Influencing Factors of Bidens pilosa L. Hyperaccumulating Cadmium Explored by the Real-Time Uptake of Cd2+ Influx around Root Apexes under Different Exogenous Nutrient Ion Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Culture and Treatment
2.2. Measurements of Cd2+ Fluxes by NMT
2.3. Measurements of Chlorophyll, Carotenoid and Root Vigor
2.4. Determination of Biomass, Cd Concentration and Quality Control
2.5. Data Processing and Statistical Analysis
3. Results
3.1. Effects of Cd Treatments with Different Nutrient Ions on Cd2+ Influxes to the Root of B. pilosa
3.2. Effects of Cd Treatments with Different Nutrient Ions on Biomass and Cd Accumulation of B. pilosa
3.3. Impacts of Cd Treatments with Different Nutrient Ions on Chlorophyll a and b of B. pilosa
3.4. Effects of Cd Treatments with Different Nutrient Ions on Carotenoid and Root Vigor of B. pilosa
4. Discussion
4.1. The Dynamic Uptake of Cd2+ by Accumulator and Hyperaccumulator Roots
4.2. Impacts of Different Nutrient Ions on Cd2+ Fluxes of Roots
4.3. Effects of Different Nutrient Ions on Biomass, Cd Accumulation and Physicochemical Characteristics of Accumulator and Hyperaccumulator
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nawrot, N.; Wojciechowska, E.; Pazdro, K.; Szmagliński, J.; Pempkowiak, J. Uptake, accumulation, and translocation of Zn, Cu, Pb, Cd, Ni, and Cr by P. australis seedlings in an urban dredged sediment mesocosm: Impact of seedling origin and initial trace metal content. Sci. Total Environ. 2021, 768, 144983. [Google Scholar] [CrossRef]
- Zhang, H.; Heal, K.; Zhu, X.; Tigabu, M.; Xue, Y.; Zhou, C. Tolerance and detoxification mechanisms to cadmium stress by hyperaccumulator Erigeron annuus include molecule synthesis in root exudate. Ecotoxicol. Environ. Saf. 2021, 219, 112359. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.Y.; Yan, Y.Y.; Yang, B.; Li, X.Y.; Xu, F.L. Differential expression of proteins in the leaves and roots of cadmium-stressed Microsorum pteropus, a novel potential aquatic cadmium hyperaccumulator. Sci. Total Environ. 2018, 642, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, V.; Levizou, E.; Shaheen, S.M.; Ok, Y.S.; Sebastian, A.; Baum, C.; Prasad, M.N.V.; Wenzel, W.W.; Rinklebe, J. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation-A review. Earth-Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Cao, X.; Wang, X.; Tong, W.; Gurajala, H.K.; Lu, M.; Hamid, Y.; Feng, Y.; He, Z.; Yang, X. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties. Environ. Pollut. 2019, 252, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Galkina, M.A.; Vinogradova, Y.K.; Shanzer, I.A. Biomorphological features and microevolution of the invasive species Bidens L. in European Russia. Biol. Bull. 2015, 42, 315–325. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Lin, L.; Liao, M.A.; Lv, X.; Tang, Y.; Wang, X.; Xia, H.; Liang, D.; Ren, W.; et al. Effects of mutual grafting on cadmium accumulation characteristics of first post-generations of Bidens pilosa L. and Galinsoga parviflora Cav. Environ. Sci. Pollut. Res. 2019, 26, 33228–33235. [Google Scholar] [CrossRef]
- Wei, S.; Zhou, Q. Screen of Chinese weed species for cadmium tolerance and accumulation characteristics. Int. J. Phytoremediat. 2008, 10, 584–597. [Google Scholar] [CrossRef]
