Phenylalanine Residues in the Active Site of CYP2E1 Participate in Determining the Binding Orientation and Metabolism-Dependent Genotoxicity of Aromatic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Protein and Ligand Structures
2.2. Molecular Docking
2.3. Molecular Equilibration, Dynamic and Free Energy Calculation
2.4. Tunnel Analysis
2.5. GFN2-xTB- and DFT-Based Simulations
2.6. Random Forest Model
3. Results
3.1. The Significance of Conformational Flexibility of PHE Residues for the Affinity of Aromatic Substrates to Human CYP2E1
3.2. Impact of PHE 298 and PHE 478 Residues on the Binding of 1-MP to Human CYP2E1 and Its Orientation
3.3. Consistency between Molecular Simulation Results and Historical Data of Human CYP2E1-Activated Mutagenicity of PCBs in Genetically Engineered Mammalian Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Montellano PROd. Cytochrome P450 Structure, Mechanism, and Biochemistry, 4th ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Williams, P.A.; Cosme, J.; Vinkovic, D.M.; Ward, A.; Angove, H.C.; Day, P.J.; Vonrhein, C.; Tickle, I.J.; Jhoti, H. Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 2004, 305, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Spatzenegger, M.; Liu, H.; Wang, Q.; DeBarber, A.; Koop, D.R.; Halpert, J.R. Analysis of Differential Substrate Selectivities of CYP2B6 and CYP2E1 by Site-Directed Mutagenesis and Molecular Modeling. Experiment 2003, 304, 477–487. [Google Scholar] [CrossRef]
- Porubsky, P.R.; Meneely, K.M.; Scott, E.E. Structures of human cytochrome P-450 2E1. Insights into the binding of inhibitors and both small molecular weight and fatty acid substrates. J. Biol. Chem. 2008, 283, 33698–33707. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.-S.; Ogawa, J.; Schmid, R.D.; Shimizu, S. Indole Hydroxylation by Bacterial Cytochrome P450 BM-3 and Modulation of Activity by Cumene Hydroperoxide. Biosci. Biotechnol. Biochem. 2005, 69, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C.; Ansbro, D.; Kontoyianni, M. Elucidating Substrate Promiscuity in the Human Cytochrome 3A4. J. Chem. Inf. Model. 2014, 54, 857–869. [Google Scholar] [CrossRef]
- Muralidhara, B.; Sun, L.; Negi, S.; Halpert, J.R. Thermodynamic Fidelity of the Mammalian Cytochrome P450 2B4 Active Site in Binding Substrates and Inhibitors. J. Mol. Biol. 2008, 377, 232–245. [Google Scholar] [CrossRef]
- Jiang, H.; Lai, Y.; Hu, K.; Wei, Q.; Liu, Y. Human CYP2E1-dependent and human sulfotransferase 1A1-modulated induction of mi-cronuclei by benzene and its hydroxylated metabolites in Chinese hamster V79-derived cells. Mutat. Res. 2014, 770, 37–44. [Google Scholar] [CrossRef]
- Jiang, H.; Lai, Y.; Hu, K.; Chen, D.; Liu, B.; Liu, Y. Genotoxicity of 1-methylpyrene and 1-hydroxymethylpyrene in chinese hamster V79-derived cells expressing both human CYP2E1 and SULT1A1. Environ. Mol. Mutagen. 2014, 56, 404–411. [Google Scholar] [CrossRef]
- Zhang, C.; Lai, Y.; Jin, G.; Glatt, H.; Wei, Q.; Liu, Y. Human CYP2E1-dependent mutagenicity of mono- and dichlorobiphenyls in Chinese hamster (V79)-derived cells. Chemosphere 2016, 144, 1908–1915. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, K.; Jia, H.; Jin, G.; Glatt, H.; Jiang, H. Potent mutagenicity of some non-planar tri- and tetrachlorinated biphenyls in mammalian cells, human CYP2E1 being a major activating enzyme. Arch. Toxicol. 2016, 91, 2663–2676. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, N.; Luo, Y.; Hu, K.; Liu, Y. Featured structure-activity relationships for some tri- and tetrachlorobiphenyls in human CYP2E1-activated mutagenicity—Impact of the extent of ortho-chlorination. Chemosphere 2018, 210, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Yu, H.; Li, Z.; Jin, G.; Jia, H.; Song, M.; Liu, Y. Human CYP2E1-activated mutagenicity of dioxin-like PCBs 105 and 118—Experimental data consistent with molecular docking results. Toxicology 2020, 437, 152438. [Google Scholar] [CrossRef]
