. 2021, 33, e35. [Google Scholar] [CrossRef]
- Inoue, O.; Seiji, K.; Nakatsuka, H.; Watanabe, T.; Yin, S.N.; Li, G.L.; Cai, S.X.; Jin, C.; Ikeda, M. Urinary t,t-muconic acid as an indicator of exposure to benzene. Br. J. Ind. Med. 1989, 46, 122–127. [Google Scholar] [CrossRef]
- Barreto, G.; Madureira, D.; Capani, F.; Aon-Bertolino, L.; Saraceno, E.; Alvarez-Giraldez, L.D. The role of catechols and free radicals in benzene toxicity: An oxidative DNA damage pathway. Environ. Mol. Mutagen. 2009, 50, 771–780. [Google Scholar] [CrossRef]
- Shen, Y.; Shen, H.M.; Shi, C.Y.; Ong, C.N. Benzene metabolites enhance reactive oxygen species generation in HL60 human leukemia cells. Hum. Exp. Toxicol. 1996, 15, 422–427. [Google Scholar] [CrossRef]
- Hiraku, Y.; Kawanishi, S. Oxidative DNA damage and apoptosis induced by benzene metabolites. Cancer Res. 1996, 56, 5172–5178. [Google Scholar]
- Maritim, A.C.; Sanders, R.A.; Watkins, J.B., 3rd. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 2003, 17, 24–38. [Google Scholar] [CrossRef]
- Schulz, E.; Gori, T.; Münzel, T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens. Res. 2011, 34, 665–673. [Google Scholar] [CrossRef]
- Sugamura, K.; Keaney, J.F., Jr. Reactive oxygen species in cardiovascular disease. Free Radic. Biol. Med. 2011, 51, 978–992. [Google Scholar] [CrossRef]
- Shin, S.S.; Yang, E.H.; Lee, H.C.; Moon, S.H.; Ryoo, J.H. Association of metabolites of benzene and toluene with lipid profiles in Korean adults: Korean National Environmental Health Survey (2015–2017). BMC Public Health 2022, 22, 1917. [Google Scholar] [CrossRef] [PubMed]
- The 4th Korean National Environmental Health Survey. Manual for Analysis of Laboratory Test in Biological Samples; National Institute of Environmental Research (NIER): Incheon, Republic of Korea, 2022. (In Korean)
- The 4th Korean National Environmental Health Survey. Manual for Clinical Examination; National Institute of Environmental Research (NIER): Incheon, Republic of Korea, 2022. (In Korean)
- The 4th Korean National Environmental Health Survey. Manual for Analysis of Environmental Pollutants in Biological Samples (Organic Chemicals); National Institute of Environmental Research (NIER): Incheon, Republic of Korea, 2022. (In Korean)
- Lee, I.; Park, Y.J.; Kim, M.J.; Kim, S.; Choi, S.; Park, J.; Cho, Y.H.; Hong, S.; Yoo, J.; Park, H.; et al. Associations of urinary concentrations of phthalate metabolites, bisphenol A, and parabens with obesity and diabetes mellitus in a Korean adult population: Korean National Environmental Health Survey (KoNEHS) 2015–2017. Environ. Int. 2021, 146, 106227. [Google Scholar] [CrossRef]
- Abplanalp, W.; DeJarnett, N.; Riggs, D.W.; Conklin, D.J.; McCracken, J.P.; Srivastava, S.; Xie, Z.; Rai, S.; Bhatnagar, A.; O’Toole, T.E. Benzene exposure is associated with cardiovascular disease risk. PLoS ONE 2017, 12, e0183602. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Biomonitoring Data Tables for Environmental Chemicals. Available online: https://www.cdc.gov/exposurereport/data_tables.html?NER_SectionItem=NHANES (accessed on 1 November 2023).
- Health Canada. Fourth Report on Human Biomonitoring of Environmental Chemicals in Canada; Health Canada: Ottawa, ON, Canada, 2017.