- Sun, Y.B.; Zhou, Q.X.; Liu, W.T.; An, J.; Xu, Z.Q.; Wang, L. Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: A potential Cd-hyperaccumulator and As-excluder Bidens pilosa L. J. Hazard. Mater. 2009, 165, 1023–1028. [Google Scholar] [CrossRef]
- Han, R.; Dai, H.; Twardowska, I.; Zhan, J.; Wei, S. Aqueous extracts from the selected hyperaccumulators used as soil additives significantly improve accumulation capacity of Solanum nigrum L. for Cd and Pb. J. Hazard. Mater. 2020, 394, 122553. [Google Scholar] [CrossRef]
- Wei, H.; Huang, M.; Quan, G.; Zhang, J.; Liu, Z.; Ma, R. Turn bane into a boon: Application of invasive plant species to remedy soil cadmium contamination. Chemosphere 2018, 210, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Wei, S.; Pogrzeba, M.; Krzyżak, J.; Rusinowski, S.; Zhang, Q. The cadmium accumulation differences of two Bidens pilosa L. ecotypes from clean farmlands and the changes of some physiology and biochemistry indices. Ecotoxicol. Environ. Saf. 2021, 209, 111847. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Liu, L.; Wang, Y.; Li, J.; Ying, Z.; Hou, Z.; Liu, H.; Du, S. Graphene oxide decreases Cd concentration in rice seedlings but intensifies growth restriction. J. Hazard. Mater. 2021, 417, 125958. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Dai, H.; Skuza, L.; Chen, Y.; Wei, S. Difference in Cd2+ flux around the root tips of different soybean (Glycine max L.) cultivars and physiological response under mild cadmium stress. Chemosphere 2022, 297, 134120. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Shi, K.; Hu, C.; Guo, J.; Tan, Q.; Sun, X. Non-invasive microelectrode cadmium flux measurements reveal the decrease of cadmium uptake by zinc supply in pakchoi root (Brassica chinensis L.). Ecotoxicol. Environ. Saf. 2019, 168, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, R.; Liu, Z.; Ding, Y.; Li, T. Non-invasive microelectrode cadmium flux measurements reveal the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii. J. Plant Physiol. 2013, 170, 355–359. [Google Scholar] [CrossRef]
- Li, L.Z.; Yu, S.Y.; Peijnenburg, W.J.; Luo, Y.M. Determining the fluxes of ions (Pb2+, Cu2+ and Cd2+) at the root surface of wetland plants using the scanning ion-selective electrode technique. Plant Soil. 2017, 414, 1–12. [Google Scholar] [CrossRef]
- Ma, W.; Xu, W.; Xu, H.; Chen, Y.; He, Z.; Ma, M. Nitric oxide modulates cadmium influx during cadmium-induced programmed cell death in tobacco BY-2 cells. Planta 2010, 232, 325–335. [Google Scholar] [CrossRef]
- Sun, J.; Chen, S.; Dai, S.; Wang, R.; Li, N.; Shen, X.; Zhou, X.; Lu, C.; Zheng, X.; Hu, Z.; et al. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol. 2009, 149, 1141–1153. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Huang, M.; Ren, H.; Yu, J.; Wu, J.; Ma, X. Bioaccumulation and detoxification mechanisms for lead uptake identified in Rhus chinensis Mill. seedlings. Ecotoxicol. Environ. Saf. 2017, 142, 59–68. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, L.; Zhou, Q.; Chen, B.; Zhang, X.; Wu, Y.; Pan, F.; Huang, L.; Yang, X.; Feng, Y. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising agents for elevated phytoremediation efficiency. Chemosphere 2019, 234, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, L.; Xu, H.; Ren, K.; Xu, Z.; Tang, Y.; Xiao, J. The effects of warming on root exudation and associated soil N transformation depend on soil nutrient availability. Rhizosphere 2021, 17, 100263. [Google Scholar] [CrossRef]
