Misadventures in Toxicology: Concentration Matters for Testosterone-Induced Neurotoxicity
Abstract
:1. Introduction
2. In Vitro Data
2.1. Concentration Matters
2.2. Consideration of Tissue Distribution
2.3. Species Differences in Sensitivity
3. Observational Studies
4. Implications
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spritzer, M.D.; Roy, E.A. Testosterone and Adult Neurogenesis. Biomolecules 2020, 10, 225. [Google Scholar] [CrossRef]
- Southren, A.L.; Gordon, G.G.; Tochimoto, S. Further study of factors affecting the metabolic clearance rate of testosterone in man. J. Clin. Endocrinol. Metab. 1968, 28, 1105–1112. [Google Scholar] [CrossRef]
- Horton, R.; Shinsako, J.; Forsham, P.H. Testosterone production and metabolic clearance rates with volumes of distribution in normal adult men and women. Acta Endocrinol. 1965, 48, 446–458. [Google Scholar]
- Southren, A.L.; Tochimoto, S.; Carmody, N.C.; Isurugi, K. Plasma production rates of testosterone in normal adult men and women and in patients with the syndrome of feminizing testes. J. Clin. Endocrinol. Metab. 1965, 25, 1441–1450. [Google Scholar] [CrossRef]
- Southren, A.L.; Gordon, G.G.; Tochimoto, S.; Pinzon, G.; Lane, D.R.; Stypulkowski, W. Mean plasma concentration, metabolic clearance and basal plasma production rates of testosterone in normal young men and women using a constant infusion procedure: Effect of time of day and plasma concentration on the metabolic clearance rate of testosterone. J. Clin. Endocrinol. Metab. 1967, 27, 686–694. [Google Scholar]
- Wang, C.; Catlin, D.H.; Starcevic, B.; Leung, A.; DiStefano, E.; Lucas, G.; Hull, L.; Swerdloff, R.S. Testosterone metabolic clearance and production rates determined by stable isotope dilution/tandem mass spectrometry in normal men: Influence of ethnicity and age. J. Clin. Endocrinol. Metab. 2004, 89, 2936–2941. [Google Scholar] [CrossRef]
- Hodgson, Y.; Hudson, B. Leydig cell function. Monogr. Endocrinol. 1983, 25, 107–132. [Google Scholar]
- Mori, H.; Hiromoto, N.; Nakahara, M.; Shiraishi, T. Stereological analysis of Leydig cell ultrastructure in aged humans. J. Clin. Endocrinol. Metab. 1982, 55, 634–641. [Google Scholar] [CrossRef]
- Mori, H. Ultrastructure and stereological analysis of Leydig cells. In Ultrastructure of Endocrine Cells and Tissues. Electron Microscopy in Biology and Medicine; Motta, P.M., Ed.; Springer: Boston, MA, USA, 1984; Volume 1. [Google Scholar]
- Basaria, S. Male hypogonadism. Lancet 2014, 383, 1250–1263. [Google Scholar] [CrossRef]
- Shoskes, J.J.; Wilson, M.K.; Spinner, M.L. Pharmacology of testosterone replacement therapy preparations. Trans. Androl. Urol. 2016, 5, 834–843. [Google Scholar] [CrossRef]
- Matsumoto, A.M.; Bremner, W.J. Serum testosterone assays—Accuracy matters. J. Clin. Endocrinol. Metab. 2004, 89, 520–524. [Google Scholar] [CrossRef]
- Dandona, P.; Rosenberg, M.T. A practical guide to male hypogonadism in the primary care setting. Int. J. Clin. Pract. 2010, 64, 682–696. [Google Scholar] [CrossRef]
- Bhasin, S.; Brito, J.P.; Cunningham, G.R.; Hayes, F.J.; Hodis, H.N.; Matsumoto, A.M.; Snyder, P.J.; Swerdloff, R.S.; Wu, F.C.; Yialamas, M.A. Testosterone Therapy in Men with Hypogonadism: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2018, 103, 1715–1744. [Google Scholar] [CrossRef]