- Kwon, Y.M.; Joo, Y.; Park, C.-H.; Kim, S.Y.; Choi, K.; Lee, C.; Yu, S.D.; Yoo, J. Exposure Levels and Influence Factors of PAHs and Benzene Metabolites in the Urine of the General Korean Adult Population -Korean National Environmental Health Survey (2009–2017). J. Environ. Health Sci. 2019, 45, 529–540. [Google Scholar]
- Korea Occupational Safety; Health Agency (KOSHA). Improved Guidelines for Health Assessment of Workers—Biological Exposure Criteria—Hazardous Substances; KOSHA: Ulsan, Republic of Korea, 2018. (In Korean) [Google Scholar]
- Lauwerys, R.R.; Buchet, J.P.; Andrien, F. Muconic acid in urine: A reliable indicator of occupational exposure to benzene. Am. J. Ind. Med. 1994, 25, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.L.; New, A.L.; Kok, P.W.; Ong, H.Y.; Shi, C.Y.; Ong, C.N. Urinary trans,trans-muconic acid determined by liquid chromatography: Application in biological monitoring of benzene exposure. Clin. Chem. 1993, 39, 1788–1792. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.N.; Lee, B.L.; Shi, C.Y.; Ong, H.Y.; Lee, H.P. Elevated levels of benzene-related compounds in the urine of cigarette smokers. Int. J. Cancer 1994, 59, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-M.; Eom, S.-Y.; Yim, D.-H.; Moon, S.-I.; Kim, Y.-D.; Kim, H. Urinary Hippuric Acid and trans,trans-Muconic Acid Levels According to Commuting Mode and Duration, Residential Environment, and Intake of Preservative-Added Foods and Beverages in University Students. Korean J. Occup. Environ. Med. 2012, 24, 61–71. [Google Scholar] [CrossRef]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004, 114, 1752–1761. [Google Scholar] [CrossRef] [PubMed]
- Houstis, N.; Rosen, E.D.; Lander, E.S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006, 440, 944–948. [Google Scholar] [CrossRef]
- Ginsberg, H.N. Insulin resistance and cardiovascular disease. J. Clin. Investig. 2000, 106, 453–458. [Google Scholar] [CrossRef]
- National Industrial Chemicals Notification Assessment Scheme (NICNAS). Benzene, Priority Existing Chemical Assessment Report No. 21. 2001. Available online: https://www.industrialchemicals.gov.au/sites/default/files/PEC21-Benzene.pdf (accessed on 1 November 2023).
- Thangaraj, S.V.; Kachman, M.; Halloran, K.M.; Sinclair, K.D.; Lea, R.; Bellingham, M.; Evans, N.P.; Padmanabhan, V. Developmental programming: Preconceptional and gestational exposure of sheep to a real-life environmental chemical mixture alters maternal metabolome in a fetal sex-specific manner. Sci. Total Environ. 2023, 864, 161054. [Google Scholar] [CrossRef]
Overall (n = 1928) | TG/HDL-C Index | |||||
---|---|---|---|---|---|---|
Quartile 1 (0.36–1.47) (n = 482) | Quartile 2 (1.48–2.46) (n = 482) | Quartile 3 (2.47–4.4) (n = 482) | Quartile 4 (4.41–39.38) (n = 482) | p | ||
Age, mean ± SE, years | 47.1 ± 0.6 | 43.5 ± 0.6 | 47.8 ± 0.7 | 48.8 ± 0.6 | 48.4 ± 0.6 | <0.001 |
Sex | ||||||
Men, n (%) | 803 (41.6) | 109 (22.6) | 175 (36.3) | 229 (47.5) | 290 (60.2) | <0.001 |