- Zeng, H.Y.; Chen, L.H.; Yang, Y.; Deng, X.; Zhou, X.H.; Zeng, Q.R. Basal and foliar treatment using an organic fertilizer amendment lowers cadmium availability in soil and cadmium uptake by rice on field micro-plot experiment planted in contaminated acidic paddy soil. Soil. Sediment. Contam Int. J. 2019, 28, 1–14. [Google Scholar] [CrossRef]
- Hamid, Y.; Tang, L.; Yaseen, M.; Hussain, B.; Zehra, A.; Aziz, M.Z.; He, Z.; Yang, X. Comparative efficacy of organic and inorganic amendments for cadmium and lead immobilization in contaminated soil under rice-wheat cropping system. Chemosphere 2019, 214, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Zhou, Q.; Zhan, J.; Wu, Z.; Sun, T.; Lyubu, Y.; Prasad, M.N.V. Poultry manured Bidens tripartite L. extracting Cd from soil-potential for phytoremediating Cd contaminated soil. Bioresour. Technol. 2010, 101, 8907–8910. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.Y.; Zhang, C.X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 2013, 20, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Wei, S.; Twardowska, I.; Hou, N.; Zhang, Q. Cosmopolitan cadmium hyperaccumulator Solanum nigrum: Exploring cadmium uptake, transport and physiological mechanisms of accumulation in different ecotypes as a way of enhancing its hyperaccumulative capacity. J. Environ. Manag. 2022, 320, 115878. [Google Scholar] [CrossRef]
- Yu, H.; Wu, Y.; Huang, H.; Zhan, J.; Wang, K.; Li, T. The predominant role of pectin in binding Cd in the root cell wall of a high Cd accumulating rice line (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2020, 206, 111210. [Google Scholar] [CrossRef]
- Li, L.Z.; Tu, C.; Wu, L.H.; Peijnenburg, W.J.; Ebbs, S.; Luo, Y.M. Pathways of root uptake and membrane transport of Cd2+ in the zinc/cadmium hyperaccumulating plant Sedum plumbizincicola. Environ. Toxicol. Chem. 2017, 36, 1038–1046. [Google Scholar] [CrossRef]
- Li, L.; Liu, X.; Peijnenburg, W.J.; Zhao, J.; Chen, X.; Yu, J.; Wu, H. Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa. Ecotoxicol. Environ. Saf. 2012, 75, 1–7. [Google Scholar] [CrossRef]
- He, J.; Li, H.; Ma, C.; Zhang, Y.; Polle, A.; Rennenberg, H.; Cheng, X.; Luo, Z.B. Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar. New Phytologist. 2015, 205, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Tian, S.; Zhang, M.; Zhang, J.; Yang, X.; Jiang, H. The role of Ca pathway in Cd uptake and translocation by the hyperaccumulator Sedum alfredii. J. Hazard. Mater. 2010, 183, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Perfus-Barbeoch, L.; Leonhardt, N.; Vavasseur, A.; Forestier, C. Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant J. 2002, 32, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Rabêlo, F.H.S.; Jordao, L.T.; Lavres, J. A glimpse into the symplastic and apoplastic Cd uptake by Massai grass modulated by sulfur nutrition: Plants well-nourished with S as a strategy for phytoextraction. Plant Physiol. Biochem. 2017, 121, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, X.; Tang, L.; Peng, Y.; Qian, M.; Guo, Y.; Rui, H.; Zhang, F.; Hu, Z.; Chen, Y.; et al. The root iron transporter 1 governs cadmium uptake in Vicia sativa roots. J. Hazard. Mater. 2020, 398, 122873. [Google Scholar] [CrossRef]
