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Abstract: Exposure to air pollution is one of the greatest environmental risks for human health. Air
pollution level is significantly driven by anthropogenic emissions and meteorological conditions. To
protect people from air pollutants, China has implemented clean air actions to reduce anthropogenic
emissions, which has led to rapid improvement in air quality over China. Here, we evaluated the
impact of anthropogenic emissions and meteorological conditions on trends in air pollutants in a
coastal city (Lianyungang) in eastern China from 2015 to 2022 based on a random forest model. The
annual mean concentration of observed air pollutants, including fine particles, inhalable particles,
sulfur dioxide, nitrogen dioxide, and carbon monoxide, presented significant decreasing trends
during 2015–2022, with dominant contributions (55–75%) by anthropogenic emission reduction. An
increasing trend in ozone was observed with an important contribution (28%) by anthropogenic
emissions. The impact of meteorological conditions on air pollution showed significant seasonality.
For instance, the negative impact on aerosol pollution occurred during cold months, while the
positive impact was in warm months. Health-risk-based air quality decreased by approximately 40%
in 8 years, for which anthropogenic emission made a major contribution (93%).

Keywords: air quality; emission; meteorological impact; machine learning; coastal city

1. Introduction

Air pollution is one of the most important global environmental problems, which
can significantly affect human health [1]. Air pollutants can be generally classified into
two phases, i.e., gases including ozone (O3), nitrogen oxide (NOx), carbon monoxide
(CO), sulfur dioxide (SO2), and volatile organic compounds (VOCs), and particles, such
as fine particulate matter (PM2.5) and inhalable particulate matter (PM10) [2,3]. Exposure
to ambient particulate matter is one of the most important health risk factors [4]. It was
estimated that approximately 4.2 million deaths were attributed to particulate matter air
pollution all over the world in 2015 [1].These air pollutants can be generated from natural [5]
and/or anthropogenic [6,7] sources [2]. Concentrations of air pollutants in ambient air are
affected by two major factors, including emissions and meteorological conditions [8–11]. It
is essential to evaluate the impact of these two factors on the variability of air pollution in
the atmosphere for making emission control policies.

Relatively serious air pollution is mainly distributed in developing and populous coun-
tries, such as China. Air pollution is generally characterized by complicated mixtures along
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with complex chemical reactions [12–15] and pollution–weather interactions [10,16,17]. To
improve air quality, the Chinese government has been implementing a series of clean air
actions since 2013 [18]. Emission inventory studies showed that most pollutant emissions
have significantly decreased due to strict emission reductions [19], except for emissions in
VOCs and ammonia (NH3), which showed a stable but even a slight increase from 2013
to 2017 [20]. Among the typical air pollutants, SO2 showed the most significant decrease
over China due to efficient emission reduction controls for the power plant sector [20]. Due
to emission reductions, substantial improvement in air quality in China has been widely
observed, which could prove the effectiveness of the regional emission reduction [20] in
controlling air pollution [18,21–23].

Recently, many studies applied an air quality model to assess the contribution of
anthropogenic emissions and meteorology to changes in air quality during the recent years
in China [18,24–26]. They found that anthropogenic emission reduction was a dominant
driver of air quality improvement. For example, Zhang et al., (2019) found that population-
weighted annual mean PM2.5 concentrations decreased from 61.8 to 42.0 µg m−3 from 2013
to 2017 over China, with dominant contributions (approximately 91%) from anthropogenic
emission abatements. Furthermore, they also found that the improvement in PM2.5 air
pollution was driven by three measures, including strengthening industrial emission
standards, upgrades on industrial boilers, phasing out outdated industrial capacities, and
promoting clean fuels in the residential sector [18]. However, an increase in summertime
ozone was also widely observed during 2013–2017, especially in the North China Plain,
which was demonstrated by changes in anthropogenic emissions [27] and a rapid decline in
ambient PM2.5 concentrations that could slow down the aerosol sink of hydroperoxyl (HO2)
radicals [28,29]. Those previous studies using chemical transport models have improved
our understanding of the response of air quality to changes in emissions and meteorological
conditions. However, there is a challenge for a chemical transport model method for
evaluating an up-to-date time period due to lack of up-to-date emission inventory data.
Recently, some studies tried to use statistical model methods, such as multiple linear
regression [28,30–32], Kolmogorov–Zurbenko filters [33,34], and random forest [11,35–40],
to separate the contribution of anthropogenic emission and meteorology to trends in air
quality. Two of the advantages of statistical models are there is no need for emission
inventory data as model input and there is no need for complex chemical and physical
mechanisms in the model. Generally, a statistical model could be built by using observed
air quality and meteorological data, which, therefore, could offer up-to-date outputs to
meet the observation timing. Among these statistical model methods, the random forest
(RF) algorithm—which is one of the machine learning algorithms—exhibited a robust
performance with high noise immunity and high accuracy, which is also able to handle
high-dimensional data and nonlinear problems [35,41,42].

