The Presence of Ultra-Traces of Persistent Organic Pollutants (POPs) and Heavy Metals in Some Areas of Molise: The Importance of a “Blank” in Public Health Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling for Environmental Blank Analysis
2.2. Study Sites and Sampling for HMs and PAHs Analysis
2.3. Extraction and Determination of HMs from Soil Samples
2.4. Extraction and Determination of PAHs from Soil Samples
2.5. Extraction and Determination of HMs from Honeybee Samples
2.6. Extraction and Determination of PAHs from Honeybee Samples
3. Results
3.1. Soil Samples Results: Environmental Blank
3.2. Honeybee Sample Results
4. Discussion
4.1. Environmental Contamination Levels
4.2. Exposure to Environmental Chemical of the Vulnerable Populations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armiento, G.; Caprioli, R.; Cerbone, A.; Chiavarini, S.; Crovato, C.; De Cassan, M.; De Rosa, L.; Montereali, M.R.; Nardi, E.; Nardi, L.; et al. Current status of coastal sediments contamination in the former industrial area of Bagnoli-Coroglio (Naples, Italy). Chem. Ecol. 2020, 36, 579–597. [Google Scholar] [CrossRef]
- Cilluffo, G.; Ferrante, G.; Fasola, S.; Montalbano, L.; Malizia, V.; Piscini, A.; Romaniello, V.; Silvestri, M.; Stramondo, S.; Stafoggia, M.; et al. Associations of greenness, greyness and air pollution exposure with children’s health: A cross-sectional study in Southern Italy. Environ. Health 2018, 17, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WWF Alarm: City Less and Less Green. Available online: https://www.corriere.it/ambiente/18_ottobre_06/wwf-verde-urbano-citta-italiane-8dca0dfa-c9a0-11e8-9bde-b14535fa581c.shtml (accessed on 12 February 2023).
- Wahlang, B. Exposure to persistent organic pollutants: Impact on women’s health. Rev. Environ. Health 2018, 33, 331–348. [Google Scholar]
- Di Bella, C.; Traina, A.; Giosuè, C.; Carpintieri, D.; Lo Dico, G.M.; Bellante, A.; Del Core, M.; Falco, F.; Gherardi, S.; Uccello, M.M.; et al. Heavy metals and PAHs in meat, milk and seafood from Augusta Area (Southern Italy): Contamination levels, dietary intake and human exposure assessment. Front. Public Health 2020, 8, 273. [Google Scholar]
- Mali, M.; Dell’Anna, M.M.; Mastrorilli, P.; Damiani, L.; Piccinni, A.F. Assessment and source identification of pollution risk for touristic ports: Heavy metals and polycyclic aromatic hydrocarbons in sediments of 4 marinas of the Apulia region (Italy). Mar. Pollut. Bull. 2017, 114, 768–777. [Google Scholar] [CrossRef]
- Imperato, M.; Adamo, P.; Naimo, D.; Arienzo, M.; Stanzione, D.; Violante, P. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ. Pollut. 2003, 124, 247–256. [Google Scholar] [CrossRef]
- Vingiani, S.; De Nicola, F.; Purvis, W.O.; Concha-Grana, E.; Muniategui-Lorenzo, S.; Lopez-Mahia, P.; Giordano, S.; Adamo, P. Active Biomonitoring of Heavy Metals and PAHs with Mosses and Lichens: A Case Study in the Cities of Naples and London. Water Air Soil Pollut. 2015, 226, 240. [Google Scholar] [CrossRef]
- Golia, E.E.; Papadimou, S.G.; Cavalaris, C.; Tsiropoulos, N.G. Level of Contamination Assessment of Potentially Toxic Elements in the Urban Soils of Volos City (Central Greece). Sustainability 2021, 13, 2029. [Google Scholar] [CrossRef]
- Cristaldi, A.; Olivieri Conti, G.; Jho, E.H.; Zuccarello, P.; Grasso, A.; Copat, C.; Ferrante, M. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ. Technol. Innov. 2017, 8, 309–326. [Google Scholar]
- Ali, M.; Song, X.; Ding, D.; Wang, Q.; Zhang, Z.; Tang, Z. Bioremediation of PAHs and heavy metals co-contaminated soils: Challenges and enhancement strategies. Environ. Pollut. 2022, 295, 118686. [Google Scholar]
- Wu, S.; Zhou, B.H.; Chen, D.; Wang, C.; Li, B.; Tong, G.; Yuan, Y.; Xu, B. Improving risk management by using the spatial interaction relationship of heavy metals and PAHs in urban soil. J. Hazard. Mater. 2019, 364, 108–116. [Google Scholar] [CrossRef]
- Ritter, L.; Solomon, K.R.; Forget, J. Inventory of Information Sources on Chemicals—Persistent Organic Pollutants; UNEP Chemicals: Geneva, Switzerland, 1999; pp. 3–72. Available online: https://wedocs.unep.org/rest/bitstreams/13443/retrieve (accessed on 12 February 2023).
