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Abstract: Difenoconazole is a type of triazole fungicide that is widely used in the treatment of plant
diseases. Triazole fungicides have been shown in several studies to impair the development of
the nervous system in zebrafish embryos. There is still little known about difenoconazole-induced
neurotoxicity in fish. In this study, zebrafish embryos were exposed to 0.25, 0.5, and 1 mg/L of difeno-
conazole solution until 120 h post-fertilization (hpf). The difenoconazole-exposed groups showed
concentration-dependent inhibitory tendencies in heart rate and body length. Malformation rate and
spontaneous movement of zebrafish embryos increased, and the locomotor activity decreased in the
highest exposure group. The content of dopamine and acetylcholine was reduced significantly in
difenoconazole treatment groups. The activity of acetylcholinesterase (AChE) was also increased after
treatment with difenoconazole. Furthermore, the expression of genes involved in neurodevelopment
was remarkably altered, which corresponded with the alterations of neurotransmitter content and
AChE activity. These results indicated that difenoconazole might affect the development of the
nervous system through influencing neurotransmitter levels, enzyme activity, and the expression
of neural-related genes, ultimately leading to abnormal locomotor activity in the early stages of
zebrafish.

Keywords: difenoconazole; zebrafish; developmental neurotoxicity; neurotransmitter content; AChE
activity

1. Introduction

In recent years, the total global population has been growing, with the development
of international economic integration and the improvement of standards of living putting
forward higher requirements for the yield and quality of crops. As the demand for agri-
cultural products expands, crop resistance to pests and diseases increases considerably,
which gradually leads to the increase in the use of pesticides. Triazole fungicides are
widely used in agriculture production to protect a wide range of crops due to their broad
spectrum, high effectiveness, and long-duration effects [1,2]. One of the most commonly
used triazole fungicides for preventing and treating diseases is difenoconazole. By blocking
lanosterol-14-α-demethylase (Cyp51) activity, difenoconazole can interfere with the struc-
ture and function of cell membranes, ultimately inhibiting fungal growth [3–5]. Therefore,
difenoconazole is widely used throughout the world, and the demand in the global market
is gradually increasing.

Difenoconazole could penetrate nearby soil and water environment during applica-
tion [6]. Because of its properties of long-term retention, limited biodegradability, and
ease of movement in the environment, difenoconazole could remain in the environment
for a long time and exert harmful effects on soil and aquatic creatures [7]. In recent years,
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the concentration of difenoconazole in aquatic environments has been frequently detected
around the world. For example, it was detected in a rice field up to 20 days after irrigation
in Brazil, with concentrations ranging from 0.4 µg/L to 36.2 µg/L [8]. In the drainage
around paddy fields in Malaysia, the concentration of difenoconazole was detected to be
300 µg/L after 7 days of irrigation [9]. In China, the concentration of difenoconazole in
paddy water was found to be between 1.98 and 2.91 mg/L [10]. With the exception of
paddy water, difenoconazole was found in Australian surface water at a concentration of
0.15 µg/L [11]. With respect to its widespread application for improving crop yields, the
risk of difenoconazole to aquatic creatures should not be ignored.

Previous studies have shown difenoconazole may have multiple deleterious impacts
on organisms throughout their life cycle [12]. Fish are in direct contact with contaminated
water and can be utilized to assess the ecotoxicological effects of difenoconazole. Jiang
et al. [13] found that difenoconazole can cause hepatotoxicity as well as interfere with lipid
metabolism and the balance of intestinal microbiota. Long-term exposure to difenoconazole
causes accumulation in marine medaka and zebrafish while reducing next-generation
viability [14,15]. Mu et al. [16] reported that zebrafish embryos displayed hatch inhibition,
decreased heart rate, and abnormal swimming behavior after difenoconazole exposure.
Further study has confirmed that difenoconazole could impair the heart development of
zebrafish via oxidative stress-mediated apoptosis pathway [17]. However, few studies on
the neurodevelopmental toxicity of difenoconazole in zebrafish in their early life stages
have been published.