- Bi, X.; Sheng, G.; Feng, Y.; Fu, J.; Xie, J. Gas- and particulate-phase specific tracer and toxic organic compounds in environmental tobacco smoke. Chemosphere 2005, 61, 1512–1522. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.-J.; Ren, Y.; Chen, J.-M.; Wang, T.; Cheng, T.-T. Distribution and source of alkyl polycyclic aromatic hydrocarbons in dustfall in Shanghai, China: The effect on the coastal area. J. Environ. Monit. 2008, 11, 187–192. [Google Scholar] [CrossRef]
- Larsson, B.K.; Sahlberg, G.P.; Eriksson, A.T.; Busk, L.A. Polycyclic aromatic hydrocarbons in grilled food. J. Agric. Food Chem. 1983, 31, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Richter-Brockmann, S.; Achten, C. Analysis and toxicity of 59 PAH in petrogenic and pyrogenic environmental samples includ-ing dibenzopyrenes, 7H-benzo[c]fluorene, 5-methylchrysene and 1-methylpyrene. Chemosphere 2018, 200, 495–503. [Google Scholar] [CrossRef]
- Engst, W.; Landsiedel, R.; Hermersdörfer, H.; Doehmer, J.; Glatt, H. Benzylic hydroxylation of 1-methylpyrene and 1-ethylpyrene by human and rat cytochromes P450 individually expressed in V79 Chinese hamster cells. Carcinogenesis 1999, 20, 1777–1785. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Cai, L.; Li, Z.; Glatt, H.; Shi, M.; Liu, Y. Human CYP2E1-Dependent Mutagenicity of Benzene and Its Hydroxylated Metabo-lites in V79-derived cells: Suppression and Enhancement by Ethanol Pretreatment. Environ. Mol. Mutagen. 2020, 61, 622–634. [Google Scholar] [CrossRef]
- Zhang, H.; Yolton, K.; Webster, G.M.; Sjödin, A.; Calafat, A.M.; Dietrich, K.N.; Xu, Y.; Xie, C.; Braun, J.M.; Lanphear, B.P.; et al. Prenatal PBDE and PCB exposures and reading, cognition, and externalizing behavior in children. Environ. Health Perspect. 2017, 125, 746–752. [Google Scholar] [CrossRef]
- Berg, V.; Nøst, T.H.; Pettersen, R.D.; Hansen, S.; Veyhe, A.S.; Jorde, R.; Odland, J.Ø.; Sandanger, T.M. Persistent organic pollutants and the association with ma-ternal and infant thyroid homeostasis: A multipollutant assessment. Environ Health Perspect. 2017, 125, 127–133. [Google Scholar] [CrossRef]
- Valvi, D.; Mendez, M.A.; Martinez, D.; Grimalt, J.O.; Torrent, M.; Sunyer, J.; Vrijheid, M. Prenatal Concentrations of Polychlorinated Biphenyls, DDE, and DDT and Overweight in Children: A Prospective Birth Cohort Study. Environ. Health Perspect. 2012, 120, 451–457. [Google Scholar] [CrossRef]
- Ghosh, S.; Loffredo, C.A.; Mitra, P.S.; Trnovec, T.; Palkovicova Murinova, L.; Sovcikova, E.; Hoffman, E.P.; Makambi, K.H.; Dutta, S.K. PCB exposure and potential future cancer incidence in Slovak children: An assessment from molecular finger printing by Ingenuity Pathway Analysis (IPA®) de-rived from experimental and epidemiological investigations. Environ. Sci. Pollut. Res. Int. 2018, 25, 16493–16507. [Google Scholar] [CrossRef] [PubMed]
- Uwimana, E.; Ruiz, P.; Li, X.; Lehmler, H.-J. Human CYP2A6, CYP2B6, AND CYP2E1 Atropselectively Metabolize Polychlorinated Biphenyls to Hydroxylated Metabolites. Environ. Sci. Technol. 2018, 53, 2114–2123. [Google Scholar] [CrossRef] [PubMed]
- Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.; Mittal, J.; Feig, M.; MacKerell, A.D., Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics 2012, 4, 17. [Google Scholar] [CrossRef]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM General Force Field: A Force Field for Drug-Like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Nguyen, P.H.; Pham, K.; Huynh, D.; Le, T.-B.N.; Wang, H.; Ren, P.; Luo, R. Calculating protein-ligand binding affinities with MMPBSA: Method and error analysis. J. Comput. Chem. 2016, 37, 2436–2446. [Google Scholar] [CrossRef]
- Li, J. The Introduction of Gmx_Mmpbsa Script 2019. Available online: https://jerkwin.github.io/2019/07/31/gmx_mmpbsa%E4%BD%BF%E7%94%A8%E8%AF%B4%E6%98%8E/ (accessed on 13 July 2019).
