Probabilistic Risk Assessment of Heavy Metals in Mining Soils Based on Fractions: A Case Study in Southern Shaanxi, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Pretreatment
2.3. Chemical Analysis and Instrument Measurement
2.3.1. Determination of HM Content in Soil
2.3.2. Determination of the Fractions of HMs in Soil
2.3.3. Quality Control and Assurance
2.4. Pollution Assessment of HMs
The Geoaccumulation Index
2.5. Potential Ecological Risk Assessment
2.5.1. The Modified Hakanson Index
2.5.2. Monte Carlo Simulation
2.6. Parameter Selection
3. Results and Analysis
3.1. Characteristics of HMs
3.2. Characteristics of HM Fractions
3.2.1. Distribution of HM Fractions
3.2.2. Content of HM Fractions
3.3. Pollution Assessment of HMs
3.4. Potential Ecological Risk Assessment
3.4.1. Hakanson Index Method
3.4.2. Modified Hakanson Index Method
3.4.3. Probabilistic Risk Assessment
4. Discussion and Conclusions
4.1. Discussion
4.1.1. Characteristics of HMs
4.1.2. Characteristics of HM Fractions
4.1.3. The Reasonability of the Modified Hakanson Index Method
4.1.4. Correlation Analysis between the Fractions of As and Soil Physicochemical Properties
4.1.5. The Probabilistic Risk Assessment of HMs
4.2. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lian, M.; Sun, L.; Sun, T.; Tang, J. New Research Development on Heavy Metals’ Speciation in Soil. Appl. Mech. Mater. 2013, 295, 1550–1555. [Google Scholar] [CrossRef]
- Li, H.; Yao, J.; Min, N.; Chen, Z.; Li, M.; Pang, W.; Liu, B.; Cao, Y.; Men, D.; Duran, R. Comprehensive evaluation of metal(loid)s pollution risk and microbial activity characteristics in non-ferrous metal smelting contaminated site. J. Clean. Prod. 2022, 344, 130999. [Google Scholar] [CrossRef]
- Luo, X.; Wu, C.; Lin, Y.; Li, W.; Deng, M.; Tan, J.; Xue, S. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization. J. Environ. Sci. 2023, 125, 662–677. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zou, B.; Feng, H.; Tang, J.; Tu, Y.; Zhao, X. Spatial distribution mapping of Hg contamination in subclass agricultural soils using GIS enhanced multiple linear regression. J. Geochem. Explor. 2019, 196, 1–7. [Google Scholar] [CrossRef]
- Shen, F.; Mao, L.; Sun, R.; Du, J.; Tan, Z.; Ding, M. Contamination Evaluation and Source Identification of Heavy Metals in the Sediments from the Lishui River Watershed, Southern China. Int. J. Environ. Res. Public Health 2019, 16, 336. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Zhao, Q.; Yang, Q. Morphological distribution of heavy metals in sludge from urban wastewater treatment plants and its potential ecological risk assessment in Northeast China. Acta Sci. Circumst. 2012, 32, 689–695. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X. Simulation of ecological hazard index based on a heavy metal polymorphic-biotoxic activity weighting system. J. Henan Norm. Univ. (Nat. Sci. Ed.) 2012, 40, 183–186. (In Chinese) [Google Scholar] [CrossRef]
- Singh, K.P.; Mohan, D.; Singh, V.K.; Malik, A. Studies on distribution and fractionation of heavy metals in Gomti river sediments—A tributary of the Ganges, India. J. Hydrol. 2005, 312, 14–27. [Google Scholar] [CrossRef]