Women, n (%) | 1125 (58.4) | 373 (77.4) | 307 (63.7) | 253 (52.5) | 192 (39.8) | |
BMI, mean ± SE, kg/m2 | 24.5 ± 0.1 | 22.6 ± 0.1 | 23.9 ± 0.1 | 25.2 ± 0.2 | 26.3 ± 0.2 | <0.001 |
Normal weight, n (%) | 677 (35.1) | 283 (58.7) | 194 (40.2) | 129 (26.8) | 71 (14.7) | <0.001 |
Overweight, n (%) | 456 (23.7) | 102 (21.2) | 124 (25.7) | 114 (23.7) | 116 (24.1) | |
Obese, n (%) | 795 (41.2) | 97 (20.1) | 164 (34) | 239 (49.6) | 295 (61.2) | |
Alcohol consumption in the past year | ||||||
Nondrinkers, n (%) | 505 (26.2) | 119 (24.7) | 132 (27.4) | 128 (26.6) | 126 (26.1) | 0.40 |
<1 drink/month, n (%) | 322 (16.7) | 83 (17.2) | 64 (13.3) | 98 (20.3) | 77 (16) | |
1 to 2 drinks/month, n (%) | 371 (19.2) | 90 (18.7) | 104 (21.6) | 90 (18.7) | 87 (18) | |
1 to 2 drinks/week, n (%) | 433 (22.5) | 114 (23.7) | 110 (22.8) | 102 (21.2) | 107 (22.2) | |
≥3 drinks/week, n (%) | 207 (10.7) | 57 (11.8) | 49 (10.2) | 46 (9.5) | 55 (11.4) | |
daily intake (%) | 90 (4.7) | 19 (3.9) | 23 (4.8) | 18 (3.7) | 30 (6.2) | |
Smoking status | ||||||
Never smokers, n (%) | 1309 (67.9) | 391 (81.1) | 343 (71.2) | 317 (65.8) | 258 (53.5) | <0.001 |
Past smokers, n (%) | 311 (16.1) | 42 (8.7) | 86 (17.8) | 85 (17.6) | 98 (20.3) | |
Current smokers, n (%) | 308 (16) | 49 (10.2) | 53 (11) | 80 (16.6) | 126 (26.1) | |
Menopausal status (for women) | ||||||
Premenopausal, n (%) | 659 (58.6) | 279 (74.8) | 179 (58.3) | 125 (49.4) | 76 (39.6) | <0.001 |
Postmenopausal, n (%) | 466 (41.4) | 94 (25.2) | 128 (41.7) | 128 (50.6) | 116 (60.4) | |
Urinary t,t-MA concentration, mean ± SE, μg/L | 92.3 ± 3 | 89 ± 6.8 | 86.8 ± 5.4 | 90.3 ± 5.3 | 103.1 ± 6.5 | 0.003 |
Urinary BMA concentration, mean ± SE, μg/L | 7.5 ± 0.4 | 6.5 ± 0.5 | 6.4 ± 0.4 | 7.7 ± 0.7 | 9.5 ± 1.4 | 0.14 |
GM (95% CI) | Min | 10% | 25th | Median | 75th | 90% | Max | ||
---|---|---|---|---|---|---|---|---|---|
t,t-MA (μg/L) | |||||||||
Overall | 53.2 (50.8, 55.71) | 1.63 | 14.49 | 26.86 | 49.40 | 108.24 | 208.50 | 1945.96 | |
Men | 63.66 (59.39, 68.24) | 2.62 | 18.57 | 31.52 | 62.64 | 130.55 | 232.88 | 1619.97 | |
Women | 46.81 (44.06, 49.73) | 1.63 | 12.93 | 23.55 | 44.44 | 92.36 | 177.91 | 1945.96 | |
BMA (μg/L) | |||||||||
Overall | 3.95 (3.77, 4.14) | 0.10 | 1.14 | 2.14 | 4.01 | 7.44 | 13.60 | 467.15 | |
Men | 4.15 (3.87, 4.46) | 0.10 | 1.22 | 2.33 | 4.13 | 7.24 | 13.40 | 279.98 | |
Women | 3.81 (3.57, 4.06) | 0.10 | 1.08 | 2.02 | 3.95 | 7.49 | 13.80 | 467.15 |
Overall | Men | Women | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t,t-MA (μg/L) | Cases/total | OR (95% CI) a | OR (95% CI) b | OR (95% CI) c | Cases/total | OR (95% CI) a | OR (95% CI) b | OR (95% CI) c | Cases/total | OR (95% CI) a | OR (95% CI) b | OR (95% CI) c | |
ATP III | |||||||||||||
Continuous | 696/1928 | 1.44 (1.22, 1.71) | 1.34 (1.10, 1.62) | 1.34 (1.11, 1.62) | 354/803 | 1.53 (1.23, 1.89) | 1.45 (1.09, 1.93) | 1.46 (1.11, 1.91) | 342/1125 | 1.20 (0.96, 1.49) | 1.21 (0.97, 1.52) | 1.21 (0.97, 1.52) | |