- Xu, J.; Liu, Y.; Zhang, Q.; Su, Z.; Yan, T.; Zhou, S.; Wang, T.; Wei, X.; Chen, Z.; Hu, G.; et al. DNA damage, serum metabolomic alteration and carcinogenic risk associated with low-level air pollution. Environ. Pollut. 2022, 297, 118763. [Google Scholar]
- Aday, L.A. Health status of vulnerable populations. Annu. Rev. Public Health 1994, 15, 487–509. [Google Scholar] [CrossRef]
- Trejo-Acevedo, A.; Diaz-Barriga, F.; Carrizales, L.; Dominguez, G.; Costilla, R.; Ize-Lema, I.; Yarto-Ramirez, M.; Gavilan-Garcia, A.; Mejia-Saavedra, J.J.; Perez-Maldonado, I.N. Exposure assessment of persistent organic pollutants and metals in Mexican children. Chemosphere 2009, 74, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Steffes, M.W.; Sjödin, A.; Jones, R.S.; Needham, L.L.; Jacobs, D.R., Jr. Low dose of some persistent organic pollutants predicts Type 2 diabetes: A nested case-control study. Environ. Health Perspect. 2010, 118, 1235–1242. [Google Scholar] [CrossRef]
- Montano-Lopez, F.; Biswas, A. Are heavy metals in urban garden soils linked to vulnerable populations? A case study from Guelph, Canada. Sci. Rep. 2021, 11, 11286. [Google Scholar] [CrossRef] [PubMed]
- Thiombane, M.; Albanese, S.; Di Bonito, M.; Lima, A.; Zuzolo, D.; Rolandi, R.; Qi, S.; De Vivo, B. Source patterns and contamination level of polycyclic aromatic hydrocarbons (PAHs) in urban and rural areas of Southern Italian soils. Environ. Geochem Health 2019, 41, 507–528. [Google Scholar] [PubMed]
- Di Fiore, C.; Nuzzo, A.; Torino, V.; De Cristofaro, A.; Notardonato, I.; Passarella, S.; Di Giorgi, S.; Avino, P. Honeybees as bioindicators of heavy metal pollution in urban and rural areas in the South of Italy. Atmosphere 2022, 13, 624. [Google Scholar] [CrossRef]
- Di Fiore, C.; De Cristofaro, A.; Nuzzo, A.; Notardonato, I.; Ganassi, S.; Iafigliola, L.; Sardella, G.; Ciccone, M.; Nugnes, D.; Passarella, S.; et al. Biomonitoring of polycyclic aromatic hydrocarbons, heavy metals, and plasticizers residues: Role of bees and honey as bioindicators of environmental contamination. Environ. Sci. Pollut. Res. 2023, 1–17. [Google Scholar] [CrossRef]
- Laconi, A.; Tolosi, R.; Mughini-Gras, L.; Mazzucato, M.; Ferrè, N.; Carraro, L.; Cardazzo, B.; Capolongo, F.; Merlanti, R.; Piccirillo, A. Beehive products as bioindicators of antimicrobial resistance contamination in the environment. Sci. Total Environ. 2022, 823, 151131. [Google Scholar] [CrossRef]
- Legislative Decree 3 April 2006, n. 152, Environmental Regulations. Available online: https://www.bosettiegatti.eu/info/norme/statali/2006_0152.htm (accessed on 25 January 2023).