- Mulhall, J.P.; Trost, L.W.; Brannigan, R.E.; Kurtz, E.G.; Redmon, J.B.; Chiles, K.A.; Lightner, D.J.; Miner, M.M.; Murad, M.H.; Nelson, C.J.; et al. Evaluation and Management of Testosterone Deficiency: AUA Guideline. J. Urol. 2018, 200, 423–432. [Google Scholar] [CrossRef]
- Jayasena, C.N.; Anderson, R.A.; Llahana, S.; Barth, J.H.; MacKenzie, F.; Wilkes, S.; Smith, N.; Sooriakumaran, P.; Minhas, S.; Wu, F.C.W.; et al. Society for Endocrinology guidelines for testosterone replacement therapy in male hypogonadism. Clin. Endocrinol. 2022, 96, 200–219. [Google Scholar] [CrossRef]
- Park, H.J.; Ahn, S.T.; Moon, D.G. Evolution of Guidelines for Testosterone Replacement Therapy. J. Clin. Med. 2019, 8, 410. [Google Scholar] [CrossRef]
- Pomara, C.; Neri, M.; Bello, S.; Fiore, C.; Riezzo, I.; Turillazzi, E. Neurotoxicity by synthetic androgen steroids: Oxidative stress, apoptosis, and neuropathology: A review. Curr. Neuropharmacol. 2015, 13, 132–145. [Google Scholar] [CrossRef]
- de Azevedo Cruz Seara, F.; Fortunato, R.S.; Carvalho, D.; Nascimento, J.H.M. Neurophysiological Repercussions of Anabolic Steroid Abuse: A Road into Neurodegenerative Disorders. In Sex Hormones in Neurodegenerative Processes and Diseases; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Kranz, G.S.; Spies, M.; Vraka, C.; Kaufmann, U.; Klebermass, E.M.; Handschuh, P.A.; Ozenil, M.; Murgaš, M.; Pichler, V.; Rischka, L.; et al. High-dose testosterone treatment reduces monoamine oxidase A levels in the human brain: A preliminary report. Psychoneuroendocrinology 2021, 133, 105381. [Google Scholar] [CrossRef]
- Spurny-Dworak, B.; Handschuh, P.; Spies, M.; Kaufmann, U.; Seiger, R.; Klöbl, M.; Konadu, M.E.; Reed, M.B.; Ritter, V.; Baldinger-Melich, P.; et al. Effects of sex hormones on brain GABA and glutamate levels in a cis- and transgender cohort. Psychoneuroendocrinology 2022, 138, 105683. [Google Scholar] [CrossRef]
- O’Connor, D.B.; Archer, J.; Hair, W.M.; Wu, F.C. Activational effects of testosterone on cognitive function in men. Neuropsychologia 2001, 39, 1385–1394. [Google Scholar] [CrossRef]
- Carré, J.M.; Geniole, S.N.; Ortiz, T.L.; Bird, B.M.; Videto, A.; Bonin, P.L. Exogenous Testosterone Rapidly Increases Aggressive Behavior in Dominant and Impulsive Men. Biol. Psychiatry 2017, 82, 249–256. [Google Scholar] [CrossRef]
- Foradori, C.D.; Weiser, M.J.; Handa, R.J. Non-genomic actions of androgens. Front. Neuroendocrinol. 2008, 29, 169–181. [Google Scholar] [CrossRef]
- Caraci, F.; Pistarà, V.; Corsaro, A.; Tomasello, F.; Giuffrida, M.L.; Sortino, M.A.; Nicoletti, F.; Copani, A. Neurotoxic properties of the anabolic androgenic steroids nandrolone and methandrostenolone in primary neuronal cultures. J. Neurosci. Res. 2011, 89, 592–600. [Google Scholar] [CrossRef]
- Cunningham, R.L.; Giuffrida, A.; Roberts, J.L. Androgens induce dopaminergic neurotoxicity via caspase-3-dependent activation of protein kinase C-delta. Endocrinology 2009, 150, 5539–5548. [Google Scholar] [CrossRef]
- Estrada, M.; Varshney, A.; Ehrlich, B.E. Elevated testosterone induces apoptosis in neuronal cells. J. Biol. Chem. 2006, 281, 25492–25501. [Google Scholar] [CrossRef]