Behavior is a result of the activity of the nervous system, which is necessary for fish
to survive and reproduce in the wild [18]. When fish are confronted with environmental
stressors, their behavior will respond accordingly. The generation of fish behavior involves
a variety of physiological and biochemical processes, including the transmission of chemical
signals [19]. There is increasing evidence that potential neurotoxic compounds (such as
pesticides and heavy metals) and drugs (such as tranquilizers) can affect the development of
the nervous system by interfering with the dopamine (DA) nervous system and cholinergic
nervous system, resulting in behavioral changes in zebrafish larvae [20–22]. Previous
research has revealed that exposure to neurotoxins during critical stages of development
can cause damage to the nervous system of the adult brain [23,24]. Thus, it is imperative to
explore the effects of difenoconazole on neurodevelopment of zebrafish embryos.

Zebrafish embryos are an ideal model for assessing the neurodevelopmental toxicity
of difenoconazole due to their transparency, the fact that they develop rapidly, their fully
sequenced genome, and their similarity to the mammalian neurotransmitter system [25]. In
the present study, after exposure to different concentrations of difenoconazole solution for
5 days, its effects on zebrafish developmental endpoints, motor behavior, neurotransmitters
content, acetylcholinesterase (AChE) activity, and related gene expression were evaluated,
with the purpose of probing into the damaging effect of difenoconazole on the zebrafish
nervous system and its possible mechanism. The findings of this study will be valuable
in establishing appropriate preventative and control measures, as well as providing an
ecological risk assessment of difenoconazole.

2. Materials and Methods
2.1. Reagents

Difenoconazole (CAS Number 119446-68-3; purity ≥ 95%) was purchased from Sigma-
Aldrich (St. Louis, MO, USA). The stock solution was prepared with 0.01% (v/v) dimethyl
sulfoxide (DMSO) and stored in dark at 4 ◦C. All the other chemicals used in this study
were analytical grade.

2.2. Test Organisms

Zebrafish were acquired from the Institute of Hydrobiology, Chinese Academy of
Sciences (Wuhan, China) and maintained as previously described [26]. Adult zebrafish
were maintained at 28 ± 1 ◦C with a light–dark cycle of 14 h/10 h under a closed flow-
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through system. Fish were fed twice a day with brine shrimp. Fish in groups of 3 males
and 3 females were placed in a tank overnight to produce fertilized eggs. Normally
developed embryos were arbitrarily sorted and incubated in embryo medium (60 µg/mL
of sea salts in distilled water), then exposed to various difenoconazole concentrations
(0, 0.25, 0.5, and 1 mg/L) within 2 h post-fertilization (hpf). The exposure concentration
ranges were in accordance with previous studies [27,28]. Each difenoconazole-treated
group had three replications, and each of them contained 150 embryos. To ensure the
solution environment was clean, the exposure solution was changed and dead embryos
or larvae were removed every day until 120 hpf. The endpoints including hatching rate,
mortality rate, malformation rate, heart rate, and body length were evaluated as in the
previous study [29]. There were at least three duplicates of each concentration. The DMSO-
treated group was utilized as a control group to assess all endpoints in this study, since
preceding studies have demonstrated that 0.01% (v/v) DMSO solvent control had negligible
impact on zebrafish growth and behavior [30,31]. All zebrafish experiment procedures
were in compliance with the Institutional Animal Care and Use Committee of Huazhong
Agricultural University.

2.3. Locomotor Behavior Assay

The spontaneous movement test was recorded at 24 hpf via a CCD camera stereomi-
croscope (Leica M205FA, Germany) for 1 min, as described in the previous study [32].
All embryos were acclimated to the environment for 5 min before video recording. A
total of 30 embryos from 3 replicates were used to evaluate the frequency of embryonic
spontaneous movements.

At 120 hpf, the locomotor activity assessment was carried out with a Danio Vision™
behavior instrument (Noldus B.V., Wageningen, the Netherlands) following the protocol
described by Fan et al. [33]. In total, 24 larvae of the same concentration were placed in
a 24-well plate (one larva per well), and each well received 1 mL of the corresponding
exposure solution. After acclimation of 10 min in the behavior observation chamber, the
locomotion activity analysis was conducted under a continuous visible light and subsequent
dark period of photoperiod stimulation (5 min light–5 min dark–5 min light–5 min dark)
at a constant temperature of 28 ◦C. The data were further analyzed using EthoVision® XT
14 video tracking software.

