Maternal Serum, Cord and Human Milk Levels of Per- and Polyfluoroalkyl Substances (PFAS), Association with Predictors and Effect on Newborn Anthropometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Toxicant Analysis in Serum and Milk
2.2.1. Principle
2.2.2. Reagents, Solutions and Materials
2.2.3. Equipment and Instrumentation
2.2.4. Automated SPE
2.2.5. HPLC Configuration
2.2.6. Mass Spectrometer Configuration
2.2.7. Instrumental Analysis
2.2.8. Quality Control and Assurance
2.3. Statistical Analysis
3. Results
3.1. PFAS Levels in Maternal Serum, Cord and Milk
3.1.1. Maternal PFAS Serum Levels
3.1.2. PFAS Cord Serum Levels
3.1.3. PFAS Human Milk Levels
3.1.4. Correlation between Human Milk and Maternal Serum PFAS Levels
3.2. Association between PFAS Levels and Determinants
3.3. Effect of PFAS Maternal Serum Levels on Newborn Anthropometry
4. Discussion
4.1. Levels of PFAS and Comparison to Guidance Values
4.2. Partitioning of PFAS across Matrices
4.3. Determinants of PFAS Levels
4.4. Impact of PFAS on Newborn Anthropometry
4.5. Strength and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Langenbach, B.; Wilson, M. Per- and Polyfluoroalkyl Substances (PFAS): Significance and Considerations within the Regulatory Framework of the USA. Int. J. Environ. Res. Public Health 2021, 18, 11142. [Google Scholar] [CrossRef] [PubMed]
- ATSDR PFAS Chemicals Overview—What Are PFAS. Available online: https://www.atsdr.cdc.gov/pfas/health-effects/overview.html (accessed on 14 June 2021).
- ATSDR PFAS Chemical Exposure—How Can I Be Exposed. Available online: https://www.atsdr.cdc.gov/pfas/health-effects/exposure.html (accessed on 14 June 2021).
- ATSDR Toxicological Guide for Perfluoroalkyls 2020. Available online: https://www.atsdr.cdc.gov/toxguides/toxguide-200.pdf (accessed on 14 June 2021).
- De Silva, A.O.; Armitage, J.M.; Bruton, T.A.; Dassuncao, C.; Heiger-Bernays, W.; Hu, X.C.; Kärrman, A.; Kelly, B.; Ng, C.; Robuck, A.; et al. PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. Environ. Toxicol. Chem. 2021, 40, 631–657. [Google Scholar] [CrossRef] [PubMed]
- Eick, S.M.; Goin, D.E.; Trowbridge, J.; Cushing, L.; Smith, S.C.; Park, J.-S.; DeMicco, E.; Padula, A.M.; Woodruff, T.J.; Morello-Frosch, R. Dietary Predictors of Prenatal Per- and Poly-Fluoroalkyl Substances Exposure. J. Expo. Sci. Environ. Epidemiol. 2021, 33, 32–39. [Google Scholar] [CrossRef] [PubMed]
- EFSA PFAS in Food: EFSA Assesses Risks and Sets Tolerable Intake|European Food Safety Authority. Available online: https://www.efsa.europa.eu/en/news/pfas-food-efsa-assesses-risks-and-sets-tolerable-intake (accessed on 19 August 2021).
- Roth, K.; Imran, Z.; Liu, W.; Petriello, M.C. Diet as an Exposure Source and Mediator of Per- and Polyfluoroalkyl Substance (PFAS) Toxicity. Front. Toxicol. 2020, 2, 601149. [Google Scholar] [CrossRef]
- Stockholm Convention PFASs Listed under the Stockholm Convention—Overview. Available online: http://chm.pops.int/Implementation/IndustrialPOPs/PFAS/Overview/tabid/5221/Default.aspx (accessed on 20 January 2023).