- Hakeem, K.R.; Alharby, H.F.; Pirzadah, T.B. Exogenously applied calcium regulates antioxidative system and reduces cadmium-uptake in Fagopyrum esculentum. Plant Physiol. Biochem. 2022, 180, 17–26. [Google Scholar] [CrossRef]
- Liu, Y.; Tao, Q.; Guo, X.; Luo, J.; Li, J.; Liang, Y.; Li, T. Low calcium-induced delay in development of root apoplastic barriers enhances Cd uptake and accumulation in Sedum alfredii. Sci. Total Environ. 2020, 723, 137810. [Google Scholar] [CrossRef]
- Tian, S.; Lu, L.; Zhang, J.; Wang, K.; Brown, P.; He, Z.; Liang, J.; Yang, X. Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere 2011, 84, 63–69. [Google Scholar] [CrossRef]
- Rabêlo, F.H.S.; Lux, A.; Rossi, M.L.; Martinelli, A.P.; Cuypers, A.; Lavres, J. Adequate S supply reduces the damage of high Cd exposure in roots and increases N, S and Mn uptake by Massai grass grown in hydroponics. Environ. Exp. Bot. 2018, 148, 35–46. [Google Scholar] [CrossRef]
Treatments | Treatment Details |
---|---|
Controls | Hoagland solution |
Cd treatments alone | Hoagland solution (10 μM Cd2+) |
Cd treatments with Ca2+ | Hoagland solution (10 μM Cd2+ + 1 mM Ca2+, other ingredients unchanged) |
Hoagland solution (10 μM Cd2+ + 16 mM Ca2+, other ingredients unchanged) | |
Cd treatments with Mg2+ | Hoagland solution (10 μM Cd2+ + 0.5 mM Mg2+, other ingredients unchanged) |
Hoagland solution (10 μM Cd2+ + 8 mM Mg2+, other ingredients unchanged) | |
Cd treatments with Fe2+ | Hoagland solution (10 μM Cd2+ + 0.05 mM Fe2+, other ingredients unchanged) |
Hoagland solution (10 μM Cd2+ + 0.5 mM Fe2+, other ingredients unchanged) | |
Cd treatments with SO42− | Hoagland solution (10 μM Cd2+ + 0.5 mM SO42−, other ingredients unchanged) |
Hoagland solution (10 μM Cd2+ + 8 mM SO42−, other ingredients unchanged) | |
Cd treatments with K+ | Hoagland solution (10 μM Cd2+ + 2 mM K+, other ingredients unchanged) |
Hoagland solution (10 μM Cd2+ + 18 mM K+, other ingredients unchanged) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Dai, H.; Ji, D.; Cui, S.; Jiang, C.; Skuza, L.; Li, L.; Grzebelus, D.; Wei, S. Influencing Factors of Bidens pilosa L. Hyperaccumulating Cadmium Explored by the Real-Time Uptake of Cd2+ Influx around Root Apexes under Different Exogenous Nutrient Ion Levels. Toxics 2023, 11, 227. https://doi.org/10.3390/toxics11030227
Wang S, Dai H, Ji D, Cui S, Jiang C, Skuza L, Li L, Grzebelus D, Wei S. Influencing Factors of Bidens pilosa L. Hyperaccumulating Cadmium Explored by the Real-Time Uptake of Cd2+ Influx around Root Apexes under Different Exogenous Nutrient Ion Levels. Toxics. 2023; 11(3):227. https://doi.org/10.3390/toxics11030227
Chicago/Turabian StyleWang, Siqi, Huiping Dai, Dandan Ji, Shuang Cui, Chengzhi Jiang, Lidia Skuza, Lianzhen Li, Dariusz Grzebelus, and Shuhe Wei. 2023. "Influencing Factors of Bidens pilosa L. Hyperaccumulating Cadmium Explored by the Real-Time Uptake of Cd2+ Influx around Root Apexes under Different Exogenous Nutrient Ion Levels" Toxics 11, no. 3: 227. https://doi.org/10.3390/toxics11030227
APA StyleWang, S., Dai, H., Ji, D., Cui, S., Jiang, C., Skuza, L., Li, L., Grzebelus, D., & Wei, S. (2023). Influencing Factors of Bidens pilosa L. Hyperaccumulating Cadmium Explored by the Real-Time Uptake of Cd2+ Influx around Root Apexes under Different Exogenous Nutrient Ion Levels. Toxics, 11(3), 227. https://doi.org/10.3390/toxics11030227