2.4. Enzymatic Activity and Neurotransmitter Assay

Approximately 100 zebrafish larvae from each Petri dish were taken as one sample
and pooled and dried in centrifuge tubes for weighing. Each sample was homogenized
with Phosphate Buffer Saline (PBS, 1%, pH 7.4) (1:9, w/v) under ice-cold conditions. The
supernatant was collected for assaying the content of specific substances and enzyme
activity after centrifugation at 3500 rpm for 15 min at 4 ◦C. The commercial kits for deter-
mining protein concentration, acetylcholine (ACh) and DA ELISA were purchased from
Nanjing Jiancheng Bioengineering Institute (Nanjing, China), while the AChE activities
kit was obtained from KeyGen Biotech (Nanjing, China). The detection limit of DA was
0.05–20 ng/mL. Measurements were carried out according to manufacturer’s protocol.

2.5. Gene Expression Analysis

After exposing for 120 h, 30 larvae were arbitrarily collected from each parallel plate
and stored at −80 ◦C until further analysis. The total RNA was extracted from whole
larvae using Trizol Reagent (TAKARA Biotechnology, Kusatsu, Japan). Based on the
OD260/OD280 ratio, the concentration and quality of RNA in the range of 1.8–2.0 were used
for subsequent experiments. The cDNA synthesis, real-time PCR, and other subsequent
operations were carried out in light of our previous study [28]. Sequences of primers
of the related genes were designed by the Primer 3 software (http://frodo.wi.mit.edu/,
accessed on 27 December 2021) or obtained from the previous study [28], and the primer
sequences are provided in Table 1. Quantitative real-time polymerase chain reaction (qRT-

http://frodo.wi.mit.edu/


Toxics 2023, 11, 353 4 of 14

PCR) was conducted by an ABI 7300 system (Applied Biosystem, Foster City, CA, USA)
using SYBR Green PCR kits (Takara, Dalian, China). The β-actin gene was chosen as an
internal standard, while the relative expression levels of the genes were calculated by the
2−∆∆Ct method. The heat map was drawn using GraphPad Prime 9.0 software.

Table 1. Sequences of primers for the genes tested.

Gene Name Sequence of the Primer (5′–3′) Accession Number

β−actin Forward: ATGGATGAGGAAATCGCTGCC
Reverse: CTCCCTGATGTCTGGGTCGTC NM_181601.5

mbp Forward: AATCAGCAGGTTCTTCGGAGGAGA
Reverse: AAGAAATGCACGACAGGGTTGACG AY860977

α1−tubulin Forward: AATCACCAATGCTTGCTTCGAGCC
Reverse: TTCACGTCTTTGGGTACCACGTCA NM_194388

ngn1 Forward: AAGCAGGGCAAGTCAAGAGA
Reverse: ACGTCGGTTTGCAAGTATCC AF024535

syn2a Forward: GTGACCATGCCAGCATTTC
Reverse: TGGTTCTCCACTTTCACCTT NM_001002597.2

elavl3 Forward: AGACAAGATCACAGGCCAGAGCTT
Reverse: TGGTCTGCAGTTTGAGACCGTTGA NM_131449

gap43 Forward: TGCTGCATCAGAAGAACTAA
Reverse: CCTCCGGTTTGATTCCATC NM_131341

bdnf Forward: ATAGTAACGAACAGGATGG
Reverse: GCTCAGTCATGGGAGTCC NM_131595.2

manf Forward: AGATGGAGAGTGTGAAGTCTGTGTG
Reverse: CAATTGAGTCGCTGTCAAAACTTG NM_001076629

gafp Forward: GGATGCAGCCAATCGTAAT
Reverse: TTCCAGGTCACAGGTCAG NM_131373

chrna7 Forward: TCAGTATTTTGCCACCACCA
Reverse: CTTTGTCTTCGCCAGGTCTC NM_201219.2

ache Forward: CCCTCCAGTGGGTACAAGAA
Reverse: GGGCCTCATCAAAGGTAACA NM_131846.2

nr4a2b Forward: GAAGACGGCGAAATCGATGC
Reverse: CTGGCGGTTCTGACAACTTCC NM_001002406.1

drd1 Forward: TGGTTCCTTTCTGCAACCCA
Reverse: AGTGATGAGTTCGCCCAACC NM_001135976.2

drd2 Forward: TCCACAAAATCAGGAAAAGCGT
Reverse: CAGCCAATGTAAACCGGCAA XM_005157501.4

shha Forward: GCAAGATAACGCGCAATTCGGAGA
Reverse: TGCATCTCTGTGTCATGAGCCTGT NM_131063.3