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A Review of the Pathways of Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs) and Present Understanding of Health Effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef]
- Gardener, H.; Sun, Q.; Grandjean, P. PFAS Concentration during Pregnancy in Relation to Cardiometabolic Health and Birth Outcomes. Environ. Res. 2021, 192, 110287. [Google Scholar] [CrossRef]
- Chang, C.-J.; Ryan, P.B.; Smarr, M.M.; Kannan, K.; Panuwet, P.; Dunlop, A.L.; Corwin, E.J.; Barr, D.B. Serum Per- and Polyfluoroalkyl Substance (PFAS) Concentrations and Predictors of Exposure among Pregnant African American Women in the Atlanta Area, Georgia. Environ. Res. 2021, 198, 110445. [Google Scholar] [CrossRef]
- Harris, M.H.; Oken, E.; Rifas-Shiman, S.L.; Calafat, A.M.; Bellinger, D.C.; Webster, T.F.; White, R.F.; Sagiv, S.K. Prenatal and Childhood Exposure to Per- and Polyfluoroalkyl Substances (PFAS) and Child Executive Function and Behavioral Problems. Environ. Res. 2021, 202, 111621. [Google Scholar] [CrossRef]
- Ren, Y.; Jin, L.; Yang, F.; Liang, H.; Zhang, Z.; Du, J.; Song, X.; Miao, M.; Yuan, W. Concentrations of Perfluoroalkyl and Polyfluoroalkyl Substances and Blood Glucose in Pregnant Women. Environ. Health 2020, 19, 88. [Google Scholar] [CrossRef]
- Birukov, A.; Andersen, L.B.; Andersen, M.S.; Nielsen, J.H.; Nielsen, F.; Kyhl, H.B.; Jørgensen, J.S.; Grandjean, P.; Dechend, R.; Jensen, T.K. Exposure to Perfluoroalkyl Substances and Blood Pressure in Pregnancy among 1436 Women from the Odense Child Cohort. Environ. Int. 2021, 151, 106442. [Google Scholar] [CrossRef]
- Shu, H.; Lindh, C.H.; Wikström, S.; Bornehag, C.-G. Temporal Trends and Predictors of Perfluoroalkyl Substances Serum Levels in Swedish Pregnant Women in the SELMA Study. PLoS ONE 2018, 13, e0209255. [Google Scholar] [CrossRef]
- Rylander, L.; Lindh, C.H.; Hansson, S.R.; Broberg, K.; Källén, K. Per- and Polyfluoroalkyl Substances in Early Pregnancy and Risk for Preeclampsia: A Case-Control Study in Southern Sweden. Toxics 2020, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Eick, S.M.; Hom Thepaksorn, E.K.; Izano, M.A.; Cushing, L.J.; Wang, Y.; Smith, S.C.; Gao, S.; Park, J.-S.; Padula, A.M.; DeMicco, E.; et al. Associations between Prenatal Maternal Exposure to Per- and Polyfluoroalkyl Substances (PFAS) and Polybrominated Diphenyl Ethers (PBDEs) and Birth Outcomes among Pregnant Women in San Francisco. Environ. Health 2020, 19, 100. [Google Scholar] [CrossRef] [PubMed]
- ATSDR Potential Health Effects of PFAS Chemicals. Available online: https://www.atsdr.cdc.gov/pfas/health-effects/index.html (accessed on 15 July 2021).
- Birru, R.L.; Liang, H.-W.; Farooq, F.; Bedi, M.; Feghali, M.; Haggerty, C.L.; Mendez, D.D.; Catov, J.M.; Ng, C.A.; Adibi, J.J. A Pathway Level Analysis of PFAS Exposure and Risk of Gestational Diabetes Mellitus. Environ. Health 2021, 20, 63. [Google Scholar] [CrossRef]
- Ma, D.; Lu, Y.; Liang, Y.; Ruan, T.; Li, J.; Zhao, C.; Wang, Y.; Jiang, G. A Critical Review on Transplacental Transfer of Per- and Polyfluoroalkyl Substances: Prenatal Exposure Levels, Characteristics, and Mechanisms. Environ. Sci. Technol. 2021, 56, 6014–6026. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Binns, C. Breastfeeding and the Risk of Infant Illness in Asia: A Review. Int. J. Environ. Res. Public Health 2020, 17, 186. [Google Scholar] [CrossRef]
- Lou, F.; Qin, H.; He, S.; Li, M.; An, X.; Song, L.; Tong, Y.; Fan, H. The Benefits of Breastfeeding Still Outweigh the Risks of COVID-19 Transmission. Front. Med. 2021, 8, 703950. [Google Scholar] [CrossRef]
- MoE/UNEP/GEF National Implementation Plan on Persistent Organic Pollutants. 2017. Available online: https://leap.unep.org/countries/lb/national-legislation/national-implementation-plan-persistent-organic-pollutants (accessed on 26 August 2021).
- Hassan, H.F.; Bou Ghanem, H.; Abi Kharma, J.; Abiad, M.G.; Elaridi, J.; Bassil, M. Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Human Milk: First Survey from Lebanon. Int. J. Environ. Res. Public Health 2023, 20, 821. [Google Scholar] [CrossRef]
- IOM; NRC. Weight Gain during Pregnancy: Reexamining the Guidelines; Rasmussen, K.M., Yaktine, A.L., Eds.; The National Academies Collection: Reports funded by National Institutes of Health; National Academies Press (US): Washington, DC, USA, 2009; ISBN 978-0-309-13113-1. [Google Scholar]
- EFSA CONTAM Panel; Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J. Risk to Human Health Related to the Presence of Perfluoroalkyl Substances in Food. EFS2 2020, 18, e06223. [Google Scholar] [CrossRef]
- Mahfouz, Y.; Harmouche-Karaki, M.; Matta, J.; Mahfouz, M.; Salameh, P.; Younes, H.; Helou, K.; Finan, R.; Abi-Tayeh, G.; Meslimani, M.; et al. Serum Levels of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans in a Sample of Lebanese Pregnant Women: The Role of Dietary, Anthropometric, and Environmental Factors. Environ. Res. 2023, 216, 114647. [Google Scholar] [CrossRef]
- United Nations Environment Programme UNEP UNEP-Coordinated Survey of Mothers’ Milk for Persistent Organic Pollutants Guidelines for Organization, Sampling and Analysis. Available online: http://drustage.unep.org/chemicalsandwaste/sites/unep.org.chemicalsandwaste/files/publications/POPs%20Methods%20Mothers%20milk%20guide%20POPs.pdf (accessed on 15 February 2017).