- Mcgrath, S.P.; Cegrarra, J. Chemical extractability of heavy metals during and after long-term applications of sewage sludge to soil. J. Soil Sci. 1992, 43, 313–323. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Rinklebe, J. Geochemical fractions of chromium, copper, and zinc and their vertical distribution in flood-plain soil profiles along the Central Elbe River, Germany. Geoderma 2014, 228–229, 142–159. [Google Scholar] [CrossRef]
- Sundaray, S.K.; Nayak, B.B.; Lin, S.; Bhatta, D. Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—A case study: Mahanadi basin, India. J. Hazard. Mater. 2011, 186, 1837–1846. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Guo, P.; Su, H.; Deng, J.; Zheng, M.; Wang, J.; Wu, Y.; Jin, Y. Fraction distribution and bioavailability of soil heavy metals under different planting patterns in mangrove restoration wetlands in Jinjiang, Fujian, China. Ecol. Eng. 2021, 166, 106242. [Google Scholar] [CrossRef]
- Pejman, A.; Bidhendi, G.; Ardestani, M.; Saeedi, M.; Baghvand, A. Fractionation of heavy metals in sediments and assessment of their availability risk: A case study in the northwestern of Persian Gulf. Mar. Pollut. Bull. 2017, 114, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yu, R.; Hu, G.; Su, G.; Wang, X. Assessment of heavy metal pollution and tracing sources by Pb & Sr Isotope in the soil profile of woodland in Quanzhou. Environ. Sci. 2017, 38, 1566–1575. (In Chinese) [Google Scholar] [CrossRef]
- Chen, J.; Liu, B.; Cai, L.; Wang, G.; Yin, K.; Chen, H.; Li, Z. Comparison of risk assessment based on the various methods of heavy metals in soil: A case study for the typical field areas in the Jianghan Plain. Hydrogeol. Eng. Geol. 2018, 45, 164–172. (In Chinese) [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, C.; Zhang, Y.; Huang, D.; Yan, Z.; Sun, T.; Cheng, L.; Wang, J.; Mao, Y. Fugitive patterns and ecological risk assessment of heavy metals in urban sludge in China. Chin. J. Environ. Sci. 2021, 42, 4834–4843. (In Chinese) [Google Scholar] [CrossRef]
- Matong, J.; Nyaba, L.; Nomngongo, P.N. Fractionation of trace elements in agricultural soils using ultrasound assisted se-quential extraction prior to inductively coupled plasma mass spectrometric determination. Chemosphere 2016, 154, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, M.; Jamshidi Zanjani, A. Development of a new aggregative index to assess potential effect of metals pollution in aquatic sediments. Ecol. Indic. 2015, 58, 235–243. [Google Scholar] [CrossRef]
- Soto Jiménez, M.F.; Olvera Balderas, D. Geochemical Fractionation and Potential Ecological Risk of Cadmium and Lead in Soils Impacted by Secondary Lead Refinery. Bull. Environ. Contam. Toxicol. 2018, 101, 372–379. [Google Scholar] [CrossRef]
- Zhu, H.; Yuan, X.; Zeng, G.; Jiang, M.; Liang, J.; Zhang, C.; Yin, J.; Huang, H.; Liu, Z.; Jiang, H. Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Trans. Nonferrous Met. Soc. China 2012, 22, 1470–1477. [Google Scholar] [CrossRef]
- Xiong, H.; Chen, J. A study on ecological risk assessment of soil heavy metals based on Monte Carlo-Hakanson simulation. J. Agro-Environ. Sci. 2020, 39, 1706–1712. (In Chinese) [Google Scholar]
- Pang, K.; Li, M.; Liu, L.; Yang, J.; Zhao, H. Heavy metal pollution assessment and source analysis of sediments in the Yellow River basin based on Monte Carlo simulation and PMF model. Chin. J. Environ. Sci. 2022, 43, 4008–4017. (In Chinese) [Google Scholar] [CrossRef]
