Oxidative Stress Effects of Multiple Pollutants in an Indoor Environment on Human Bronchial Epithelial Cells
Abstract
:1. Introduction
2. Experimental Section
2.1. Detection Scheme
2.2. Cell Culture and BTX Concentration
2.3. Cytotoxity Study of BTX on BEAS-2B Cell
2.4. Detection of Intracellular Reactive Oxygen Species (ROS) after BTX Incubation
2.5. The Effect of BTX on the Mitochondrial Membrane Potential of BEAS-2B Cell
2.6. Cell Apoptosis Effect of BTX on BEAS-2B Cell
2.7. Detection of Inflammatory Cytokines in BEAS-2B Cells Treated with BTX
2.8. Detection of CytochromeP4502E1 (CYP2E1) after BTX Incubation
3. Result and Discussion
Test Results of BTX Concentration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali-Taleshi, M.S.; Moeinaddini, M.; Bakhtiari, A.R.; Feiznia, S.; Squizzato, S.; Bourliva, A. A one-year monitoring of spatiotemporal variations of PM2.5-bound PAHs in Tehran, Iran: Source apportionment, local and regional sources origins and source-specific cancer risk assessment. Environ. Pollut. 2021, 274, 115883. [Google Scholar] [CrossRef]
- Ali-Taleshi, M.S.; Squizzato, S.; Bakhtiari, A.R.; Moeinaddini, M.; Masiol, M. Using a hybrid approach to apportion potential source locations contributing to excess cancer risk of PM2.5-bound PAHs during heating and non-heating periods in a megacity in the Middle East. Environ. Res. 2021, 201, 111617. [Google Scholar] [CrossRef]
- Deng, B.; Hou, K.; Chen, Y.; Chen, Z.; Duan, X.; Huang, Z.; Tao, D. Quantitative detection, sources exploration and reduction of in-cabin benzene series hazards of electric buses through climate chamber experiments. J. Hazard. Mater. 2021, 412, 125107. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Lee, S.C.; Li, W.M.; Cao, J.J. Source characterization of BTEX in indoor microenvironments in Hong Kong. Atmos. Environ. 2003, 37, 73. [Google Scholar] [CrossRef]
- Herberth, G.; Herzog, T.; Hinz, D.; Röder, S.; Schilde, M.; Sack, U.; Diez, U.; Borte, M.; Lehmann, I. Renovation activities during pregnancy induce a Th2 shift in fetal but not in maternal immune system. Int. J. Hyg. Environ. Health 2013, 216, 309. [Google Scholar] [CrossRef] [PubMed]
- Järnström, H.; Saarela, K.; Kalliokoski, P.; Pasanen, A.L. The Impact of Emissions from Structures on Indoor Air Concentrations in Newly Finished Buildings—Predicted and On-Site Measured Levels. Indoor Built Environ. 2008, 17, 313. [Google Scholar] [CrossRef]
- Deng, G.; Li, Z.; Wang, Z.; Gao, J.; Xu, Z.; Li, J.; Wang, Z. Indoor/outdoor relationship of PM2.5 concentration in typical buildings with and without air cleaning in Beijing. Indoor Built Environ. 2015, 26, 60. [Google Scholar] [CrossRef]
- Sun, R.; Xu, K.; Ji, S.; Pu, Y.; Yu, L.; Yin, L.; Zhang, J.; Pu, Y. Toxicity in hematopoietic stem cells from bone marrow and peripheral blood in mice after benzene exposure: Single-cell transcriptome sequencing analysis. Ecotox. Environ. Saf. 2021, 207, 111490. [Google Scholar] [CrossRef] [PubMed]
- GB 50325-2020; Indoor Environmental Pollution Control of Civil Building Engineering. Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD) and State Administration for Market Regulation: Beijing, China, 2020.
- GB/T 18883-2022; Indoor Air Quality Standard. State Administration for Market Regulation and Standardization Admin-istration: Beijing, China, 2022.