- US EPA. PFAS Explained. Available online: https://www.epa.gov/pfas/pfas-explained (accessed on 18 April 2023).
- Uhl, M.; Hauzenberger, I.; Hartmann, C.; Halldórsson, Þ.I.; Trier, X.; Fletcher, T.; Grandjean, P.; Bueno, M.; Zhanjun, W. HBM4EU Scoping Document on Per- and Poly-Fluoralkyl Substances 2020. Available online: https://www.hbm4eu.eu/wp-content/uploads/2019/03/HBM4EU_D4.9_Scoping_Documents_HBM4EU_priority_substances_v1.0-PFAS.pdf (accessed on 18 April 2023).
- US EPA. EPA Takes Action to Stop Use of Certain PFAS in Products and Protect American Consumers. Available online: https://www.epa.gov/newsreleases/epa-takes-action-stop-use-certain-pfas-products-and-protect-american-consumers (accessed on 18 April 2023).
- Lubin, J.H.; Colt, J.S.; Camann, D.; Davis, S.; Cerhan, J.R.; Severson, R.K.; Bernstein, L.; Hartge, P. Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits. Environ. Health Perspect. 2004, 112, 1691–1696. [Google Scholar] [CrossRef]
- Pituch, K.A.; Stevens, J. Applied Multivariate Statistics for the Social Sciences: Analyses with SAS and IBM’s SPSS, 6th ed.; Routledge/Taylor & Francis Group: New York, NY, USA, 2016; ISBN 978-0-415-83666-1. [Google Scholar]
- International Society of Exposure Science i-HBM Working Group: Human Biomonitoring Health-Based Guidance Value (HB2GV) Dashboard. Available online: https://www.intlexposurescience.org/i-hbm/ (accessed on 22 January 2023).
- Nakayama, S.F.; St-Amand, A.; Pollock, T.; Apel, P.; Bamai, Y.A.; Barr, D.B.; Bessems, J.; Calafat, A.M.; Castaño, A.; Covaci, A.; et al. Interpreting Biomonitoring Data: Introducing the International Human Biomonitoring (i-HBM) Working Group’s Health-Based Guidance Value (HB2GV) Dashboard. Int. J. Hyg. Environ. Health 2023, 247, 114046. [Google Scholar] [CrossRef] [PubMed]
- Schümann, M.; Lilienthal, H.; Hölzer, J. Human Biomonitoring (HBM)-II Values for Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonic Acid (PFOS)—Description, Derivation and Discussion. Regul. Toxicol. Pharmacol. 2021, 121, 104868. [Google Scholar] [CrossRef] [PubMed]
- Melzer, D.; Rice, N.; Depledge, M.H.; Henley, W.E.; Galloway, T.S. Association between Serum Perfluorooctanoic Acid (PFOA) and Thyroid Disease in the U.S. National Health and Nutrition Examination Survey. Environ. Health Perspect. 2010, 118, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Serrano, L.; Iribarne-Durán, L.M.; Suárez, B.; Artacho-Cordón, F.; Vela-Soria, F.; Peña-Caballero, M.; Hurtado, J.A.; Olea, N.; Fernández, M.F.; Freire, C. Concentrations of Perfluoroalkyl Substances in Donor Breast Milk in Southern Spain and Their Potential Determinants. Int. J. Hyg. Environ. Health 2021, 236, 113796. [Google Scholar] [CrossRef]
- Zheng, G.; Schreder, E.; Dempsey, J.C.; Uding, N.; Chu, V.; Andres, G.; Sathyanarayana, S.; Salamova, A. Per- and Polyfluoroalkyl Substances (PFAS) in Breast Milk: Concerning Trends for Current-Use PFAS. Environ. Sci. Technol. 2021, 55, 7510–7520. [Google Scholar] [CrossRef]
- Banjabi, A.A.; Li, A.J.; Kumosani, T.A.; Yousef, J.M.; Kannan, K. Serum Concentrations of Perfluoroalkyl Substances and Their Association with Osteoporosis in a Population in Jeddah, Saudi Arabia. Environ. Res. 2020, 187, 109676. [Google Scholar] [CrossRef]
- Dalla Zuanna, T.; Savitz, D.A.; Barbieri, G.; Pitter, G.; Zare Jeddi, M.; Daprà, F.; Fabricio, A.S.C.; Russo, F.; Fletcher, T.; Canova, C. The Association between Perfluoroalkyl Substances and Lipid Profile in Exposed Pregnant Women in the Veneto Region, Italy. Ecotoxicol. Environ. Saf. 2021, 209, 111805. [Google Scholar] [CrossRef]
- ANSES Connaissances Relatives à La Réglementation, à l’identification, Aux Propriétés Chimiques, à La Production et Aux Usages Des Composés de La Famille Des Perfluorés (Tome 1). 2015. Available online: https://www.anses.fr/fr/system/files/SUBCHIM2009sa0331Ra-101.pdf (accessed on 16 June 2021).