- Li, J.; Dong, H.; Xu, X.; Han, B.; Li, X.; Zhu, C.; Han, C.; Liu, S.; Yang, D.; Xu, Q.; et al. Prediction of the bioaccumulation of PAHs in surface sediments of Bohai sea, China and quantitative assessment of the related toxicity and health risk to humans. Mar. Pollut. Bull. 2016, 104, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Sankaran, G.; Wang, B.; Shang, H.; Tan, S.T.; Yap, H.M.; Shen, J.; Gutiérrez, R.A.; Fang, W.; Liu, M.; et al. Exposure and risk assessment of volatile organic compounds and airborne phthalates in Singapore′s Child care centers. Chemosphere 2019, 224, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Noutsopoulos, C.; Koumaki, E.; Vasileios, S.; Mamais, D. Analytical and mathematical assessment of emerging pollutants fate in a river system. J. Hazard. Mater. 2019, 364, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, X.; Wang, L.; Wang, W.; Xu, J. Concentrations and potential health risks of strontium in drinking water from Xi’an, Northwest China. Ecotoxicol. Environ. Saf. 2018, 164, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Han, L.; Liu, Z.; Zhao, Y.; Li, R.; Xia, L.; Fan, Y. Assessment of Soil-Heavy Metal Pollution and the Health Risks in a Mining Area from Southern Shaanxi Province, China. Toxics 2022, 10, 385. [Google Scholar] [CrossRef] [PubMed]
- GB/T 22105.2-2008; Soil Quality-Analysis of Total Mercury, Arsenic and Lead Contents-Atomic Fluorescence Spectrometry-Part2: Analysis of Total Arsenic Contents in Soils. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2008. Available online: http://www.trans1.cn/translation/show.php?itemid=9511 (accessed on 1 October 2008).
- HJ 766-2015; Solid Waste–Determination of Metals–Inductively Coupled Plasma Mass Spectrometry. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2015. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201511/t20151130_317999.shtml (accessed on 20 November 2015).
- Xing, H.L. Analysis of Soil Element Endowment Patterns and Ecological Risk Assessment in Anxin-Qingyuan County, Hebei; China University of Geosciences: Beijing, China, 2016; Available online: https://link.cnki.net/doi/10.27493/d.cnki.gzdzy.2016.000299 (accessed on 20 November 2015). (In Chinese)
- GB/T 25282-2010; Extraction Procedure for the Morphological Order of 13 Trace Elements in Soils and Sediments. Ministry of Land and Resources of the People’s Republic of China: Beijing, China, 2010. Available online: https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=3CD527C889212919CFEC80932D514455. (accessed on 10 November 2010).
- Demirak, A.; Kocakaya, M.; Keskin, F. Chemical fractions of toxic metals and assessment of risks on the environment and health in Mugla topsoils. Int. J. Environ. Sci. Technol. 2022, 19, 5631–5648. [Google Scholar] [CrossRef]
- Rauret, G.; Lopez-Sanchez, J.F.; Sahuquillo, A. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef]
- Certificate of Standard Substances Standard Substances for Soil Composition Analysis; Institute for Geochemical Exploration of Earth: Langfang, China, 2003; Available online: https://wenku.baidu.com/view/6760b5dc49fe04a1b0717fd5360cba1aa8118c0c.html?fr=view_search_preview1&cc=SearchFloatDoc1&_wkts_=1701935518281 (accessed on 20 November 2015).