- Zelleroth, S.; Nylander, E.; Nyberg, F.; Grönbladh, A.; Hallberg, M. Toxic Impact of Anabolic Androgenic Steroids in Primary Rat Cortical Cell Cultures. Neuroscience 2019, 397, 172–183. [Google Scholar] [CrossRef]
- El-Khatib, F.M.; Huynh, L.M.; Kopelevich, A.; Osman, M.M.; Choi, E.; Nguyen, J.T.; Dianatnejad, S.; Wu, Q.; Olivas, M.G.; Spitz, A.; et al. Comparative assessment of outcomes and adverse effects using two different intramuscular testosterone therapy regimens: 100 mg IM weekly or 200 mg IM biweekly. Int. J. Impot. Res. 2022, 34, 558–563. [Google Scholar] [CrossRef]
- Behre, H.M.; Nieschlag, E. Comparative pharmacokinetics of testosterone esters. In Testosterone; Nieschlag, E., Behre, H.M., Eds.; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef]
- Sokol, R.Z.; Palacios, A.; Campfield, L.A.; Saul, C.; Swerdloff, R.S. Comparison of the kinetics of injectable testosterone in eugonadal and hypogonadal men. Fertil. Steril. 1982, 37, 425–430. [Google Scholar] [CrossRef]
- Dobs, A.S.; Meikle, A.W.; Arver, S.; Sanders, S.W.; Caramelli, K.E.; Mazer, N.A. Pharmacokinetics, efficacy, and safety of a permeation-enhanced testosterone transdermal system in comparison with bi-weekly injections of testosterone enanthate for the treatment of hypogonadal men. J. Clin. Endocrinol. Metab. 1999, 84, 3469–3478. [Google Scholar]
- Matsumoto, A.M. Effects of chronic testosterone administration in normal men: Safety and efficacy of high dosage testosterone and parallel dose-dependent suppression of luteinizing hormone, follicle-stimulating hormone, and sperm production. J. Clin. Endocrinol. Metab. 1990, 70, 282–287. [Google Scholar] [CrossRef]
- Kaminetsky, J.; Jaffe, J.S.; Swerdloff, R.S. Pharmacokinetic Profile of Subcutaneous Testosterone Enanthate Delivered via a Novel, Prefilled Single-Use Autoinjector: A Phase II Study. Sex. Med. 2015, 3, 269–279. [Google Scholar] [CrossRef]
- Yates, W.R.; Perry, P.J.; MacIndoe, J.; Holman, T.; Ellingrod, V. Psychosexual effects of three doses of testosterone cycling in normal men. Biol. Psychiatry 1999, 45, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.A.; Wu, F.C. Comparison between testosterone enanthate-induced azoospermia and oligozoospermia in a male contraceptive study. II. Pharmacokinetics and pharmacodynamics of once weekly administration of testosterone enanthate. J. Clin. Endocrinol. Metab. 1996, 81, 896–901. [Google Scholar] [PubMed]
- O’Connor, D.B.; Archer, J.; Hair, W.M.; Wu, F.C. Exogenous testosterone, aggression, and mood in eugonadal and hypogonadal men. Physiol. Behav. 2002, 75, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Tricker, R.; Casaburi, R.; Storer, T.W.; Clevenger, B.; Berman, N.; Shirazi, A.; Bhasin, S. The effects of supraphysiological doses of testosterone on angry behavior in healthy eugonadal men—A clinical research center study. J. Clin. Endocrinol. Metab. 1996, 81, 3754–3758. [Google Scholar] [PubMed]
- Bhasin, S.; Storer, T.W.; Berman, N.; Callegari, C.; Clevenger, B.; Phillips, J.; Bunnell, T.J.; Tricker, R.; Shirazi, A.; Casaburi, R. The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N. Eng. J. Med. 1996, 335, 1–7. [Google Scholar] [CrossRef]