- Bangma, J.; Guillette, T.C.; Bommarito, P.A.; Ng, C.; Reiner, J.L.; Lindstrom, A.B.; Strynar, M.J. Understanding the Dynamics of Physiological Changes, Protein Expression, and PFAS in Wildlife. Environ. Int. 2022, 159, 107037. [Google Scholar] [CrossRef]
- Forsthuber, M.; Kaiser, A.M.; Granitzer, S.; Hassl, I.; Hengstschläger, M.; Stangl, H.; Gundacker, C. Albumin Is the Major Carrier Protein for PFOS, PFOA, PFHxS, PFNA and PFDA in Human Plasma. Environ. Int. 2020, 137, 105324. [Google Scholar] [CrossRef]
- Macheka-Tendenguwo, L.R.; Olowoyo, J.O.; Mugivhisa, L.L.; Abafe, O.A. Per- and Polyfluoroalkyl Substances in Human Breast Milk and Current Analytical Methods. Environ. Sci. Pollut. Res. 2018, 25, 36064–36086. [Google Scholar] [CrossRef] [PubMed]
- Porpora, M.; Lucchini, R.; Abballe, A.; Ingelido, A.; Valentini, S.; Fuggetta, E.; Cardi, V.; Ticino, A.; Marra, V.; Fulgenzi, A.; et al. Placental Transfer of Persistent Organic Pollutants: A Preliminary Study on Mother-Newborn Pairs. IJERPH 2013, 10, 699–711. [Google Scholar] [CrossRef] [PubMed]
- Fouyet, S.; Olivier, E.; Leproux, P.; Dutot, M.; Rat, P. Pregnant Women and Endocrine Disruptors: Role of P2X7 Receptor and Mitochondrial Alterations in Placental Cell Disorders. Cells 2022, 11, 495. [Google Scholar] [CrossRef]
- Caporale, N.; Leemans, M.; Birgersson, L.; Germain, P.-L.; Cheroni, C.; Borbély, G.; Engdahl, E.; Lindh, C.; Bressan, R.B.; Cavallo, F.; et al. From Cohorts to Molecules: Adverse Impacts of Endocrine Disrupting Mixtures. Science 2022, 375, eabe8244. [Google Scholar] [CrossRef]
- Costa, M.A. The Endocrine Function of Human Placenta: An Overview. Reprod. BioMed. Online 2016, 32, 14–43. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, E.; Haug, L.S.; Sakhi, A.K.; Andrusaityte, S.; Basagaña, X.; Brantsaeter, A.L.; Casas, M.; Fernández-Barrés, S.; Grazuleviciene, R.; Knutsen, H.K.; et al. Diet as a Source of Exposure to Environmental Contaminants for Pregnant Women and Children from Six European Countries. Environ. Health Perspect. 2019, 127, 107005. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhao, S.; Tong, C.; Chen, L.; Yu, X.; Yuan, T.; Aimuzi, R.; Luo, F.; Tian, Y.; Zhang, J. Dietary Intake, Drinking Water Ingestion and Plasma Perfluoroalkyl Substances Concentration in Reproductive Aged Chinese Women. Environ. Int. 2019, 127, 487–494. [Google Scholar] [CrossRef]
- Bartolomé, M.; Gallego-Picó, A.; Cutanda, F.; Huetos, O.; Esteban, M.; Pérez-Gómez, B.; Castaño, A. Perfluorinated Alkyl Substances in Spanish Adults: Geographical Distribution and Determinants of Exposure. Sci. Total Environ. 2017, 603–604, 352–360. [Google Scholar] [CrossRef]
- Kingsley, S.L.; Eliot, M.N.; Kelsey, K.T.; Calafat, A.M.; Ehrlich, S.; Lanphear, B.P.; Chen, A.; Braun, J.M. Variability and Predictors of Serum Perfluoroalkyl Substance Concentrations during Pregnancy and Early Childhood. Environ. Res. 2018, 165, 247–257. [Google Scholar] [CrossRef]
- FAO Lebanon. Fisheries and Aquaculture Division; El Mokdad, D., Ed.; FAO Lebanon: Baabda, Lebanon, 2022; Available online: https://www.fao.org/fishery/en/countrysector/lb/en?lang=en (accessed on 10 October 2022).
- Shoeib, T.; Hassan, Y.; Rauert, C.; Harner, T. Poly- and Perfluoroalkyl Substances (PFASs) in Indoor Dust and Food Packaging Materials in Egypt: Trends in Developed and Developing Countries. Chemosphere 2016, 144, 1573–1581. [Google Scholar] [CrossRef]
- Ünlü Endirlik, B.; Bakır, E.; Boşgelmez, İ.İ.; Eken, A.; Narin, İ.; Gürbay, A. Assessment of Perfluoroalkyl Substances Levels in Tap and Bottled Water Samples from Turkey. Chemosphere 2019, 235, 1162–1171. [Google Scholar] [CrossRef]
- Hoa, N.T.Q.; Lieu, T.T.; Anh, H.Q.; Huong, N.T.A.; Nghia, N.T.; Chuc, N.T.; Quang, P.D.; Vi, P.T.; Tuyen, L.H. Perfluoroalkyl Substances (PFAS) in Freshwater Fish from Urban Lakes in Hanoi, Vietnam: Concentrations, Tissue Distribution, and Implication for Risk Assessment. Environ. Sci. Pollut. Res. Int. 2022, 29, 52057–52069. [Google Scholar] [CrossRef] [PubMed]
- Pinello, M.; Dimech, M. Socio-Economic Analysis of the Lebanese Fishing Fleet; FAO: Rome, Italy, 2013; Available online: https://www.fao.org/3/ar250e/ar250e.pdf (accessed on 10 October 2022).