Quartile 1 | 127/482 | Reference | Reference | Reference | 42/143 | Reference | Reference | Reference | 85/339 | Reference | Reference | Reference | |
Quartile 2 | 179/482 | 1.63 (1.18, 2.24) | 1.51 (1.04, 2.19) | 1.51 (1.04, 2.19) | 78/179 | 1.62 (0.93, 2.83) | 1.67 (0.92, 3.03) | 1.66 (0.91, 3.04) | 101/303 | 1.53 (0.99, 2.35) | 1.42 (0.88, 2.28) | 1.42 (0.89, 2.27) | |
Quartile 3 | 193/482 | 1.94 (1.32, 2.86) | 1.60 (1.06, 2.42) | 1.59 (1.06, 2.40) | 102/215 | 2.05 (1.18, 3.57) | 1.90 (0.94, 3.84) | 1.89 (0.95, 3.77) | 91/267 | 1.61 (0.96, 2.68) | 1.35 (0.84, 2.19) | 1.35 (0.83, 2.18) | |
Quartile 4 | 197/482 | 2.34 (1.57, 3.48) | 1.94 (1.23, 3.06) | 1.95 (1.25, 3.05) | 132/178 | 2.29 (1.43, 3.66) | 2.23 (1.14, 4.33) | 2.22 (1.17, 4.21) | 65/216 | 1.72 (0.95, 3.11) | 1.77 (0.99, 3.19) | 1.79 (1.00, 3.22) | |
p for trend | <0.001 | 0.009 | 0.008 | <0.001 | 0.036 | 0.029 | 0.070 | 0.075 | 0.072 | ||||
AHA | |||||||||||||
Continuous | 1073/1928 | 1.37 (1.14, 1.64) | 1.27 (1.03, 1.55) | 1.27 (1.03, 1.55) | 509/803 | 1.41 (1.04, 1.90) | 1.35 (0.93, 1.95) | 1.35 (0.93, 1.95) | 564/1125 | 1.17 (0.94, 1.44) | 1.19 (0.96, 1.49) | 1.20 (0.96, 1.50) | |
Quartile 1 | 214/482 | Reference | Reference | Reference | 72/143 | Reference | Reference | Reference | 142/339 | Reference | Reference | Reference | |
Quartile 2 | 267/482 | 1.61 (1.09, 2.38) | 1.50 (0.94, 2.42) | 1.51 (0.95, 2.38) | 113/179 | 1.97 (1.03, 3.76) | 2.10 (1.04, 4.21) | 2.10 (1.04, 4.22) | 154/303 | 1.32 (0.82, 2.11) | 1.21 (0.69, 2.13) | 1.21 (0.71, 2.06) | |
Quartile 3 | 300/482 | 2.17 (1.38, 3.40) | 1.86 (1.13, 3.06) | 1.85 (1.13, 3.03) | 146/215 | 2.21 (1.15, 4.27) | 2.13 (0.98, 4.63) | 2.13 (0.98, 4.62) | 154/267 | 1.91 (1.07, 3.42) | 1.68 (0.95, 2.96) | 1.65 (0.94, 2.90) | |
Quartile 4 | 292/482 | 2.27 (1.45, 3.55) | 1.97 (1.18, 3.27) | 1.98 (1.19, 3.27) | 178/178 | 2.31 (1.21, 4.41) | 2.39 (1.05, 5.47) | 2.39 (1.05, 5.45) | 114/216 | 1.65 (0.97, 2.81) | 1.75 (1.00, 3.03) | 1.78 (1.01, 3.11) | |
p for trend | <0.001 | 0.006 | 0.006 | <0.001 | 0.036 | 0.029 | 0.028 | 0.024 | 0.024 | ||||
BMA (μg/L) | Cases/total | OR (95% CI) a | OR (95% CI) b | OR (95% CI) c | Cases/total | OR (95% CI) a | OR (95% CI) b | OR (95% CI) c | Cases/total | OR (95% CI) a | OR (95% CI) b | OR (95% CI) c | |
ATP III | |||||||||||||
Continuous | 696/1928 | 1.19 (0.99, 1.42) | 1.07 (0.88, 1.29) | 1.07 (0.89, 1.29) | 354/803 | 1.04 (0.81, 1.33) | 1.03 (0.81, 1.32) | 1.03 (0.81, 1.32) | 342/1125 | 1.28 (1.01, 1.62) | 1.12 (0.86, 1.45) | 1.12 (0.87, 1.45) | |
Quartile 1 | 148/482 | Reference | Reference | Reference | 71/174 | Reference | Reference | Reference | 77/308 | Reference | Reference | Reference | |
Quartile 2 | 176/482 | 1.30 (0.91, 1.84) | 1.21 (0.83, 1.74) | 1.21 (0.83, 1.74) | 93/210 | 1.13 (0.67, 1.91) | 1.04 (0.61, 1.79) | 1.05 (0.61, 1.80) | 83/272 | 1.35 (0.83, 2.20) | 1.25 (0.74, 2.12) | 1.25 (0.74, 2.13) | |