- Seidman, S.N.; Rabkin, J.G. Testosterone replacement therapy for hypogonadal men with SSRI-refractory depression. J. Affect. Disord. 1998, 48, 157–161. [Google Scholar] [CrossRef]
- Bachman, E.; Feng, R.; Travison, T.; Li, M.; Olbina, G.; Ostland, V.; Ulloor, J.; Zhang, A.; Basaria, S.; Ganz, T.; et al. Testosterone suppresses hepcidin in men: A potential mechanism for testosterone-induced erythrocytosis. J. Clin. Endocrinol. Metab. 2010, 95, 4743–4747. [Google Scholar] [CrossRef]
- Herbst, K.L.; Amory, J.K.; Brunzell, J.D.; Chansky, H.A.; Bremner, W.J. Testosterone administration to men increases hepatic lipase activity and decreases HDL and LDL size in 3 wk. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E1112–E1118. [Google Scholar] [CrossRef]
- Bhasin, S.; Woodhouse, L.; Casaburi, R.; Singh, A.B.; Bhasin, D.; Berman, N.; Chen, X.; Yarasheski, K.E.; Magliano, L.; Dzekov, C.; et al. Testosterone dose-response relationships in healthy young men. Am. J. Physiol. Endocrinol. Metab. 2001, 281, E1172–E1181. [Google Scholar] [CrossRef]
- Cantrill, J.A.; Dewis, P.; Large, D.M.; Newman, M.; Anderson, D.C. Which testosterone replacement therapy? Clin. Endocrinol. 1984, 21, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Solheim, S.A.; Mørkeberg, J.; Juul, A.; Freiesleben, S.Y.; Upners, E.N.; Dehnes, Y.; Nordsborg, N.B. An Intramuscular Injection of Mixed Testosterone Esters Does Not Acutely Enhance Strength and Power in Recreationally Active Young Men. Front. Physiol. 2020, 11, 563620. [Google Scholar] [CrossRef] [PubMed]
- Nankin, H.R. Hormone kinetics after intramuscular testosterone cypionate. Fertil. Steril. 1987, 47, 1004–1009. [Google Scholar] [CrossRef]
- Yale University. Elevated Testosterone Kills Nerve Cells. ScienceDaily. 27 September 2006. Available online: www.sciencedaily.com/releases/2006/09/060926104352.htm (accessed on 15 January 2023).
- Nagelberg, S.B.; Laue, L.; Loriaux, D.L.; Liu, L.; Sherins, R.J. Cerebrovascular accident associated with testosterone therapy in a 21-year-old hypogonadal man. N. Engl. J. Med. 1986, 314, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Willson, C.M.; Grundmann, O. In vitro assays in natural products research—A matter of concentration and relevance to in vivo administration using resveratrol, α-mangostin/γ-mangostin and xanthohumol as examples. Nat. Prod. Res. 2017, 31, 492–506. [Google Scholar] [CrossRef]
- Willson, C. Comments to the Editor Re: Papukashvili et al. Nutrients 2020, 12, 1965. [Google Scholar] [CrossRef]
- Lanthier, A.; Patwardhan, V.V. Sex steroids and 5-en-3 beta-hydroxysteroids in specific regions of the human brain and cranial nerves. J. Steroid Biochem. 1986, 25, 445–449. [Google Scholar] [CrossRef]
- Hammond, G.L.; Hirvonen, J.; Vihko, R. Progesterone, androstenedione, testosterone, 5 alpha-dihydrotestosterone and androsterone concentrations in specific regions of the human brain. J. Steroid Biochem. 1983, 18, 185–189. [Google Scholar] [CrossRef]
- Rosario, E.R.; Chang, L.; Stanczyk, F.Z.; Pike, C.J. Age-related testosterone depletion and the development of Alzheimer disease. JAMA 2004, 292, 1431–1432. [Google Scholar] [CrossRef]
- Rosario, E.R.; Chang, L.; Head, E.H.; Stanczyk, F.Z.; Pike, C.J. Brain levels of sex steroid hormones in men and women during normal aging and in Alzheimer’s disease. Neurobiol. Aging 2011, 32, 604–613. [Google Scholar] [CrossRef]