- Eichler, C.M.A.; Hubal, E.A.C.; Xu, Y.; Cao, J.; Bi, C.; Weschler, C.J.; Salthammer, T.; Morrison, G.C.; Koivisto, A.J.; Zhang, Y.; et al. Assessing Human Exposure to SVOCs in Materials, Products, and Articles: A Modular Mechanistic Framework. Environ. Sci. Technol. 2021, 55, 25. [Google Scholar] [CrossRef] [PubMed]
- Lan, Q.; Zhang, L.; Li, G.; Vermeulen, R.; Weinberg, R.S.; Dosemeci, M.; Rappaport, S.M.; Shen, M.; Alter, B.P.; Wu, Y.; et al. The Scientific Consensus on Climate Change. Science 2004, 306, 5702. [Google Scholar]
- Wang, T.-S.; Tian, W.; Fang, Y.; Guo, K.-R.; Li, A.-Q.; Sun, Y.; Wu, H.-T.; Zheng, G.-Q.; Feng, N.-N.; Xing, C.-H.; et al. Changes in miR-222 expression, DNA repair capacity, and MDM2-p53 axis in association with low-dose benzene genotoxicity and hematotoxicity. Sci. Total Environ. 2021, 765, 142740. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Giagloglou, E.; Steinle, S.; Davis, A.; Sleeuwenhoek, A.; Galea, K.S.; Dixon, K.; Crawford, J.O. Indoor Exposure to Selected Air Pollutants in the Home Environment: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 8972. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Klimecki, W.T. Culture conditions profoundly impact phenotype in BEAS-2B, a human pulmonary epithelial model. J. Appl. Toxicol. 2015, 35, 945. [Google Scholar] [CrossRef] [Green Version]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkataraman, K.; Khurana, S.; Tai, T.C. Oxidative Stress in Aging-Matters of the Heart and Mind. Int. J. Mol. Sci. 2013, 14, 17897. [Google Scholar] [CrossRef] [Green Version]
- Salisbury, D.; Bronas, U. Reactive Oxygen and Nitrogen Species Impact on Endothelial Dysfunction. Nurs. Res. 2015, 64, 53. [Google Scholar]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, E.; Dittrich-Breiholz, O.; Holtmann, H.; Kracht, M. Multiple control of interleukin-8 gene expression. J. Leukoc. Biol. 2002, 72, 847. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436. [Google Scholar] [CrossRef]
- Iser, I.C.; de Campos, R.P.; Bertoni, A.P.S.; Wink, M.R. Identification of valid endogenous control genes for determining gene expression in C6 glioma cell line treated with conditioned medium from adipose-derived stem cell. Biomed. Pharmacother. 2015, 75, 75–82. [Google Scholar] [CrossRef]
- Contreras-Zentella, M.L.; Villalobos-García, D.; Hernández-Muñoz, R. Ethanol Metabolism in the Liver, the Induction of Oxidant Stress, and the Antioxidant Defense System. Antioxidants 2022, 11, 1258. [Google Scholar] [CrossRef] [PubMed]
- Massart, J.; Begriche, K.; Hartman, J.H.; Fromenty, B. Role of Mitochondrial Cytochrome P450 2E1 in Healthy and Diseased Liver. Cells 2022, 11, 288. [Google Scholar] [CrossRef] [PubMed]
Standards | Benzene | Toluene | Xylene | Ref. |
---|---|---|---|---|
WHO Air Quality Guidelines for Europe Second Edition | A safe level for airborn benzene cannot be determined. As low as possible. The concentrations of airborne benzene associated with an excess lifetime risk of 1/10,000, 1/100,000, and 1/1,000,000 are 17, 1.7, and 0.17 μg/m3, respectively. | The peak concentrations of toluene in air should be kept below 1000 μg/m3 as a 30 min average to avoid detection by odor. | - | Air quality guidelines for Europe, 2nd ed WHO |
Hong Kong guidance note for IAQ management in offices and public places | For Good Class 16.1 µg/m3 | For Good Class 1092 µg/m3 | For Good Class 1447 µg/m3 | A guide on indoor air quality certification scheme for offices and public places Hong Kong Environmental Protection Department |
GB 50325-2020 | Type-I civil building: ≤60 μg/m3; Type-II civil building: ≤90 μg/m3. | Type-I civil building: ≤150 μg/m3; Type-II civil building: ≤200 μg/m3. | Type-I civil building: ≤200 μg/m3; Type-II civil building: ≤200 μg/m3. | Indoor air quality management group of China, GB 50325-2020 |
GB/T 18883-2020 (exposure draft) | 30 μg/m3 (1 h average) | 200 μg/m3 (1 h average) | 200 μg/m3 (1 h average) | Indoor air quality management group of China, GB/T 18883-2020 |
Reagents | Benzene | Toluene | Xylene |
---|---|---|---|
Reagent concentration (μg/L) | 0.015 | 0.025 | 0.047 |
0.030 | 0.200 | 0.200 | |
0.045 | 0.300 | 0.300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Kong, D.; Ci, M.; Guan, Y.; Luo, C.; Zhang, X.; Gao, F.; Li, M.; Deng, G. Oxidative Stress Effects of Multiple Pollutants in an Indoor Environment on Human Bronchial Epithelial Cells. Toxics 2023, 11, 251. https://doi.org/10.3390/toxics11030251
Cheng Y, Kong D, Ci M, Guan Y, Luo C, Zhang X, Gao F, Li M, Deng G. Oxidative Stress Effects of Multiple Pollutants in an Indoor Environment on Human Bronchial Epithelial Cells. Toxics. 2023; 11(3):251. https://doi.org/10.3390/toxics11030251
Chicago/Turabian StyleCheng, Yao, Dexuan Kong, Meng Ci, Yunlong Guan, Changyi Luo, Xianglan Zhang, Fuping Gao, Min Li, and Gaofeng Deng. 2023. "Oxidative Stress Effects of Multiple Pollutants in an Indoor Environment on Human Bronchial Epithelial Cells" Toxics 11, no. 3: 251. https://doi.org/10.3390/toxics11030251
APA StyleCheng, Y., Kong, D., Ci, M., Guan, Y., Luo, C., Zhang, X., Gao, F., Li, M., & Deng, G. (2023). Oxidative Stress Effects of Multiple Pollutants in an Indoor Environment on Human Bronchial Epithelial Cells. Toxics, 11(3), 251. https://doi.org/10.3390/toxics11030251