2.6. Statistical Analyses

The Kolmogorov–Smirnov test and Levene test were conducted using SPSS 25.0 (SPSS,
Chicago, IL, USA) to verify the normal distribution and homogeneity of variance. One-
way analysis of variance (ANOVA) with Tukey’s multiple comparison method was used
to assess the significant differences between the control and exposure groups. The data
expressed as the mean ± standard error (SEM), with a value of p < 0.05, were considered
statistically significant.

3. Results
3.1. Developmental Toxicity

To investigate the effects of difenoconazole on zebrafish embryonic development, the
survival rate, hatching rate, malformation rate, heart rate, and body length were measured
(Table 2). The results indicated that exposure to difenoconazole (0, 0.25, 0.5, and 1 mg/L) did
not significantly affect survival rate and hatching rate of the zebrafish larvae. However, the
malformation rate was significantly altered in the highest difenoconazole exposure group
(p < 0.05). Compared to the control group, difenoconazole could cause developmental
deformities of zebrafish larvae, including pericardial edema, yolk sac edema, and uninflated
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swim bladder (Figure 1). The heart rate and body length were reduced in the 1 mg/L
difenoconazole treatment group at 120 hpf (p < 0.05).

Table 2. Developmental parameters in zebrafish larvae after exposing to difenoconazole (0, 0.25, 0.5,
and 1 mg/L) until 120 h. * indicates significance between control and treatment groups (p < 0.05).

Control (0 mg/L) 0.25 mg/L 0.5 mg/L 1 mg/L

Survival rate (%) 90.00 ± 3.85 85.56 ± 2.22 84.44 ± 2.22 83.33 ± 1.92
Hatching rate (%) 94.99 ± 0.74 92.40 ± 0.56 93.40 ± 1.58 91.79 ± 1.50

Heart rate (times/60 s) 176.60 ± 3.40 174.30 ± 2.56 169.20 ± 3.08 164.20 ± 2.74 *
Malformation

rate (%) 1.00 ± 0.86 2.09 ± 1.05 5.55 ± 1.94 18.28 ± 2.51 *

Body length (mm) 4.03 ± 0.03 3.96 ± 0.03 3.92 ± 0.03 3.91 ± 0.03 *
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Figure 1. Images of zebrafish larvae at 120 hpf in control (A) and 1 mg/L difenoconazole exposure
(B) groups. SB: swim bladder; USB: uninflated swim bladder; PE: pericardial edema; YSE: yolk
sac edema.

3.2. Alterations in Behavior

As shown in Figure 2, the spontaneous movement was 4.40 ± 0.28 bents/min in the
control group at 24 hpf. In the difenoconazole exposure groups (0.25, 0.5, and 1 mg/L), spon-
taneous movement occurred 80 ± 0.28 bents/min, 5.07 ± 0.27 bents/min, and
8.37 ± 0.39 bents/min, respectively. No significant alterations of spontaneous movement
frequency were observed in the 0.25 and 0.5 mg/L groups. Compared to the control group,
the spontaneous movement of larvae in the 1 mg/L difenoconazole exposure group was
considerably enhanced by 90.23% (p < 0.05).

The locomotor activities were assessed at 120 hpf (Figure 3). During the light stage,
there was no significant difference in average speed between the difenoconazole-treated
groups and the control group; however, the average speed significantly reduced (23.2%,
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p < 0.05) in the 1 mg/L difenoconazole treatment group during the dark stage (Figure 3A,B).
Treatments with difenoconazole at 1 mg/L significantly reduced (18.6%, p < 0.05) the total
distance zebrafish larvae traveled (Figure 3C). The locomotion tracking under dark circum-
stances (Figure 3D) demonstrated the highest concentration of difenoconazole resulted in
decreased swimming activity of zebrafish larvae.
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Figure 3. The locomotor behavior of zebrafish larvae after difenoconazole exposure (0, 0.25, 0.5,
and 1 mg/L) under light–dark photoperiod stimulation test at 120 hpf. (A) Locomotor patterns in
response to light–dark change, (B) the average swimming speed, (C) the total distance of zebrafish
larvae under light-dark cycle, and (D) representative locomotion tracking under light and dark
conditions. Values are expressed as mean ± SEM of 3 replicates (8 larvae/replicate). * p < 0.05
indicates significant differences between exposure groups and the control group.
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3.3. Neurotransmitter Content