- Ramírez Carnero, A.; Lestido-Cardama, A.; Vazquez Loureiro, P.; Barbosa-Pereira, L.; Rodríguez Bernaldo de Quirós, A.; Sendón, R. Presence of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in Food Contact Materials (FCM) and Its Migration to Food. Foods 2021, 10, 1443. [Google Scholar] [CrossRef]
- Seltenrich, N. PFAS in Food Packaging: A Hot, Greasy Exposure. Environ. Health Perspect. 2020, 128, 054002. [Google Scholar] [CrossRef]
- Lasters, R.; Groffen, T.; Eens, M.; Coertjens, D.; Gebbink, W.A.; Hofman, J.; Bervoets, L. Home-Produced Eggs: An Important Human Exposure Pathway of Perfluoroalkylated Substances (PFAS). Chemosphere 2022, 308, 136283. [Google Scholar] [CrossRef] [PubMed]
- Commission Européenne Règlement (UE) 2022/2388 de La Commission Du 7 Décembre 2022 Modifiant Le Règlement (CE) n. 1881/2006 En Ce Qui Concerne Les Teneurs Maximales En Substances Perfluoroalkylées Dans Certaines Denrées Alimentaires. 2022. Available online: https://eur-lex.europa.eu/legal-content/FR/TXT/PDF/?uri=CELEX:32022R2388 (accessed on 21 December 2022).
- Blomberg, A.J.; Haug, L.S.; Lindh, C.; Sabaredzovic, A.; Pineda, D.; Jakobsson, K.; Nielsen, C. Changes in Perfluoroalkyl Substances (PFAS) Concentrations in Human Milk over the Course of Lactation: A Study in Ronneby Mother-Child Cohort. Environ. Res. 2023, 219, 115096. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Xu, X.; Peng, L.; Liu, J.; Guo, Y.; Huo, X. Association between Maternal Exposure to Perfluorooctanoic Acid (PFOA) from Electronic Waste Recycling and Neonatal Health Outcomes. Environ. Int. 2012, 48, 1–8. [Google Scholar] [CrossRef]
- Stoiber, T.; Evans, S.; Naidenko, O.V. Disposal of Products and Materials Containing Per- and Polyfluoroalkyl Substances (PFAS): A Cyclical Problem. Chemosphere 2020, 260, 127659. [Google Scholar] [CrossRef]
- MoE/UNDP/ECODIT State and Trends of the Lebanese Environment, 3rd Ed. Lebanon. 2011. Available online: https://www.undp.org/arab-states/publications/state-trends-lebanese-environment (accessed on 21 December 2022).
- Galer, S.S. Lebanon Is Drowning in Its Own Waste. Available online: https://www.bbc.com/future/article/20180328-lebanon-is-drowning-in-its-own-waste/ (accessed on 10 October 2020).
- Hamid, H.; Li, L.Y.; Grace, J.R. Review of the Fate and Transformation of Per- and Polyfluoroalkyl Substances (PFASs) in Landfills. Environ. Pollut. 2018, 235, 74–84. [Google Scholar] [CrossRef]
- Barisci, S.; Suri, R. Occurrence and Removal of Poly/Perfluoroalkyl Substances (PFAS) in Municipal and Industrial Wastewater Treatment Plants. Water Sci. Technol. 2021, 84, 3442–3468. [Google Scholar] [CrossRef] [PubMed]
- Jha, G.; Kankarla, V.; McLennon, E.; Pal, S.; Sihi, D.; Dari, B.; Diaz, D.; Nocco, M. Per- and Polyfluoroalkyl Substances (PFAS) in Integrated Crop–Livestock Systems: Environmental Exposure and Human Health Risks. IJERPH 2021, 18, 12550. [Google Scholar] [CrossRef] [PubMed]
- Eick, S.M.; Enright, E.A.; Geiger, S.D.; Dzwilewski, K.L.C.; DeMicco, E.; Smith, S.; Park, J.-S.; Aguiar, A.; Woodruff, T.J.; Morello-Frosch, R.; et al. Associations of Maternal Stress, Prenatal Exposure to per- and Polyfluoroalkyl Substances (PFAS), and Demographic Risk Factors with Birth Outcomes and Offspring Neurodevelopment: An Overview of the ECHO.CA.IL Prospective Birth Cohorts. IJERPH 2021, 18, 742. [Google Scholar] [CrossRef]