- Bloch, M.; Rubinow, D.R.; Berlin, K.; Kevala, K.R.; Kim, H.Y.; Schmidt, P.J. Monoamines and neurosteroids in sexual function during induced hypogonadism in healthy men. Arch. Gen. Psychiatry 2006, 63, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.A.; Morley, J.E.; Niehoff, M.L.; Mattern, C. Delivery of testosterone to the brain by intranasal administration: Comparison to intravenous testosterone. J. Drug Target. 2009, 17, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Caruso, D.; Melis, M.; Fenu, G.; Giatti, S.; Romano, S.; Grimoldi, M.; Crippa, D.; Marrosu, M.G.; Cavaletti, G.; Melcangi, R.C. Neuroactive steroid levels in plasma and cerebrospinal fluid of male multiple sclerosis patients. J. Neurochem. 2014, 130, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Plank, E.; Jungwirth, B.; Hapfelmeier, A.; Podtschaske, A.; Kagerbauer, S.M. Weak correlations between serum and cerebrospinal fluid levels of estradiol, progesterone and testosterone in males. BMC Neurosci. 2019, 20, 53. [Google Scholar] [CrossRef]
- Ryberg, H.; Johansson, P.; Wallin, A.; Emilsson, J.F.; Eriksson, E.; Svensson, J.; Ohlsson, C. Testosterone associates differently with body mass index and age in serum and cerebrospinal fluid in men. J. Intern. Med. 2022, 292, 684–686. [Google Scholar] [CrossRef]
- Dubey, A.K.; Herbert, J.; Abbott, D.H.; Martensz, N.D. Serum and CSF concentrations of testosterone and LH related to negative feedback in male rhesus monkeys. Neuroendocrinology 1984, 39, 176–185. [Google Scholar] [CrossRef]
- Kancheva, R.; Hill, M.; Novák, Z.; Chrastina, J.; Velíková, M.; Kancheva, L.; Ríha, I.; Stárka, L. Peripheral neuroactive steroids may be as good as the steroids in the cerebrospinal fluid for the diagnostics of CNS disturbances. J. Steroid Biochem. Mol. Biol. 2010, 119, 35–44. [Google Scholar] [CrossRef]
- Daly, R.C.; Su, T.P.; Schmidt, P.J.; Pickar, D.; Murphy, D.L.; Rubinow, D.R. Cerebrospinal fluid and behavioral changes after methyltestosterone administration: Preliminary findings. Arch. Gen. Psychiatry 2001, 58, 172–177. [Google Scholar] [CrossRef]
- Cunningham, G.R.; Tindall, D.J.; Lobl, T.J.; Campbell, J.A.; Means, A.R. Steroid structural requirements for high affinity binding to human sex steroid binding protein (SBP). Steroids 1981, 38, 243–262. [Google Scholar] [CrossRef]
- Wiita, B.; Artis, A.; Ackerman, D.M.; Longcope, C. Binding of 17-alpha-methyltestosterone in vitro to human sex hormone binding globulin and rat ventral prostate androgen receptors. Ther. Drug Monit. 1995, 17, 377–380. [Google Scholar] [CrossRef]
- Teubel, J.; Parr, M.K. Determination of neurosteroids in human cerebrospinal fluid in the 21st century: A review. J. Steroid Biochem. Mol. Biol. 2020, 204, 105753. [Google Scholar] [CrossRef] [PubMed]
- Kasteel, E.E.J.; Westerink, R.H.S. Refining in vitro and in silico neurotoxicity approaches by accounting for interspecies and interindividual differences in toxicodynamics. Expert Opin. Drug Metab. Toxicol. 2021, 17, 1007–1017. [Google Scholar] [CrossRef]
- Minta, M.; Radko, L.; Stypuła-Trębas, S.; Żmudzki, J. Cytotoxic effects of the synthetic oestrogens and androgens on Balb/c 3T3 and HepG2 cells. Bull. Vet. Inst. Pulawy 2014, 58, 613–620. [Google Scholar] [CrossRef]