The changes in neurotransmitter content in larvae at 120 hpf are presented in Figure 4.
The ACh content in 0.5 and 1 mg/L difenoconazole exposure groups were significantly
decreased 29.9% and 36.7%, respectively (p < 0.05, Figure 4A). In addition, a dose-dependent
reduction in DA levels was also observed in zebrafish larvae, with a significant decrease by
29.0% in the 1 mg/L difenoconazole-exposed group (p < 0.05, Figure 4B).
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3.4. AChE Activity

Compared with the control group, the activity of AChE was markedly induced (by
25.0%) at the highest difenoconazole exposure group, whereas the activity had no marked
changes in the 0.25 mg/L and 0.5 mg/L difenoconazole exposure groups (p < 0.05, Figure 5).
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Figure 5. The AChE activity in zebrafish embryos measured following exposure to difenoconazole (0,
0.25, 0.5, and 1 mg/L). Values are expressed as mean ± SEM of 3 replicates (100 larvae/replicate).
* p < 0.05 indicates significant differences between exposure groups and the control group.

3.5. Gene Expression

The mRNA expression of genes related to nervous system development were as-
sessed in difenoconazole-exposed groups of zebrafish larvae at 120 hpf (Figures 6 and 7),
including manf (mesencephalic astrocyte derived neurotrophic factor), nr4a2b (nuclear
receptor subfamily 4 group a member 2b), drd1 (dopamine receptor D1), drd2 (dopamine
receptor D2), chrna7 (cholinergic receptor nicotinic alpha 7 subunit), ache, elavl3 (ELAV like
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neuron-specific RNA binding protein 3), shha (sonic hedgehog a), gfap (glial fibrillary acidic
protein), α1−tubulin, mbp (myelin basic protein), gap43 (growth associated protein 43), ngn1
(neurogenin 1), syn2a (synapsin IIa), and bdnf (brain-derived neurotrophic factor). The tran-
scription levels of α1−tubulin, ngn1, manf, and shha were not altered significantly relative to
the control group. The notable downregulation of the expression of bdnf (1.58-fold) and
chrna7 (0.51-fold) were found in the 1 mg/L exposure group (p < 0.05) When exposed to
0.5 mg/L difenoconazole, syn2a, drd1, and drd2 were significantly downregulation (0.26-,
0.51-, and 0.52-fold, respectively) (p < 0.05). At the 0.5 and 1 mg/L treatment groups, nr4a2b
was noticeably downregulated relative to the control group by 1.09- and 0.85-fold, respec-
tively (p < 0.05). The expression levels of elavl3 (0.34-, 0.65-, and 0.40-fold), gap43 (0.68-, 0.52-,
and 0.52-fold), and gfap (0.40-, 0.94-, and 0.55-fold) were downregulated in the 0.25 mg/L,
0.5 mg/L, and 1 mg/L difenoconazole-exposed groups, respectively (p < 0.05). Conversely,
mbp was remarkably upregulated in the 1 mg/L difenoconazole group (p < 0.05). The
transcription of ache strikingly increased in the 0.5 mg/L (1.26-fold) and 1 mg/L (1.55-fold)
difenoconazole-treated groups (p < 0.05).
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4. Discussion