In addition to emissions, meteorological conditions also play an important role in
affecting air quality, especially in the typical coastal regions. However, the impact of
meteorological conditions on air quality at a typical coastal region was not well quanti-
fied. In this study, we applied a machine learning approach to evaluate the impact of
anthropogenic emissions and meteorology on trends in air quality during 2015–2022 in a
coastal city of eastern China (i.e., Lianyungang). Additionally, drivers of health-risk air
quality index (HAQI) and the corresponding premature mortality from 2015 to 2022 were
also investigated.

2. Data and Methods
2.1. Data Source

In the present study, the hourly mass concentration of air pollutants, including PM2.5,
PM10, CO, NO2, O3, and SO2, in Lianyungang, which is a typical coastal city in eastern
China, was obtained from the China National Environmental Monitoring Center network
(https://quotsoft.net/air, last access 10 March 2023). The meteorological parameters were
taken from ERA5 reanalysis data of the European Centre for Medium-Range Numerical
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Prediction (ECMWF), which is accessible at https://cds.climate.copernicus.eu/ (last access
10 January 2023). The meteorological data include zonal wind speed (U10), meridional wind
speed (V10), temperature (T), boundary layer height (BLH), solar radiation (SR), sea level
pressure (SP), total cloud coverage (TCC), total precipitation (TP), relative humidity (RH),
zonal wind speed of 500 hpa (U500), meridional wind speed of 500 hpa (V500), 500 hpa
vertical wind speed (W500), 850 hpa zonal wind speed (U_850), 850 hpa meridional wind
speed (V850), and 850 hpa vertical wind speed (W850). The horizontal and temporal
resolutions of these meteorological data were 0.25 degree and 1 h, respectively. The
geographic location of Lianyungang is shown in Figure 1.
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Figure 1. Geographic location (red dot) of the coastal city (Lianyungang) in eastern China.

2.2. Meteorological Normalization Using RF Model

In the present study, a meteorological normalization approach based on the RF algo-
rithm [35] was applied to separate the impact of anthropogenic emissions and meteorologi-
cal conditions on trends in air pollutants, including PM2.5, PM10, CO, NO2, O3, and SO2,
respectively. A more detailed description of such meteorological normalization approach
can be found elsewhere [35–37,42]. The daily average data were used for the RF model
analysis, which was consistent with Grange et al., (2018) [35]. Briefly, the prediction features
for the RF model included time variables (i.e., proxy of emissions) and meteorological
parameters. To explain long-term, seasonal, and weekly variations in anthropogenic emis-
sions, three corresponding time variables were used here, which were Unix time, Julian day
(day of year), and weekdays (day of week), respectively. The RF model prediction features
for the meteorological field include U10, V10, T, BLH, SR, TCC, TP, RH, U500, V500, W500,
U850, V850, and W850, which could explain the impact of these meteorological parameters
on variations in air pollution. The day of the week variable was a categorical variable,
while all the other variables were numeric variables. In practice, a specific RF model for
an individual air pollutant (e.g., PM2.5, PM10, CO, NO2, O3, or SO2) was first established.
The 70% and 30% of the input data were divided as training and testing data sets, respec-
tively. In this processing, the RF model’s built-in importance indexes could be obtained.
In addition, a fivefold cross validation was applied to evaluate the model performance. The
normalized mean square error (NMSE), root mean square error (RMSE), and correlation
coefficient between observation and prediction were calculated for evaluation metrics.