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geol. J. 1986, 2, 108–118. [Google Scholar]
- Loska, K.; Wiechula, D.; Barska, B.; Cebula, E.; Chojnecka, A. Assessment of arsenic enrichment of cultivated soils in southern Poland. Pol. J. Environ. Stud. 2003, 12, 187–192. [Google Scholar]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Xiao, L.; Wu, Q.; Li, D.; Wang, K.; Li, H.; Wang, R. A study on the background values of ten elements in major agri-cultural soils in Shaanxi Province. J. Northwest Sci.-Tech. Univ. Agric. For. (Nat. Sci. Ed.) 1986, 14, 30–53. (In Chinese) [Google Scholar]
- Förstner, U.; Ahlf, W.; Calmano, W.; Kersten, M. Sediment criteria development. In Sediments and Environmental Geochemistry; Springer: Berlin/Heidelberg, Germany, 1990; pp. 311–338. [Google Scholar]
- Si, M.; Wang, Z.; Wang, J. Progress in the application of Hakanson index method in assessing ecological risk of soil heavy metals. Chin. J. Soil Sci. 2019, 50, 1002–1008. (In Chinese) [Google Scholar] [CrossRef]
- Xiang, Q.; Yu, H.; Chu, H.; Hu, M.; Xu, T.; Xu, X.; He, Z. The potential ecological risk assessment of soil heavy metals using self-organizing map. Sci. Total Environ. 2022, 843, 156978. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, C.; Liu, X.; Liu, J.; Zhang, X. Biological activity and environmental risk of heavy metals in urban soils of Baoji. Acta Sci. Circumst. 2015, 35, 1241–1249. (In Chinese) [Google Scholar] [CrossRef]
- Lu, C.; Li, T.; Fu, Y.; Xu, Y.; Zhang, J. Creation of Hakanson’s potential ecological risk index method based on bioavailability and wide concentration range: An example of farmland soils in the Xiaoqinling gold mining area. Geol. Bull. China. 2015, 4, 2054–2060. (In Chinese) [Google Scholar]
- Xiao, R.; Guo, D.; Ali, A.; Mi, S.; Liu, T.; Ren, C.; Li, R.; Zhang, Z. Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China. Environ. Pollut. 2019, 248, 349–357. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Ma, J.; Han, C.; Jiang, Y. Some issues in the application of potential ecological risk index method. Geogr. Res. 2020, 39, 1233–1241. (In Chinese). Available online: https://www.dlyj.ac.cn/CN/10.11821/dlyj020190632 (accessed on 20 November 2015).
- Li, Y.; Ma, J.; Liu, D. Assessment of heavy metal pollution and potential ecological risk in Kaifeng urban soils. Chin. J. Environ. Sci. 2015, 36, 1037–1044. (In Chinese) [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund Volume III: Part A, Process for Conducting Probabilistic Risk Assessment; USEPA: Washington, DC, USA, 2001.
- Xiong, H.; Zhang, H.; Chen, S. A study on the health risk assessment of heavy metals in soil of a contaminated site based on Monte Carlo simulation. J. Hefei Univ. Technol. (Nat. Sci. Ed.) 2022, 45, 267–273. (In Chinese) [Google Scholar]
- China National Environmental Monitoring Centre. Background Values of Soil Elements in China; Environmental Science Press of China: Beijing, China, 1990. [Google Scholar]
- Wang, R.; Chen, M.; Chen, N.; Liu, G.; Zhang, E.; Liu, X.; Zhang, J. Comparison of ecological risk assessment of soil heavy metals based on total amount and morphology: A case study of Sizhong Township, Longyan City. Chin. J. Environ. Sci. 2017, 38, 4348–4359. (In Chinese) [Google Scholar] [CrossRef]