In the current study, we used zebrafish to assess the effects of difenoconazole exposure
on embryonic development. The heart is the first organ formed in a developing embryo [34];
moreover, Mu et al. [35] reported that zebrafish embryos exposed to 2.0 mg/L difenocona-
zole showed decreased heart rate, hatching regression, and teratogenic effects (yolk sac
edema, pericardial edema, and spine deformation). In another study, zebrafish embryos
exposed to 5 µM difenoconazole showed decreased hatching rate, increased mortality, de-
creased heart rate, and severe teratogenicity (spinal curvature, yolk sac malformation, yolk
sac edema, pericardial edema, and hyperemia) [36]. Similar to previous studies, we found
that zebrafish heart rate and body length showed a reduction following acute exposure to
difenoconazole. Difenoconazole markedly enhanced the malformation of zebrafish larvae,
with pericardial edema being the most frequent type of malformation. These results suggest
difenoconazole exposure could result in zebrafish developmental abnormalities. Similar
abnormalities have been reported in other exposure experiments of triazole fungicides,
such as prothioconazole [37] and cyproconazole [38]. It was noted the swimming behavior
of zebrafish larvae changed as the concentration of difenoconazole increased, indicating
difenoconazole could induce neurologic abnormality in fish. It has been reported that
exposure to several triazole fungicides (propiconazole, triadimefon, and prothioconazole)
could induce developmental toxicity. These studies mainly focused on the cardiotoxicity
and preproductive toxicity [39,40]. Difenoconazole-induced neurotoxic effects in fish—and
its potential molecular mechanisms—still need to be further clarified.

Behavior is a representation of neural activity and can be used to evaluate the neuro-
toxicity of drugs and substances in the environment [41,42]. Spontaneous movement is the
initial motor activity generated by the growing brain network [43]. In our study, sponta-
neous movement in the 1 mg/L difenoconazole-treated group was significantly increased
comparing to the control group at 24 hpf. Teng et al. [44] reported a similar result showing
spontaneous movement of zebrafish embryos at 24 hpf were increased when exposed to
difenoconazole. Similar results have also been obtained in other triazole fungicides such
as penconazole [45] and propiconazole [46]. Typically, embryos at 24 hpf show 3–5 bursts
per minute, accompanied by a period of dormancy [47]. Baraban et al. [48] classified the
increased number of spontaneous movements at 24 hpf as epileptic movements. Swim-
ming behavior is a more complicated activity that develops later in development and is
particularly sensitive to environmental contaminants [49,50]. After 5 days of exposure to
difenoconazole, the average swimming speed and total swimming distance of zebrafish
larvae were considerably reduced. Previous research has demonstrated the hypoactivity
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of zebrafish results in impaired nervous system development, which may increase their
susceptibility to predation during early development [51]. When zebrafish larvae were
exposed to other triazole fungicides, the activity of the larvae was also altered. After
treatment with propiconazole for 5 days, the average activity and movement distance of
zebrafish larvae were significantly reduced [42]. Swimming speed was also dramatically
decreased after exposure to 2 mg/L penconazole [38]. A series of behavioral function
tests in this experiment can reflect the adverse effects of difenoconazole on the zebrafish
nervous system.

To elucidate the underlying mechanisms of developmental neurotoxicity induced by
difenoconazole, we further detected the DA content in zebrafish larvae. We discovered DA
levels tend to decline in a concentration-dependent manner in difenoconazole exposure
groups. DA is a neurotransmitter that plays a crucial role in the regulation of neural
development, movement, and mood in zebrafish larvae [52]. In zebrafish, a decrease in DA
content may cause neurotoxicity, presenting as a declined state of activity and unrespon-
siveness [53]. Azole pesticides have been demonstrated to inhibit calcium influx, leading
to a reduction in DA neurotransmission [54]. Since gene expression is a potential marker
for rapid screening of development neurotoxicity [55], we detected the mRNA expression
levels of DA receptor genes and found that drd1 and drd2 were significantly downregulated
in this study. Dopamine receptors D1 and D2 are the most abundantly expressed receptors
in the brain, and furthermore, are in charge of movement regulation [56]. A previous study
has shown that zebrafish larvae exhibit hypoactivity after being dosed with D1 and D2
receptor antagonists [57]. Kung et al. [58] reported that after exposure to deltamethrin, the
expression of drd1a and drd2a were reduced, altering the locomotor activity of zebrafish
larvae in a synergistic manner. A similar downward trend was observed at the transcription
level of nr4a2b. The knockdown of nr4a2 could significantly reduce the formation and
differentiation of dopaminergic neurons in zebrafish [59]. Therefore, difenoconazole may
alter the swimming behavior of zebrafish larvae by decreasing DA levels and interfering
with dopaminergic signaling in this experiment.