To obtain weather-normalized (so-called deweathered) prediction, the total 1000-time
prediction was achieved. To do so, the model input data for daily meteorological variable
features were randomly resampled from the historical weather data during 2001–2022,
while time variables were resampled. This process was repeated in the corresponding
1000 predictions. For each processing, a specific model prediction result was then taken.
The final deweathered concentration for the specific air pollutant was obtained by aggre-
gating the 1000 predictions using arithmetic mean.

In addition, we applied a meteorological impact index method to evaluate the extent
of meteorological influence on the concentrations of air pollution in different years and/or
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months. This method has been described in a previous study [34]. Briefly, the relative
difference in the monthly mean concentration of an individually observed and deweathered
air pollutant was due to the meteorological impact. The meteorological (MET) impact
index could be calculated using Equation (1). In Equation (1), Ci,observed and Ci,deweathered
represent the monthly mean concentrations of an observed and deweathered air pollutant,
respectively, where i refers to individual month. The model configuration used in this
study is consistent with previous studies [35]. In this work, the RF modeling analysis was
performed using a random forest R package based on the R language [43].

MET impact index =
Ci,observed − Ci,deweathered

Ci,observed
(1)

2.3. Calculation of Health-Risk-Based AQI (HAQI)

In this paper, we also calculated the HAQI value to evaluate the health impact of air
pollution. A detailed calculation method can be found in Hu et al., (2015) [44]. Meanwhile,
we also evaluated the impact of anthropogenic emissions and meteorological conditions
on changes in HAQI from 2015 to 2022. More discussion will be given in the next section.
Relative risk (RR) was used to estimate the health effect for the six air pollutants (including
PM2.5, PM10, NO2, SO2, CO, and O3) by using Equation (2). The RR based on the equivalent
concentration of the pollutants

(
RR′

)
was calculated by Equation (3):

RR = exp{β(C−C0)}, C > C0 (2)

where β refers to the exposure–response relationship coefficient, C represents the concen-
tration of each pollutant, and C0 is the threshold concentration, below which the pollutant
proves no obvious adverse health effects:

RR′ = ERTotal + 1 (3)

where ERTotal refers to the sum of the total excess risk for simultaneous exposure to the
six air pollutants. Equation (4) introduces the equivalent pollutant concentration of the ith
criteria pollutant (Ci

′):

Ci
′ =

In
(
RR′

)
βi

+ C0,i (4)

where βi represents the exposure–response relationship coefficient of the ith pollutant,
and C0,i is the threshold concentration of the ith pollutant. Then Ci

′ can be used to calcu-
late the equivalent concentration of the ith criteria pollutant (HAQIi), which is shown in
Equations (5) and (6):

HAQIi =
(AQIi,j −AQIi,j−1)

(Ci,j −Ci,j−1)
×

(
Ci
′ −Ci,j−1

)
+ AQIi,j−1, j > 1 (5)

HAQIi = AQIi,1
Ci
′

Ci,1
, j = 1 (6)

where j is the health category index; Ci,j and Ci,j−1 represent the upper-limit concentrations
for the jth and j-1th health categories; and AQIi,j and AQIi,j−1 refer to the air quality index
of the pollutant that corresponds to Ci,j and Ci,j−1.

Finally, Equation (7) shows that the overall HAQI is determined by the maximum of
all HAQIis.

HAQIi = max(HAQI1, HAQI2, . . . , HAQIn), n = 1, 2, . . . , 6. (7)
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2.4. Calculation of Premature Mortality (M)

The premature mortality (M) attributable to PM2.5 and O3 can reflect health effects of at-
mospheric pollutants. A detailed calculation method can be found in Apte et al., (2015) [45].
Briefly, the premature mortality is calculated in Equation (8):

M = Yo × Pop× RR− 1
RR

(8)

where Yo refers to the baseline mortality rate corresponding to a particular disease cat-
egory in regions, which can be found in the Statistical Yearbook of Public Health and
Family Planning in China. Pop represents the population for this region in 2015. RR has
been calculated in Equation (2), and RR−1

RR here refers to the attribution fraction, which is
attributed to respiratory disease linked to O3 and stroke, ischemic heart disease (IHD),
chronic obstructive pulmonary disease (COPD), and lung cancer (LC) linked to PM2.5.