- Bal-Price, A.K.; Hogberg, H.T.; Buzanska, L.; Coecke, S. Relevance of in vitro neurotoxicity testing for regulatory requirements: Challenges to be considered. Neurotoxicol. Teratol. 2010, 32, 36–41. [Google Scholar] [CrossRef]
- Heusinkveld, H.J.; Westerink, R.H.S. Comparison of different in vitro cell models for the assessment of pesticide-induced dopaminergic neurotoxicity. Toxicol. Vitr. 2017, 45, 81–88. [Google Scholar] [CrossRef]
- Gao, L.; Zhou, W.; Symmes, B.; Freed, C.R. Re-Cloning the N27 Dopamine Cell Line to Improve a Cell Culture Model of Parkinson’s Disease. PLoS ONE 2016, 11, e0160847. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Rybalchenko, N.; Schreihofer, D.A.; Singh, M.; Abbassi, B.; Cunningham, R.L. Cell Models for the Study of Sex Steroid Hormone Neurobiology. J. Steroids Horm. Sci. 2012, S2, 3. [Google Scholar] [CrossRef] [PubMed]
- Bjørnebekk, A.; Walhovd, K.B.; Jørstad, M.L.; Due-Tønnessen, P.; Hullstein, I.R.; Fjell, A.M. Structural Brain Imaging of Long-Term Anabolic-Androgenic Steroid Users and Nonusing Weightlifters. Biol. Psychiatry 2017, 82, 294–302. [Google Scholar] [CrossRef]
- Bjørnebekk, A.; Kaufmann, T.; Hauger, L.E.; Klonteig, S.; Hullstein, I.R.; Westlye, L.T. Long-term Anabolic-Androgenic Steroid Use Is Associated with Deviant Brain Aging. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 579–589. [Google Scholar] [CrossRef]
- Albano, G.D.; Amico, F.; Cocimano, G.; Liberto, A.; Maglietta, F.; Esposito, M.; Rosi, G.L.; Di Nunno, N.; Salerno, M.; Montana, A. Adverse Effects of Anabolic-Androgenic Steroids: A Literature Review. Healthcare 2021, 9, 97. [Google Scholar] [CrossRef]
- Hauger, L.E.; Westlye, L.T.; Fjell, A.M.; Walhovd, K.B.; Bjørnebekk, A. Structural brain characteristics of anabolic-androgenic steroid dependence in men. Addiction 2019, 114, 1405–1415. [Google Scholar] [CrossRef]
- Archer, E.; Pavela, G.; Lavie, C.J. The Inadmissibility of What We Eat in America and NHANES Dietary Data in Nutrition and Obesity Research and the Scientific Formulation of National Dietary Guidelines. Mayo Clin. Proc. 2015, 90, 911–926. [Google Scholar] [CrossRef] [PubMed]
- Hauger, L.E.; Havnes, I.A.; Jørstad, M.L.; Bjørnebekk, A. Anabolic androgenic steroids, antisocial personality traits, aggression and violence. Drug Alcohol Depend. 2021, 221, 108604. [Google Scholar] [CrossRef] [PubMed]
- Vaskinn, A.; Hauger, L.E.; Bjørnebekk, A. Theory of mind in users of anabolic androgenic steroids. Psychopharmacology 2020, 237, 3191–3199. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.S.; Hildebrandt, T.; Wallisch, P. Anabolic-androgenic steroid use is associated with psychopathy, risk-taking, anger, and physical problems. Sci. Rep. 2022, 12, 9133. [Google Scholar] [CrossRef]
- Ersche, K.D.; Turton, A.J.; Chamberlain, S.R.; Müller, U.; Bullmore, E.T.; Robbins, T.W. Cognitive dysfunction and anxious-impulsive personality traits are endophenotypes for drug dependence. Am. J. Psychiatry 2012, 169, 926–936. [Google Scholar] [CrossRef]
- Mackey, S.; Allgaier, N.; Chaarani, B.; Spechler, P.; Orr, C.; Bunn, J.; Allen, N.B.; Alia-Klein, N.; Batalla, A.; Blaine, S.; et al. Mega-Analysis of Gray Matter Volume in Substance Dependence: General and Substance-Specific Regional Effects. Am. J. Psychiatry 2019, 176, 119–128. [Google Scholar] [CrossRef]