Difenoconazole-induced development neurotoxicity might potentially be mediated
through the cholinergic system. In this experiment, the content of ACh was decreased
and the activity of AChE was increased in the difenoconazole exposure groups. ACh is
the main neurotransmitter in the cholinergic system, which exists in the neuromuscular
junction and the central nervous system [60]. AChE is a crucial enzyme that regulates the
metabolism of ACh and is frequently employed as a biomarker to assess the toxicity of
organophosphate and carbamate pesticides [61,62]. An increase in AChE activity could
over-hydrolyze ACh, which would probably lead to inadequate muscular contraction and
behavioral responses in zebrafish larvae [63]. Gene transcription of ache and chrna7 changed
significantly after exposure to difenoconazole. The α-7 nicotinic acetylcholine receptor
(encoded by the gene chrna7) responds to the binding of ACh, while the level of AChE
enzymatic activity is determined by the expression level of the gene ache [64], which was
consistent with the changes of the content of ACh and the activity of AChE. We speculate
that difenoconazole might cause hypoactivity of zebrafish larvae via interfering with the
operation of the cholinergic system.

Genes and transcription factors regulate the process of brain development in zebrafish,
and aberrant gene expression could result in neural development abnormalities [55]. We
further analyzed the alterations of gene expression associated with neural development in
this study. The neural-specific RNA-binding protein Huc, encoded by elavl3, is considered
as a biomarker of early neuron development in zebrafish [65]. bdnf was induced during the
period of primary nervous system formation [66], and was involved in promoting neuro-
genesis, increasing synaptic plasticity, and maintaining neuronal cell survival [67]. In this
study, the expression levels of elavl3 and bdnf were downregulated significantly, indicating
that difenoconazole has detrimental effects on neuronal development and differentiation.
gfap mainly encodes the intermediate filament protein present in astrocytes, where it is in-
volved in and maintains the structure of their cytoskeleton [68]. Changes in gfap expression



Toxics 2023, 11, 353 11 of 14

may modify astrocyte morphology, which affects brain structures and normal neuronal
function [69]. As a biomarker of myelination, the gene mbp is expressed in oligodendrocytes
of the central nervous system and in Schwann cells of the peripheral nervous system [70].
Upregulation of mbp mRNA expression indicated an enhanced protective function of mi-
croglia on oligodendrocyte maturation [71]. The increase of mbp expression level in this
experiment may reflect the compensation of the nervous system for the damaging effect of
difenoconazole. gap 43 encodes an axonal membrane protein that is essential for neurite
growth, synapse formation, and neuroplasticity during neurogenesis [72]. It is also used
as a marker for re-induction of axonal growth during regeneration after nerve injury [73].
The decreased transcription levels of gap43 might imply that difenoconazole could lead to
impaired neuronal development and nerve regeneration. Correspondingly, a significant
decrease in syn2a expression was also observed. syn2a is a gene that regulates the formation
of synaptic structures, and its abnormal expression affects synapse formation, neurotrans-
mitter release, and ultimately, contributes to behavioral disorders [54]. The changes of
syn2a gene expression level may lead to neurobehavioral disorders in zebrafish larvae [74].
Similarly, exposure to penconazole, another triazole fungicide, significantly altered the
transcript levels of multiple genes including gfap, bdnf, elavl3, mbp, and gap43, resulting in
behavioral changes in zebrafish larvae [38]. In taking these results together, our findings
support the hypothesis that difenoconazole exposure could trigger altered expression of
genes related to nervous system development, thereby leading to the neurodevelopmental
toxic effects of difenoconazole in zebrafish embryos.

5. Conclusions

In summary, our results demonstrated that difenoconazole exposure could induce
severe developmental and neurotoxic effects in zebrafish embryos. Our findings indicated
the significant changes in the transmission of the cholinergic and dopaminergic systems,
as well as the transcription of key genes related to neurodevelopment might contribute
to developmental neurotoxicity induced by difenoconazole. Our study provides useful
information for risk assessment of the toxic effects of difenoconazole and has theoretical
significance and application value for guiding the scientific use and environmental safety
evaluation of phenotrimethoxazole. The neural response mechanisms behind the behavioral
abnormalities are complicated. Furthermore, there is a need to conduct in-depth assessment
studies on pesticide toxicity and elucidate its toxic mechanism of action to provide reference
for food safety, pesticide-use safety, and human health risk assessment and standard setting.
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