3. Results and Discussion
3.1. Modeling Evaluation

Figure 2 presents the fivefold cross-validation results of the RF models for the six air
pollutants (including PM2.5, PM10, NO2, SO2, CO, and O3). Overall, the predicted con-
centrations of all air pollutants were correlated well (r = 0.71–0.88) within the observed
concentrations. The NMSE values of the six air pollutants were in the range of 0.04–0.16.
The corresponding RMSE values were in the range of 0.22–34.43. These model validation
results could prove the good performance for the RF models.
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Figure 2. Fivefold cross validation between the RF-predicted concentration with the observed
concentration for (a) PM2.5, (b) PM10, (c) NO2, (d) SO2, (e) CO, and (f) O3, respectively.

Figure 3 shows the relative importance taken from the RF model for an individual air
pollutant. For most air pollutants (i.e., PM2.5, PM10, NO2, SO2, and CO), the Unix time—as
a long-term anthropogenic emission proxy—shows highly relative importance. This reveals
the important impact of anthropogenic emission on trends in air pollutants (i.e., PM2.5,
PM10, NO2, SO2, and CO) during 2015–2022. However, the Unix time shows a relatively
low contribution to the relative importance, suggesting that the variability of atmospheric
ozone in Lianyungang was not mainly driven by anthropogenic emissions.
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Figure 3. Relative importance (mean decrease impurity) of the prediction features resolved by the RF
models for (a) PM2.5, (b) PM10, (c) NO2, (d) SO2, (e) CO, and (f) O3.

3.2. Impact of Anthropogenic Emissions on Air Pollution Trends

Figure 4 presents the annual mean concentrations of the deweathered and observed
six air pollutants during 2015–2022. The observed SO2 concentration showed the largest
difference in its concentrations from 2015 to 2022 among the six air pollutants, which
decreased from 25.24 to 6.87 µg m−3. The observed PM2.5 and PM10 concentrations de-
creased from 53.70 and 93.31 to 30.52 and 55.84 µg m−3 in 8 years, respectively. The
observed NO2 showed a slight decrease during 2015–2022. The observed SO2 showed
the largest decreasing trends (−2.75 µg m−3 a−1), followed by PM2.5 (−3.12 µg m−3 a−1),
PM10 (−5.27 µg m−3 a−1), CO (−0.04 mg m−3 a−1), and NO2 (−1.15 µg m−3 a−1). The
corresponding deweathered concentrations for these air pollutants showed similar trends,
i.e., SO2 (−1.94 µg m−3 a−1), PM2.5 (−1.89 µg m−3 a−1), PM10 (−3.27 µg m−3 a−1), CO
(−0.03 mg m−3 a−1), and NO2 (−0.64 µg m−3 a−1). These results reflect a large contri-
bution (55–75%) of anthropogenic emissions to the changes in air quality trend during
2015–2022. However, the deweathered O3 presented an increasing trend during 2015–2022,
highlighting the continuous aggravation of O3 air pollution in this region. This is overall
consistent with some previous observation and modeling studies [28,46,47].
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Since 2013, the Chinese government has implemented a series of policies to improve
air quality, such as the Action Plan for Air Pollution Prevention and Control in 2013 and
the 3-year Action Plan for Winning the Battle against Blue Skies in 2018. To explore the
difference in trends of air quality during the different time periods associated with the
different air pollution control measures [18], we compared the trends in the observed and
deweathered concentrations of the six air pollutants during 2015–2022, 2015–2018, and
2019–2022, respectively (see Figure 5). Overall, the six air pollutants presented different
trends at different time periods. For instance, trends in deweathered PM2.5 concentrations
were −1.89 µg m−3 a−1, −1.54 µg m−3 a−1, and −2.15 µg m−3 a−1 during 2015–2022,
2015–2018, and 2019–2022, respectively. The deweathered NO2 trend showed a similar
trend with a more rapid reduction during the latter period (−1.04 µg m−3 a−1) rather
than the former period (−0.06 µg m−3 a−1). These results could be attributed to more
rapid reductions in PM2.5 and NO2 from 2020 to 2022. The deweathered SO2 showed
a larger reduction during 2015–2018 than that during 2019–2022, highlighting a more
effective reduction in SO2 during the former period. This is also consistent with emission
inventory studies [18], where they also found substantial emission reduction of SO2 over
eastern China. The deweathered PM10 also presented a larger annual reduction ratio
(−5.35 µg m−3 a−1) during 2015–2018 than that during 2019–2022, which could be partly
explained by mankind dust emission control (such as urban road dust emissions) [48,49].
During these three periods, the deweathered O3 presented a comparable trend with a range
of 0.21–0.37 µg m−3 a−1, which reflects the continuity of the O3 pollution trend during
the different periods in this region. It should be noted that an unexpected short-term
emission reduction due to the COVID-19 pandemic lockdown in the spring of 2020 in
eastern China has been widely reported [38,50–54], which might have influence on the
long-term trend observed in the present study. Due to the methodology limitation, we
here roughly evaluate such influence. To do so, the data in 2020 were replaced by that
in 2019. The comparison between the original trends and the modified trends by using
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the replaced data could represent the upper limit of the COVID-19 impact. The modified
trends in observed and deweathered concentrations of air pollutants during 2015–2022 were
−3.00 and −1.87 µg m−3 a−1, −5.03 and −3.24 µg m−3 a−1, −1.07 and −0.63 µg m−3 a−1,
−2.71 and−1.93 µg m−3 a−1, 0.91 and−0.26 µg m−3 a−1, and−0.04 and−0.03 mg m−3 a−1