- MacPhail, D.C.; Oberle, C.D. Seeing Shred: Differences in muscle dysmorphia, orthorexia nervosa, depression, and obsessive-compulsive tendencies among groups of weightlifting athletes. Perform. Enhanc. Health 2022, 10, 100213. [Google Scholar] [CrossRef]
- Garcia-Argibay, M. The Relationship between the Big Five Personality Traits, Impulsivity, and Anabolic Steroid Use. Subst. Use Misuse 2019, 54, 236–246. [Google Scholar] [CrossRef]
- Cafri, G.; Olivardia, R.; Thompson, J.K. Symptom characteristics and psychiatric comorbidity among males with muscle dysmorphia. Compr. Psychiatry 2008, 49, 374–379. [Google Scholar] [CrossRef]
- Greenway, C.W.; Price, C. A qualitative study of the motivations for anabolic-androgenic steroid use: The role of muscle dysmorphia and self-esteem in long-term users. Perform. Enhanc. Health 2018, 6, 12–20. [Google Scholar] [CrossRef]
- Longobardi, C.; Prino, L.E.; Fabris, M.A.; Settanni, M. Muscle dysmorphia and psychopathology: Findings from an Italian sample of male bodybuilders. Psychiatry Res. 2017, 256, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Daley, M.M.; Reardon, C.L. Bipolar Disorder and Athletes: A Narrative Review. Curr. Sports Med. Rep. 2021, 20, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Sagoe, D.; McVeigh, J.; Bjørnebekk, A.; Essilfie, M.S.; Andreassen, C.S.; Pallesen, S. Polypharmacy among anabolic-androgenic steroid users: A descriptive metasynthesis. Subst. Abuse Treat. Prev. Policy 2015, 10, 12. [Google Scholar] [CrossRef]
- Harvey, O.; Keen, S.; Parrish, M.; van Teijlingen, E. Support for people who use Anabolic Androgenic Steroids: A Systematic Scoping Review into what they want and what they access. BMC Public Health 2019, 19, 1024. [Google Scholar] [CrossRef]
- Wilson, J.D. Androgen abuse by athletes. Endocr. Rev. 1988, 9, 181–199. [Google Scholar] [CrossRef]
- Nutt, D.; King, L.A.; Saulsbury, W.; Blakemore, C. Development of a rational scale to assess the harm of drugs of potential misuse. Lancet 2007, 369, 1047–1053. [Google Scholar] [CrossRef]
- van Amsterdam, J.; Opperhuizen, A.; Hartgens, F. Adverse health effects of anabolic-androgenic steroids. Regul. Toxicol. Pharmacol. 2010, 57, 117–123. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Ratamess, N.A. Medical issues associated with anabolic steroid use: Are they exaggerated? J. Sports Sci. Med. 2006, 5, 182–193. [Google Scholar]
- Street, C.; Antonio, J.; Cudlipp, D. Androgen use by athletes: A reevaluation of the health risks. Can. J. Appl. Physiol. 1996, 21, 421–440. [Google Scholar] [CrossRef]
- Smit, D.L.; de Ronde, W. Outpatient clinic for users of anabolic androgenic steroids: An overview. Neth. J. Med. 2018, 76, 167. [Google Scholar] [PubMed]
- Smit, D.L.; Bond, P.; de Ronde, W. Health effects of androgen abuse: A review of the HAARLEM study. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Alger, M.; Luera, N.A.; Weiner, R. What are the benefits and harms of testosterone replacement therapy in men with age-related low testosterone? Evid.-Based Pract. 2022, 25, 21–23. [Google Scholar] [CrossRef]