- Goómez-Gutiérrez, A.; Garnacho, E.; Bayona, J.M.; Albaigés, J. Screening ecological risk assessment of persistent organic pollutants in Mediterranean Sea sediments. Environ. Int. 2007, 33, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Salehi, S.Y.; Deljoo, S.; Harzandi, A.M. Fluorene and phenanthrene uptake and accumulation by wheat, alfalfa and sunflower from the contaminated soil. Int. J. Phytoremediation 2015, 17, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Rabodonirina, S.; Rasolomampianina, R.; Krier, F.; Drider, D.; Merhaby, D.; Net, S.; Ouddane, B. Degradation of fluorene and phenanthrene in PAHs-contaminated soil using Pseudomonas and Bacillus strain isolated from oil spill sites. J. Environ. Manag. 2019, 232, 1–7. [Google Scholar] [CrossRef]
- Qu, C.; Albanese, S.; Lima, A.; Hope, D.; Pond, P.; Fortelli, A.; Romano, N.; Cerino, P.; Pizzolante, A.; De Vivo, B. The occurrence of OCPs, PCBs, and PAHs in the soil, air, and bulk deposition of the Naples Metropolitan area, southern Italy: Implication for sources and environmental processes. Environ. Int. 2019, 124, 89–97. [Google Scholar] [CrossRef]
- Perna, A.; Grassi, G.; Gambacorta, E.; Simonetti, A. Minerals content in Basilicata region (southern Italy) honeys from areas with different anthropic impact. Int. J. Food Sci. 2021, 56, 4465–4472. [Google Scholar] [CrossRef]
- Vaiškūnaitė, R.; Jasiūnienė, V. The analysis of heavy metal pollutants emitted by railway transport. Transport 2020, 35, 213–223. [Google Scholar] [CrossRef]
- Briggs, D.J. The use of GIS to evaluate traffic-related pollution. Occup. Environ. Med. 2007, 64, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Akther, S.K.M.; Hossain, M.F.; Parveen, Z. Spatial distribution and ecological risk assessment of potentially toxic metals in the Sundarbans mangrove soils of Bangladesh. Sci. Rep. 2022, 12, 10422. [Google Scholar] [CrossRef]
- Rozanski, S.; Jaworska, H.; Matuszczak, K.; Nowak, J.; Hardy, A. Impact of highway traffic and the acoustic screen on the content and spatial distribution of heavy metals in soils. Environ. Sci. Pollut. Res. 2017, 24, 12778–12786. [Google Scholar] [CrossRef] [Green Version]
- Kasa, E.; Felix-Henningsen, P.; Duering, R.A.; Gjoka, F. The occurrence of heavy metals in irrigated and non-irrigated arable soils, NW Albania. Environ. Monit. Assess. 2014, 186, 3595–3603. [Google Scholar] [CrossRef]
- Ruiz, J.A.; Gutiérrez, M.; Porrini, C. Biomonitoring of bees as bioindicators. Bee World 2013, 90, 61–63. [Google Scholar] [CrossRef]
- Mathiesen, L.; Buerki-Thurnherr, T.; Pastuschek, J.; Aengenheister, L.; Knudsen, L.E. Fetal exposure to environmental chemicals; insights from placental perfusion studies. Placenta 2021, 106, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Gaston, S.A.; Birnbaum, L.S.; Jackson, C.L. Synthetic chemicals and cardio metabolic health across the life course among vulnerable populations: A review of the literature from 2018 to 2019. Curr. Environ. Health Rep. 2020, 7, 30–47. [Google Scholar] [CrossRef] [PubMed]