for PM2.5, PM10, NO2, SO2, O3, and CO, respectively. The difference between the original
trends (see Figure 4) and the modified trends in observed and deweathered concentrations
was very small or even negligible (1–7% and 0–2%, respectively). These results suggest
that the short-term emission reduction during the COVID-19 pandemic lockdown could
influence the long-term trend during 2015–2022, but the magnitude of the influence might
be small. Moreover, it would be more helpful to evaluate such influence by using chemical
transport modeling, which could be further performed in the future.
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Figure 5. Trends in (a) PM2.5, (b) PM10, (c) NO2, (d) SO2, (e) O3, and (f) CO during the three periods,
i.e., 2015–2022, 2015–2018, and 2019–2022, respectively.

3.3. Impact of Meteorology on Air Pollution Trends

To understand the impact of meteorological conditions on trends in air quality, we
further quantified an annual and seasonal mean meteorological impact index, a proxy
for the potential contribution of the meteorological impact to changes in concentrations
of air pollutants (see Figures 6 and 7). The positive value for the meteorological impact
index could reflect negative meteorology, that is, adverse meteorological conditions for
air pollution, while the negative values for that reflect those favorable meteorological
conditions for improving air quality [36,37,42]. As shown in Figure 6, the meteorological
impact index presented negative values for all six air pollutants during different time
periods, suggesting favorable meteorological conditions that play an important positive
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impact on air quality in this coastal city region. Except for O3, the magnitudes of such
values for most air pollutants were larger during 2019–2022 than that during 2015–2018,
suggesting that meteorological conditions (such as atmospheric diffusion conditions and/or
air temperature) during the latter period were more favorable for reducing concentrations
of air pollutant than during the former period. Except for O3, the meteorological impact
index of the five air pollutants presents relatively high values during warm months, while
it presents relatively low values and even positive values during cold months in this
coastal city region. These results could provide direct evidence to prove that meteorological
conditions during cold months could promote aerosol (i.e., PM2.5 and PM10) and gas (i.e.,
SO2, NO2, and CO) pollution. The meteorological conditions during warm months play an
important role in reducing the concentrations of these air pollutants. The meteorological
impact index of O3 shows an overall opposite variation compared with other air pollutants,
which present relatively low and high values during cold months and warm months,
respectively. This is in line with the fact that the most frequent O3 pollution occurs in warm
seasons due to unfavorable meteorological conditions, such as strong solar radiation and
high air temperature. This is consistent with the RF built-in importance results with the
most important prediction feature for solar radiation and U10 (Figure 3).
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3.4. Health Risk and Premature Mortality Assessment