- Kato, K.; Wong, L.-Y.; Chen, A.; Dunbar, C.; Webster, G.M.; Lanphear, B.P.; Calafat, A.M. Changes in Serum Concentrations of Maternal Poly- and Perfluoroalkyl Substances over the Course of Pregnancy and Predictors of Exposure in a Multiethnic Cohort of Cincinnati, Ohio Pregnant Women during 2003–2006. Environ. Sci. Technol. 2014, 48, 9600–9608. [Google Scholar] [CrossRef]
- Brantsæter, A.L.; Whitworth, K.W.; Ydersbond, T.A.; Haug, L.S.; Haugen, M.; Knutsen, H.K.; Thomsen, C.; Meltzer, H.M.; Becher, G.; Sabaredzovic, A.; et al. Determinants of Plasma Concentrations of Perfluoroalkyl Substances in Pregnant Norwegian Women. Environ. Int. 2013, 54, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Sagiv, S.K.; Rifas-Shiman, S.L.; Webster, T.F.; Mora, A.M.; Harris, M.H.; Calafat, A.M.; Ye, X.; Gillman, M.W.; Oken, E. Sociodemographic and Perinatal Predictors of Early Pregnancy Per- and Polyfluoroalkyl Substance (PFAS) Concentrations. Environ. Sci. Technol. 2015, 49, 11849–11858. [Google Scholar] [CrossRef] [PubMed]
- Manzano-Salgado, C.B.; Casas, M.; Lopez-Espinosa, M.-J.; Ballester, F.; Iñiguez, C.; Martinez, D.; Costa, O.; Santa-Marina, L.; Pereda-Pereda, E.; Schettgen, T.; et al. Prenatal Exposure to Perfluoroalkyl Substances and Birth Outcomes in a Spanish Birth Cohort. Environ. Int. 2017, 108, 278–284. [Google Scholar] [CrossRef]
- Marks, K.J.; Cutler, A.J.; Jeddy, Z.; Northstone, K.; Kato, K.; Hartman, T.J. Maternal Serum Concentrations of Perfluoroalkyl Substances and Birth Size in British Boys. Int. J. Hyg. Environ. Health 2019, 222, 889–895. [Google Scholar] [CrossRef]
- Meng, Q.; Inoue, K.; Ritz, B.; Olsen, J.; Liew, Z. Prenatal Exposure to Perfluoroalkyl Substances and Birth Outcomes; an Updated Analysis from the Danish National Birth Cohort. IJERPH 2018, 15, 1832. [Google Scholar] [CrossRef]
- Svensson, K.; Tanner, E.; Gennings, C.; Lindh, C.; Kiviranta, H.; Wikström, S.; Bornehag, C.-G. Prenatal Exposures to Mixtures of Endocrine Disrupting Chemicals and Children’s Weight Trajectory up to Age 5.5 in the SELMA Study. Sci. Rep. 2021, 11, 11036. [Google Scholar] [CrossRef]
- Gundacker, C.; Audouze, K.; Widhalm, R.; Granitzer, S.; Forsthuber, M.; Jornod, F.; Wielsøe, M.; Long, M.; Halldórsson, T.I.; Uhl, M.; et al. Reduced Birth Weight and Exposure to Per- and Polyfluoroalkyl Substances: A Review of Possible Underlying Mechanisms Using the AOP-HelpFinder. Toxics 2022, 10, 684. [Google Scholar] [CrossRef] [PubMed]
n | % | Mean (±SD) | Min | 50th p | 95th p | Max | %Contribution to ΣPFASs Median Levels: Total Sample (Low, High) b | |
---|---|---|---|---|---|---|---|---|
ΣPFASs | ||||||||
<0.3 ng/mL | 267 | 63.7 | 0.26 ± 0.01 | 0.21 | 0.26 | 0.28 | 0.29 | - |
≥0.3 ng/mL | 152 | 36.3 | 99.98 ± 8.71 | 74.42 | 100.96 | 111.56 | 113.34 | |
Total sample a | 419 | - | 0.21 | 0.27 | 109.19 | 113.34 | ||
PFHpA | 15.61 (16.49; 0.31) | |||||||
<0.05 ng/mL | 266 | 63.5 | 0.042 ± 0.003 | 0.031 | 0.042 | 0.048 | 0.049 | |
≥0.05 ng/mL | 153 | 36.5 | 0.307 ± 0.035 | 0.050 | 0.310 | 0.340 | 0.360 | |
Total sample a | 419 | - | 0.031 | 0.045 | 0.340 | 0.360 | ||
PFOA | 35.01 (33.17; 44.46) | |||||||
<0.10 ng/mL | 264 | 63 | 0.085 ± 0.008 | 0.065 | 0.085 | 0.097 | 0.099 | |
≥0.10 ng/mL | 155 | 37 | 43.524 ± 7.426 | 0.100 | 45.000 | 50.110 | 51.250 | |
Total sample a | 419 | - | 0.065 | 0.092 | 49.100 | 51.250 | ||
PFHxS | 16.09 (17.02; 2.08) | |||||||
<0.05 ng/mL | 261 | 62.3 | 0.044 ± 0.003 | 0.035 | 0.043 | 0.049 | 0.049 | |