- Tong, S.M.; Yang, L.S.; Gong, H.Q.; Wang, L.; Li, H.R.; Yu, J.P.; Li, Y.H.; Deji, Y.Z.; Nima, C.J.; Zhao, S.C.; et al. Bioaccumulation characteristics, transfer model of heavy metals in soil-crop system and health assessment in plateau region, China. Ecotoxicol. Environ. Saf. 2022, 241, 113733. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Long, Z.; Zhang, Y.; Wang, Y.; Qi, X.; Xia, X.; Pei, Y. Enrichment differences and source apportionment of nutrients, stable isotopes, and trace metal elements in sediments of complex and fragmented wetland systems. Environ. Pollut. 2021, 289, 117852. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhou, H.; Gu, J.F.; Zeng, P.; Liao, B.H.; Xie, Y.H.; Ji, X.H. Combined amendment improves soil health and brown rice quality in paddy soils moderately and highly co-contaminated with Cd and As. Environ. Pollut. 2022, 295, 118590. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zuo, H.; Tian, M.; Zhang, L.; Meng, J.; Zhou, X.; Min, N.; Chang, X.; Liu, Y. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere 2016, 144, 264–272. [Google Scholar] [CrossRef]
- Chen, L.; Liu, J.R.; Hu, W.F.; Gao, J.; Yang, J.Y. Vanadium in soil-plant system: Source, fate, toxicity, and bioremediation. J. Hazard. Mater. 2021, 405, 124200. [Google Scholar] [CrossRef]
- Nemati, K.; Bakar, N.K.A.; Sobhanzadeh, E.; Abas, M.R. A modification of the BCR sequential extraction procedure to inves-tigate the potential mobility of copper and zinc in shrimp aquaculture sludge. Microchem. J. 2009, 92, 165–169. [Google Scholar] [CrossRef]
- Iwegbue, C.M.A.; Eghwrudje, M.O.; Nwajei, G.E.; Egboh, S.H.O. Chemical speciation of heavy metals in the Ase River sed-iment, Niger Delta, Nigeria. Chem. Spec. Bioavailab. 2007, 19, 117–127. [Google Scholar] [CrossRef]
- Liu, B.; Luo, J.; Jiang, S.; Wang, Y.; Li, Y.; Zhang, X.; Zhou, S. Geochemical fractionation, bioavailability, and potential risk of heavy metals in sediments of the largest influent river into Chaohu Lake, China. Environ. Pollut. 2021, 290, 118018. [Google Scholar] [CrossRef] [PubMed]
- Moore, F.; Nematollahi, M.J.; Keshavarzi, B. Heavy metals fractionation in surface sediments of Gowatr bay-Iran. Environ. Monit. Assess. 2014, 187, 4117. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Sun, H.; Peng, T.; Ding, W.; Liu, B.; Liu, Q. Comprehensive evaluation of environmental availability, pollution level and leaching heavy metals behavior in non-ferrous metal tailings. J. Environ. Manag. 2021, 290, 112639. [Google Scholar] [CrossRef] [PubMed]
- Li, S.M.; Wu, Y.Y.; Wu, Z.P.; Wang, Q.C.; Li, C.S.; Hou, Z.W.; Fu, Z.L. Effects of different organic amendments on dissolved organic matter and lead occurrence formation in soil of mining areas. J. Agric. Resour. Environ. 2023, 40, 271–279. (In Chinese) [Google Scholar] [CrossRef]
- Lanno, R.P.; Oorts, K.; Smolders, E.; Albanese, K.; Chowdhury, J. Effects of soil properties on the toxicity and bioaccumulation of lead in soil invertebrates. Environ. Toxicol. Chem. 2019, 38, 1486–1494. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sanchez, G.M.; Wu, Z.; Cheng, J.; Zhang, S.; Wang, Q.; Li, F.; Sun, G.; Meentemeyer, R.K. Spatiotemporal patterns and drivers of soil contamination with heavy metals during an intensive urbanization period (1989–2018) in southern China. Environ. Pollut. 2020, 260, 114075. [Google Scholar] [CrossRef] [PubMed]