Figure 8 presents changes in the HAQI values and corresponding drivers (i.e., anthro-
pogenic emissions and meteorology) from 2015 to 2022. The HAQI values decreased from
445 to 262 during 2015–2022. PM2.5 and PM10 contributed a large fraction (51–55%) to the
HAQI in both 2015 and 2022. Anthropogenic emission contributed to approximately 93%
of changes in value from 2015 to 2022, where PM2.5 and PM10 contributed approximately
50% to this emission driver. This suggests that the decline in HAQI value from 2015 to
2022 was driven by anthropogenic emission reduction. As reported by a previous study,
approximately 0.894 million premature deaths in 2017 were estimated due to PM2.5 and
O3 pollution across China [55]. To further evaluate health risk associated with long-term
exposure to air pollution, we estimated premature mortality from ambient PM2.5 and O3
pollution in the Lianyungang region. Figure 9 presents trends in cause-specific premature
mortality related to observed and deweathered PM2.5 and O3 from 2015 to 2022, respectively.
Among the five specific causes, PM2.5-IHD and PM2.5-stroke accounted for a major fraction
(approximately 71–78%) of the total number of deaths, due to the fact that stroke and IHD
dominate the total mortality [45]. The highest premature mortality was attributable to
observed PM2.5 and O3 in 2015, which would cause a total of 11,208 deaths. The specific
causes were PM2.5-IHD (3931), PM2.5-stroke (4764), PM2.5-LC (770), PM2.5-COPD (1446),
and O3-respiratory (297). Overall, the observed mortality from PM2.5 pollution declined
during 2015–2022. The results indicated by the present study were comparable to a previous
study, which showed a significant reduction in premature deaths attributable to long-term
PM2.5 exposures from 2013 to 2016 in China due to emission control [56]. The deweathered
PM2.5-related mortality was decreased from 10,088 deaths to 6501 deaths in 8 years, while
the deweathered O3-related mortality was increased from 804 deaths to 1192 deaths. The
deweathered PM2.5-related mortality presented a decreasing trend (−531 deaths per year).
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The O3-related mortality presented an increasing trend (38 deaths per year). These results
suggest that reduction in exposure risk to ambient PM2.5 was driven by anthropogenic
emission control in this region. This is consistent with the results obtained from chemical
transport modeling, which showed that air pollution control avoided 0.39 million deaths
caused by PM2.5 pollution in China from 2012 to 2017 [57]. However, health risk linked
to ambient O3 pollution was increased. The difference of the total deweathered deaths
from 2015 to 2022 was 3199, suggesting that China’s clean air actions might avoid air-
pollution-induced deaths in the Lianyungang region. The relative change in observed and
deweathered values reflected the magnitude of the meteorological impact (see Equation (1)).
The highest meteorology-driven impact could lead to 2050 deaths, which occurred in 2021.
This suggests that changes in meteorological conditions could significantly affect air pollu-
tion deaths in this coastal region. Although we have estimated cause-specific premature
mortality in this study, a further comparison between estimation and observation in the
real world would be more useful to understand the uncertainty of our estimates and more
helpful to further understand the health risk of air pollution in a future study.
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4. Conclusions

In this study, the impact of anthropogenic emissions and meteorology on trends in
air quality during 2015–2022 in a coastal city was investigated using an RF modeling
approach. The annual mean PM2.5, PM10, NO2, SO2, and CO decreased from 53.70 µg m−3,
93.31 µg m−3, 29.45 µg m−3, 25.24 µg m−3, and 0.90 mg m−3 to 30.52 µg m−3, 55.84 µg m−3,
21.85 µg m−3, 6.87 µg m−3, and 0.61 mg m−3, during 8 years, respectively. The annual
mean concentrations of deweathered PM2.5, PM10, NO2, SO2, and CO presented decreasing
trends with decreasing rates of −1.89 µg m−3 a−1, −3.27 µg m−3 a−1, −1.89 µg m−3 a−1,
−0.64 µg m−3 a−1,−1.94 µg m−3 a−1, and−0.03 mg m−3 a−1, which contributed 61%, 62%,
56%, 71%, and 75% to the observed trends, respectively. The observed and deweathered O3
presented an increasing trend with increasing rates of 0.92 µg m−3 a−1 and 0.26 µg m−3 a−1,
respectively. These results demonstrated the dominant contribution of anthropogenic
emission to trends of air pollutants during 2015–2022. The HAQI value decreased from
445 to 262 in 8 years. The contribution of anthropogenic emissions and meteorological
conditions to the changes in HAQI were 93% and 7%, respectively. These results suggest
that the substantial improvement in overall air quality was driven by anthropogenic
emission reduction, which proved the effectiveness of clean air actions on air pollution
control in the coastal city. Moreover, the clean air action could avoid 3199 deaths from
2015 to 2022 in the Lianyungang region, highlighting the health benefit of air pollution
control policies.
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