≥0.05 ng/mL | 158 | 37.7 | 2.014 ± 0.431 | 0.050 | 2.170 | 2.301 | 2.380 | |
Total sample a | 419 | - | 0.035 | 0.047 | 2.270 | 2.380 | ||
PFOS | 35.20 (33.54; 53.17) | |||||||
<0.10 ng/mL | 267 | 63.7 | 0.086 ± 0.007 | 0.065 | 0.086 | 0.097 | 0.100 | |
≥0.10 ng/mL | 152 | 36.3 | 53.204 ± 4.516 | 39.250 | 54.125 | 59.735 | 61.250 | |
Total sample a | 419 | - | 0.065 | 0.092 | 57.800 | 61.250 |
n = 59 | n = 8 | ||||
---|---|---|---|---|---|
<LOD n (%) | >LOD n (%) | Mean (±SD) a | 50th p a | Max a | |
PFHpA | 51 (86.4) | 8 (13.6) | 0.30 ± 0.04 | 0.31 | 0.35 |
PFOA | 51 (86.4) | 8 (13.6) | 43.28 ± 5.88 | 44.85 | 49.50 |
PFNA | 59 (100) | 0.0 | - | - | - |
PFDA | 59 (100) | 0.0 | - | - | - |
PFHxS | 51 (86.4) | 8 (13.6) | 2.00 ± 0.17 | 1.98 | 2.20 |
PFOS | 51 (86.4) | 8 (13.6) | 53.03 ± 6.02 | 54.60 | 58.30 |
n | % | Mean (±SD) | Min | 50th p | 95th p | Max | %Contribution to ΣPFASs Median Levels: Total Sample (Low, High) a | |
---|---|---|---|---|---|---|---|---|
ΣPFAS | - | |||||||
Low | 18 | 43.9 | 2.26 ± 0.21 | 1.88 | 2.24 | - | 2.56 | |
High | 23 | 56.1 | 284 ± 64.87 | 174.0 | 302.5 | 371.26 | 373.50 | |
Total sample | 41 | 100 | 160.45 ± 149.62 | 1.88 | 202.80 | 361.52 | 373.50 | |
PFHpA | 5.03 (20.72; 4.65) | |||||||
<0.06 ng/L | 18 | 43.9 | 0.44 ± 0.10 | 0.27 | 0.45 | - | 0.58 | |
≥0.06 ng/L | 23 | 56.1 | 13.03 ± 3.85 | 6.80 | 14.60 | 18.08 | 18.10 | |
Total sample | 41 | 100 | 7.50 ± 6.94 | 0.27 | 7.20 | 17.97 | 18.10 | |
PFOA | 20.80 (19.10; 21.66) | |||||||
<0.06 ng/L | 18 | 43.9 | 0.43 ± 0.08 | 0.29 | 0.42 | - | 0.56 | |
≥0.06 ng/L | 23 | 56.1 | 60.78 ± 13.98 | 39.00 | 65.00 | 79.40 | 80.00 | |
Total sample | 41 | 100 | 34.29 ± 32.05 | 0.29 | 42.00 | 76.90 | 80.00 | |
PFNA | 0.69 (20.72; 0.64) | |||||||
<0.06 ng/L | 18 | 43.9 | 0.48 ± 0.06 | 0.33 | 0.47 | - | 0.59 | |
≥0.06 ng/L | 23 | 56.1 | 1.87 ± 0.38 | 1.20 | 2.00 | 2.40 | 2.40 | |
Total sample | 41 | 100 | 1.26 ± 0.75 | 0.33 | 1.30 | 2.39 | 2.40 | |
PFHxS | 22.72 (19.64; 23.21) | |||||||
<0.06 ng/L | 18 | 43.9 | 0.45 ± 0.06 | 0.34 | 0.45 | - | 0.59 | |
≥0.06 ng/L | 23 | 56.1 | 67.57 ± 12.6 | 42.00 | 71.00 | 84.20 | 85.00 | |
Total sample | 41 | 100 | 38.10 ± 34.99 | 0.34 | 48.00 | 80.90 | 85.00 | |
PFOS | 47.25 (20.92; 49.81) | |||||||
<0.06 ng/L | 18 | 43.9 | 0.47 ± 0.09 | 0.32 | 0.47 | - | 0.60 | |
≥0.06 ng/L | 23 | 56.1 | 141.00 ± 35.04 | 141.00 | 147.00 | 187.40 | 188.00 | |
Total sample | 41 | 100 | 79.30 ± 75.24 | 0.32 | 91.00 | 184.70 | 188.00 |
95% CI | ||||
---|---|---|---|---|
OR b | LB | UB | p-Value | |
ΣPFASs High vs. Low a | ||||
Fish/shellfish consumption ≥ 0.63 vs. <0.63 portion/week c,d | 1.90 | 1.05 | 3.46 | 0.034 |
Vicinity to illegal incinerations: Yes vs. No d | 2.03 | 1.08 | 3.81 | 0.029 |
Education: University level vs. high school or less c | 2.07 | 1.10 | 3.89 | 0.025 |
Age ≥ 30 vs. <30 | 0.85 | 0.46 | 1.58 | 0.613 |
Multiparous vs. Primiparous | 0.70 | 0.36 | 1.36 | 0.293 |
Pre-pregnancy BMI ≥ 25 vs. <25 kg/m2 | 0.98 | 0.51 | 1.86 | 0.944 |
GWG | ||||
Normal vs. Inadequate | 1.19 | 0.59 | 2.42 | 0.630 |
Excessive vs. Inadequate | 1.01 | 0.48 | 2.14 | 0.983 |
Crowding index: ≥1 vs. <1 | 0.96 | 0.45 | 2.09 | 0.927 |
Breastfed: Yes vs. No | 1.02 | 0.38 | 2.70 | 0.971 |
Vicinity to factories: Yes vs. No | 0.71 | 0.39 | 1.28 | 0.256 |
Vicinity to landfills: Yes vs. No | 1.00 | 0.53 | 1.90 | 0.994 |
Ever smoking: Yes vs. No | 0.72 | 0.40 | 1.32 | 0.292 |
Passive smoking: Yes vs. No | 1.51 | 0.74 | 3.06 | 0.255 |