Quartile 3 | 179/482 | 1.65 (1.10, 2.46) | 1.39 (0.85, 2.26) | 1.39 (0.85, 2.26) | 94/205 | 1.38 (0.74, 2.60) | 1.09 (0.57, 2.09) | 1.09 (0.57, 2.09) | 85/277 | 1.85 (1.16, 2.95) | 1.68 (0.96, 2.96) | 1.69 (0.96, 2.96) | |
Quartile 4 | 193/482 | 1.52 (1.05, 2.22) | 1.19 (0.79, 1.79) | 1.19 (0.79, 1.78) | 96/214 | 1.18 (0.70, 2.00) | 1.10 (0.68, 1.80) | 1.10 (0.68, 1.79) | 97/268 | 1.75 (1.08, 2.82) | 1.29 (0.71, 2.35) | 1.30 (0.73, 2.33) | |
p for trend | 0.018 | 0.357 | 0.355 | 0.445 | 0.677 | 0.683 | 0.009 | 0.249 | 0.234 | ||||
AHA | |||||||||||||
Continuous | 1073/1928 | 1.09 (0.91, 1.30) | 0.93 (0.79, 1.11) | 0.93 (0.79, 1.10) | 509/803 | 1.04 (0.79, 1.37) | 1.03 (0.78, 1.36) | 1.02 (0.78, 1.35) | 564/1125 | 1.07 (0.84, 1.35) | 0.88 (0.69, 1.11) | 0.87 (0.69, 1.10) | |
Quartile 1 | 248/482 | Reference | Reference | Reference | 103/174 | Reference | Reference | Reference | 143/308 | Reference | Reference | Reference | |
Quartile 2 | 272/482 | 1.25 (0.88, 1.79) | 1.14 (0.80, 1.62) | 1.13 (0.79, 1.62) | 136/210 | 1.04 (0.63, 1.69) | 0.93 (0.53, 1.62) | 0.95 (0.54, 1.66) | 136/272 | 1.34 (0.81, 2.23) | 1.31 (0.79, 2.17) | 1.31 (0.79, 2.17) | |
Quartile 3 | 274/482 | 1.42 (1.06, 1.90) | 1.17 (0.84, 1.64) | 1.17 (0.84, 1.64) | 137/205 | 1.59 (0.88, 2.88) | 1.29 (0.69, 2.42) | 1.30 (0.70, 2.41) | 137/277 | 1.22 (0.87, 1.72) | 1.07 (0.70, 1.64) | 1.07 (0.70, 1.63) | |
Quartile 4 | 281/482 | 1.23 (0.89, 1.69) | 0.87 (0.61, 1.25) | 0.87 (0.61, 1.23) | 133/214 | 1.03 (0.56, 1.90) | 0.95 (0.51, 1.79) | 0.95 (0.51, 1.78) | 148/268 | 1.24 (0.82, 1.87) | 0.80 (0.51, 1.27) | 0.80 (0.51, 1.26) | |
p for trend | 0.181 | 0.584 | 0.552 | 0.663 | 0.908 | 0.919 | 0.355 | 0.350 | 0.333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, S.; Park, E.; Park, E.Y. Association of Urinary Benzene Metabolite and the Ratio of Triglycerides to High-Density Lipoprotein Cholesterol: A Cross-Sectional Study Using the Korean National Environmental Health Survey (2018–2020). Toxics 2023, 11, 985. https://doi.org/10.3390/toxics11120985
Baek S, Park E, Park EY. Association of Urinary Benzene Metabolite and the Ratio of Triglycerides to High-Density Lipoprotein Cholesterol: A Cross-Sectional Study Using the Korean National Environmental Health Survey (2018–2020). Toxics. 2023; 11(12):985. https://doi.org/10.3390/toxics11120985
Chicago/Turabian StyleBaek, Seungju, Eunjung Park, and Eun Young Park. 2023. "Association of Urinary Benzene Metabolite and the Ratio of Triglycerides to High-Density Lipoprotein Cholesterol: A Cross-Sectional Study Using the Korean National Environmental Health Survey (2018–2020)" Toxics 11, no. 12: 985. https://doi.org/10.3390/toxics11120985
APA StyleBaek, S., Park, E., & Park, E. Y. (2023). Association of Urinary Benzene Metabolite and the Ratio of Triglycerides to High-Density Lipoprotein Cholesterol: A Cross-Sectional Study Using the Korean National Environmental Health Survey (2018–2020). Toxics, 11(12), 985. https://doi.org/10.3390/toxics11120985