- Wojtkowska, M.; Bogacki, J.; Witeska, A. Assessment of the hazard posed by metal forms in water and sediments. Sci. Total Environ. 2016, 551–552, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Elouear, Z.; Bouhamed, F.; Boujelben, N.; Bouzid, J. Assessment of toxic metals dispersed from improperly disposed tailing, Jebel Ressas mine, NE Tunisia. Environ. Earth Sci. 2016, 75, 254. [Google Scholar] [CrossRef]
- Khoeurn, K.; Sakaguchi, A.; Tomiyama, S.; Igarashi, T. Long-term acid generation and heavy metal leaching from the tailings of Shimokawa mine, Hokkaido, Japan: Column study under natural condition. J. Geochem. Explor. 2019, 201, 1–12. [Google Scholar] [CrossRef]
- Dubey, S.; Shri, M.; Gupta, A.; Rani, V.; Chakrabarty, D. Toxicity and detoxification of heavy metals during plant growth and metabolism. Environ. Chem. Lett. 2018, 16, 1169–1192. [Google Scholar] [CrossRef]
- Sonter, L.J.; Ali, S.A.; Watson, J.E.M. Mining and biodiversity: Key issues and research needs in conservation science. Proc. Biol. Sci. 2018, 285, 1–9. [Google Scholar] [CrossRef]
- Barcelos, D.A.; Pontes, F.V.M.; da Silva, F.A.N.G.; Castro, D.C.; dos Anjos, N.O.A.; Castilhos, Z.C. Gold mining tailing: En-vironmental availability of metals and human health risk assessment. J. Hazard. Mater. 2020, 397, 122721. [Google Scholar] [CrossRef]
Igeo | ≤0 | 0–1 | 1–2 | 2–3 | 3–4 | 4–5 | ≥5 |
---|---|---|---|---|---|---|---|
Pollution Degree | Unpolluted | Lightly polluted | Moderately polluted | Moderately to heavily polluted | Heavily polluted | Heavily to extremely polluted | Extremely polluted |
HMs | Cr | Ni | Cu | Zn | As | Pb |
---|---|---|---|---|---|---|
Igeo | −0.17 | −0.10 | 0.45 | 0.02 | 5.68 | 0.84 |
Pollution Degree | Unpolluted | Unpolluted | Lightly polluted | Lightly polluted | Extremely polluted | Lightly polluted |
Pollution Degree | Cr | Ni | Cu | Zn | As | Pb |
---|---|---|---|---|---|---|
Unpolluted | 56.25 | 68.75 | 6.25 | 37.5 | 0 | 0 |
Lightly polluted | 43.75 | 31.25 | 87.5 | 62.5 | 0 | 81.25 |
Moderately polluted | 0 | 0 | 6.25 | 0 | 12.5 | 18.75 |
Moderately to heavily polluted | 0 | 0 | 0 | 0 | 6.25 | 0 |
Heavily polluted | 0 | 0 | 0 | 0 | 0 | 0 |
Heavily to extremely polluted | 0 | 0 | 0 | 0 | 18.75 | 0 |
Extremely polluted | 0 | 0 | 0 | 0 | 62.5 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Fan, Y.; Chen, R.; Zhai, Y.; Liu, Z.; Zhao, Y.; Li, R.; Xia, L. Probabilistic Risk Assessment of Heavy Metals in Mining Soils Based on Fractions: A Case Study in Southern Shaanxi, China. Toxics 2023, 11, 997. https://doi.org/10.3390/toxics11120997
Han L, Fan Y, Chen R, Zhai Y, Liu Z, Zhao Y, Li R, Xia L. Probabilistic Risk Assessment of Heavy Metals in Mining Soils Based on Fractions: A Case Study in Southern Shaanxi, China. Toxics. 2023; 11(12):997. https://doi.org/10.3390/toxics11120997
Chicago/Turabian StyleHan, Lei, Yamin Fan, Rui Chen, Yunmeng Zhai, Zhao Liu, Yonghua Zhao, Risheng Li, and Longfei Xia. 2023. "Probabilistic Risk Assessment of Heavy Metals in Mining Soils Based on Fractions: A Case Study in Southern Shaanxi, China" Toxics 11, no. 12: 997. https://doi.org/10.3390/toxics11120997
APA StyleHan, L., Fan, Y., Chen, R., Zhai, Y., Liu, Z., Zhao, Y., Li, R., & Xia, L. (2023). Probabilistic Risk Assessment of Heavy Metals in Mining Soils Based on Fractions: A Case Study in Southern Shaanxi, China. Toxics, 11(12), 997. https://doi.org/10.3390/toxics11120997