Testosterone Preparation | Dose (mg) | Route of Administration | Single or Multi-Dose | Mean Plasma Concentrations in nmol (ng/dL) | Concentration in Vitro Demonstrating Neurotoxicity in nmol (ng/dL) | Cell Line Type (Species) | References |
---|---|---|---|---|---|---|---|
Testosterone Enanthate | 250 | Intramuscular | Single | 39.4 (1136) | 100 (2884) | N27 (rat) | [26,30] |
Testosterone Enanthate | 200 | Intramuscular | Single | 68.1 (1965) | * | GT1-7 (mouse) | [26,31] |
Testosterone Enanthate | 100 | Intramuscular | Single | 40.9 (1181) | 1000–10,000 (28,843–288,428) | SH-SY5Y (human) | [27,31] |
Testosterone Enanthate | 200 | Intramuscular | Multi (Bi-Weekly) | 50.7 (1462) | 1000–10,000 (28,843–288,428) | Pure Cortical Neurons (rat) | [25,32] |
Testosterone Enanthate | 100 | Intramuscular | Multi (Weekly) | 24.9 (718) (mean between injections) | 1000 (28,843) | Mixed Cortical Cells (rat) | [25,33] |
Testosterone Enanthate | 300 | Intramuscular | Multi (Weekly) | 51.8 (1494) | [33] | ||
Testosterone Enanthate | 100 | Subcutaneous | Multi (Weekly) | 46.7 (1346 mean Cmax) | 100,000 (2884,282) | Mixed Cortical Cells (rat) | [28,34] |
Testosterone Enanthate | 200 | Intramuscular | Multi (Bi-Weekly) | 78.4 (2262 mean Cmax; Range up to 167.8 (4840) | [34] | ||
Testosterone Cypionate | 250 | Intramuscular | Multi (Weekly) | <52 (<1500) | [35] | ||
Testosterone Cypionate | 500 | Intramuscular | Multi (Weekly) | <86.7 (<2500) | [35] | ||
Testosterone Enanthate | 200 | Intramuscular | Multi (Weekly) | 77.5 (2235) | [36] | ||
Testosterone Enanthate | 200 | Intramuscular | Multi (Weekly) | 38.4 (1108) | [37] | ||
Testosterone Enanthate | 600 | Intramuscular | Multi (Weekly) | 76.9 (2218 nadir) | [38] | ||
Testosterone Enanthate | 600 | Intramuscular | Multi (Weekly) | 98–112.5 (2828–3244) | [39] | ||
Testosterone Enanthate | 400 | Intramuscular | Multi (Bi-Weekly) | 39.7 (1146) | [40] | ||
Testosterone Enanthate | 600 | Intramuscular | Multi (Weekly) | 76.9 (2218 younger men) | [41] | ||
- | - | - | 124.9 (3603 older men) | [41] | |||
Testosterone Enanthate | 600 | Intramuscular | Multi (Weekly) | 92.0 (2654) | [42] | ||
Testosterone Enanthate | 600 | Intramuscular | Multi (Weekly) | 82.2 (2370 nadir) | [43] | ||
Mixed Testosterone Esters (Sustanon 250) | 250 | Intramuscular | Single | 71.0 (2048) Range up to 121.0 (3490) | [44] | ||
Mixed Testosterone Esters (Sustanon 250) | 250 | Intramuscular | Single | 81.4 (2348) | [45] | ||
Testosterone Cypionate | 200 | Intramuscular | Single | 38.6 (1112) | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Willson, C. Misadventures in Toxicology: Concentration Matters for Testosterone-Induced Neurotoxicity. Toxics 2023, 11, 258. https://doi.org/10.3390/toxics11030258
Willson C. Misadventures in Toxicology: Concentration Matters for Testosterone-Induced Neurotoxicity. Toxics. 2023; 11(3):258. https://doi.org/10.3390/toxics11030258
Chicago/Turabian StyleWillson, Cyril. 2023. "Misadventures in Toxicology: Concentration Matters for Testosterone-Induced Neurotoxicity" Toxics 11, no. 3: 258. https://doi.org/10.3390/toxics11030258
APA StyleWillson, C. (2023). Misadventures in Toxicology: Concentration Matters for Testosterone-Induced Neurotoxicity. Toxics, 11(3), 258. https://doi.org/10.3390/toxics11030258