- Karttunen, V.; Myllynen, P.; Prochazka, G.; Pelkonen, O.; Segerback, D.; Vahakangas, K. Placental transfer and DNA binding of benzo(a)pyrene in human placental perfusion. Toxicol. Lett. 2010, 197, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512–513, 143–153. [Google Scholar] [CrossRef] [PubMed]
Locality | Cu | Cu * | Ni | Ni * | Zn | Zn * |
---|---|---|---|---|---|---|
Monteforte | 61.0 ± 2.1 | 120 | 37.2 ± 5.6 | 120 | 52.6 ± 3.4 | 150 |
Verrino | 27.2 ± 0.8 | 14.1 ± 0.5 | 39.7 ± 3.2 | |||
Guardata | 21.6 ± 0.3 | 12.9 ± 1.6 | 46.5 ± 7.4 | |||
Guado Cannavina | 22.7 ± 1.7 | 24.3 ± 2.8 | 38.8 ± 2.2 | |||
Monte S. Nicola | 64.2 ± 1.8 | 16.3 ± 1.4 | 34.2 ± 5.1 | |||
Macchia Bassa | 64.9 ± 2.4 | 16.5 ± 0.9 | 31.9 ± 2.8 |
Locality | Fluorene | Fluorene * | Phenanthrene | Phenanthrene * |
---|---|---|---|---|
Monteforte | <LOD | 50 | <LOD | 50 |
Verrino | 2.5 ± 0.7 | 9.5 ± 0.4 | ||
Guardata | 17.0 ± 0.4 | <LOD | ||
Guado Cannavina | 15.0 ± 0.9 | 11.5 ± 0.8 | ||
Monte S. Nicola | 4.0 ± 0.5 | <LOD | ||
Macchia Bassa | 2.5 ± 0.05 | <LOD |
HMs | ICP-OES | AA |
---|---|---|
Cu | 0.05 | 4.0 |
Zn | 0.02 | 3.0 |
Pb | 0.01 | 1.0 |
Cd | 0.02 | 2.0 |
Ni | 0.02 | 3.0 |
PAHs | GC-MS (QqQ) | |
BaP | 0.02 | |
BaA | 0.02 | |
BkFA | 0.03 | |
CHR | 0.03 | |
IP | 0.05 | |
PY | 0.04 | |
BbFA | 0.05 | |
BghiP | 0.06 | |
DBahA | 0.06 | |
Fle | 0.07 | |
Phe | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Notardonato, I.; Fantasma, F.; Monaco, P.; Di Fiore, C.; Saviano, G.; Giancola, C.; Avino, P.; De Felice, V. The Presence of Ultra-Traces of Persistent Organic Pollutants (POPs) and Heavy Metals in Some Areas of Molise: The Importance of a “Blank” in Public Health Studies. Toxics 2023, 11, 250. https://doi.org/10.3390/toxics11030250
Notardonato I, Fantasma F, Monaco P, Di Fiore C, Saviano G, Giancola C, Avino P, De Felice V. The Presence of Ultra-Traces of Persistent Organic Pollutants (POPs) and Heavy Metals in Some Areas of Molise: The Importance of a “Blank” in Public Health Studies. Toxics. 2023; 11(3):250. https://doi.org/10.3390/toxics11030250
Chicago/Turabian StyleNotardonato, Ivan, Francesca Fantasma, Pamela Monaco, Cristina Di Fiore, Gabriella Saviano, Carmen Giancola, Pasquale Avino, and Vincenzo De Felice. 2023. "The Presence of Ultra-Traces of Persistent Organic Pollutants (POPs) and Heavy Metals in Some Areas of Molise: The Importance of a “Blank” in Public Health Studies" Toxics 11, no. 3: 250. https://doi.org/10.3390/toxics11030250
APA StyleNotardonato, I., Fantasma, F., Monaco, P., Di Fiore, C., Saviano, G., Giancola, C., Avino, P., & De Felice, V. (2023). The Presence of Ultra-Traces of Persistent Organic Pollutants (POPs) and Heavy Metals in Some Areas of Molise: The Importance of a “Blank” in Public Health Studies. Toxics, 11(3), 250. https://doi.org/10.3390/toxics11030250