Alcohol: Yes vs. No | 0.44 | 0.19 | 1.06 | 0.067 |
Red meat consumption: ≥1.94 vs. <1.94 portions/week | 1.60 | 0.91 | 2.83 | 0.105 |
Dairy products consumption: ≥11.5 vs. <11.5 portions/week | 0.72 | 0.40 | 1.29 | 0.274 |
Poultry consumption: ≥2 vs. <2 portions/week | 1.26 | 0.71 | 2.24 | 0.422 |
Eggs consumption: ≥1.4 vs. <1.4 portions/week | 0.99 | 0.55 | 1.78 | 0.977 |
Fruits consumption: ≥10.5 vs. <10.5 portions/week | 1.10 | 0.61 | 1.97 | 0.746 |
PFAS Categories | ||||||
---|---|---|---|---|---|---|
Low (n = 18) n; % | High (n = 21) n; % | p-Value a | ||||
ΣPFAS | ||||||
Dairy Products | <1.5 portions/day | 14 | 77.8% | 8 | 38.1% | 0.013 |
≥1.5 portions/day | 4 | 22.2% | 13 | 61.9% | ||
Eggs b | <1.68 portion/week (Median) | 13 | 72.2% | 6 | 28.6% | 0.007 |
>1.68 portion/week (Median) | 5 | 27.8% | 15 | 71.4% | ||
Use of Tap Water | Yes | 0 | 0.0% | 5 | 27.8% | 0.019 |
No | 17 | 100.0% | 13 | 72.2% |
95% CI | ||||
---|---|---|---|---|
Unst. Β b | LB | UB | p-Value | |
Weight-for-length | ||||
PFHpA: High vs. Low a | −0.035 | −0.070 | 0.000 | 0.047 |
Age: ≥30 vs. <30 years | −0.008 | −0.043 | 0.027 | 0.664 |
Multiparous vs. Primiparous | 0.015 | −0.024 | 0.054 | 0.450 |
Pre-pregnancy BMI: ≥25 vs. <25 kg/m2 | −0.030 | −0.068 | 0.008 | 0.123 |
GWG | 0.011 | −0.011 | 0.032 | 0.334 |
Pregnancy weight loss from restrictive diet: Yes vs. No | 0.028 | −0.051 | 0.106 | 0.490 |
Pre−pregnancy weight loss from restrictive diet: Yes vs. No | −0.007 | −0.051 | 0.036 | 0.739 |
Passive smoking: Yes vs. No | 0.001 | −0.040 | 0.042 | 0.967 |
Smoking: Yes vs. No | 0.006 | −0.029 | 0.041 | 0.745 |
Gestational age (in weeks) | 0.010 | −0.003 | 0.023 | 0.122 |
Crowding index: >1 vs. ≤1 | −0.035 | −0.080 | 0.010 | 0.128 |
Education University vs. high school or less | 0.039 | 0.002 | 0.076 | 0.039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahfouz, M.; Harmouche-Karaki, M.; Matta, J.; Mahfouz, Y.; Salameh, P.; Younes, H.; Helou, K.; Finan, R.; Abi-Tayeh, G.; Meslimani, M.; et al. Maternal Serum, Cord and Human Milk Levels of Per- and Polyfluoroalkyl Substances (PFAS), Association with Predictors and Effect on Newborn Anthropometry. Toxics 2023, 11, 455. https://doi.org/10.3390/toxics11050455
Mahfouz M, Harmouche-Karaki M, Matta J, Mahfouz Y, Salameh P, Younes H, Helou K, Finan R, Abi-Tayeh G, Meslimani M, et al. Maternal Serum, Cord and Human Milk Levels of Per- and Polyfluoroalkyl Substances (PFAS), Association with Predictors and Effect on Newborn Anthropometry. Toxics. 2023; 11(5):455. https://doi.org/10.3390/toxics11050455
Chicago/Turabian StyleMahfouz, Maya, Mireille Harmouche-Karaki, Joseph Matta, Yara Mahfouz, Pascale Salameh, Hassan Younes, Khalil Helou, Ramzi Finan, Georges Abi-Tayeh, Mohamad Meslimani, and et al. 2023. "Maternal Serum, Cord and Human Milk Levels of Per- and Polyfluoroalkyl Substances (PFAS), Association with Predictors and Effect on Newborn Anthropometry" Toxics 11, no. 5: 455. https://doi.org/10.3390/toxics11050455
APA StyleMahfouz, M., Harmouche-Karaki, M., Matta, J., Mahfouz, Y., Salameh, P., Younes, H., Helou, K., Finan, R., Abi-Tayeh, G., Meslimani, M., Moussa, G., Chahrour, N., Osseiran, C., Skaiki, F., & Narbonne, J. -F. (2023). Maternal Serum, Cord and Human Milk Levels of Per- and Polyfluoroalkyl Substances (PFAS), Association with Predictors and Effect on Newborn Anthropometry. Toxics, 11(5), 455. https://doi.org/10.3390/toxics11050455