- Chovancova, E.; Pavelka, A.; Benes, P.; Strnad, O.; Brezovsky, J.; Kozlikova, B.; Góra, A.; Sustr, V.; Klvana, M.; Medek, P.; et al. CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures. PLOS Comput. Biol. 2012, 8, e1002708. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Grimme, S.; Hansen, A. A Practicable Real-Space Measure and Visualization of Static Electron-Correlation Effects. Angew. Chem. Int. Ed. 2015, 54, 12308–12313. [Google Scholar] [CrossRef] [PubMed]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef] [PubMed]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Design of Density Functionals That Are Broadly Accurate for Thermochemistry, Thermochemical Kinetics, and Nonbonded Interactions. J. Phys. Chem. A 2005, 109, 5656–5667. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104–154119. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456. [Google Scholar] [CrossRef]
- Williams, A.J.; Grulke, C.M.; Edwards, J.; McEachran, A.D.; Mansouri, K.; Baker, N.C.; Patlewicz, G.; Shah, I.; Wambaugh, J.F.; Judson, R.S.; et al. The CompTox Chemistry Dashboard: A community data resource for environmental chemistry. J. Cheminf. 2017, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Shao, J. Linear Model Selection by Cross-validation. J. Am. Stat. Assoc. 1993, 88, 486–494. [Google Scholar] [CrossRef]
- Konovalov, D.A.; Llewellyn, L.E.; Heyden, Y.V.; Coomans, D. Robust Cross-Validation of Linear Regression QSAR Models. J. Chem. Inf. Model. 2008, 48, 2081–2094. [Google Scholar] [CrossRef] [PubMed]
- Porubsky, P.R.; Battaile, K.P.; Scott, E.E. Human cytochrome P450 2E1 structures with fatty acid analogs reveal a previously un-observed binding mode. J. Biol. Chem. 2010, 285, 22282–22290. [Google Scholar] [CrossRef]
- Lewis, D.F. Human cytochromes P450 associated with the phase 1 metabolism of drugs and other xenobiotics: A compilation of substrates and inhibitors of the CYP1, CYP2 and CYP3 families. Curr. Med. Chem. 2003, 10, 1955–1972. [Google Scholar] [CrossRef]
- Lewis, D.F.V. Quantitative Structure-Activity Relationships in Substrates, Inducers, and Inhibitors of Cytochrome P4501 (CYP1). Drug Metab. Rev. 1997, 29, 589–650. [Google Scholar] [CrossRef]
- Lewis, D.F.; Jacobs, M.N.; Dickins, M. Compound lipophilicity for substrate binding to human P450s in drug metabolism. Drug Discov. Today 2004, 9, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.-H.; Johnson, E.F. Active-site differences between substrate-free and ritonavir-bound cytochrome P450 (CYP) 3A5 reveal plasticity differences between CYP3A5 and CYP3A4. J. Biol. Chem. 2019, 294, 8015–8022. [Google Scholar] [CrossRef]
- Sarkar, M.R.; Lee, J.H.Z.; Bell, S.G. The oxidation of hydrophobic aromatic substrates by using a variant of the P450 monooxygen-ase CYP101B1. Chembiochem 2017, 18, 2119–2128. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, B.-Y.; Hao, P.; Li, X.; Li, Y.-X.; Wang, J.-F. π-π Stacking mediated drug-drug interactions in human CYP2E1. Proteins Struct. Funct. Bioinform. 2013, 81, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Hendrychova, T.; Berka, K.; Navratilova, V.; Anzenbacher, P.; Otyepka, M. Dynamics and hydration of the active sites of mamma-lian cytochromes P450 probed by molecular dynamics simulations. Curr. Drug Metab. 2012, 13, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, V.; Balali-Mood, K.; Sansom, M.S.P.; Wade, R.C. Structure and Dynamics of the Membrane-Bound Cytochrome P450 2C9. PLOS Comput. Biol. 2011, 7, e1002152. [Google Scholar] [CrossRef] [PubMed]
- Mena-Ulecia, K.; MacLeod-Carey, D. Interactions of 2-phenyl-benzotriazole xenobiotic compounds with human Cytochrome P450-CYP1A1 by means of docking, molecular dynamics simulations and MM-GBSA calculations. Comput. Biol. Chem. 2018, 74, 253–262. [Google Scholar] [CrossRef]
- Ang, S.J.; Mak, A.M. Nature of halogen bonding involving π-systems, nitroxide radicals and carbenes: A highlight of the im-portance of charge transfer. Phys. Chem. Chem. Phys. 2018, 20, 26463–26478. [Google Scholar] [CrossRef]
- Chowdhury, A.S.; Ali, H.S.; Faponle, A.S.; de Visser, S.P. How external perturbations affect the chemoselectivity of substrate activa-tion by cytochrome P450 OleT(JE). Phys. Chem. Chem. Phys. 2020, 22, 27178–27190. [Google Scholar] [CrossRef]
- de Visser, S.P.; Mukherjee, G.; Ali, H.S.; Sastri, C.V. Local Charge Distributions, Electric Dipole Moments, and Local Electric Fields Influence Reactivity Patterns and Guide Regioselectivities in α-Ketoglutarate-Dependent Non-heme Iron Dioxygenases. Acc. Chem. Res. 2022, 55, 65–74. [Google Scholar] [CrossRef]
CYP2E1 Models | Energy for 1-MP Binding to the Active Site of Wild-Type/Mutant Human CYP2E1, kJ/mol | ||||
---|---|---|---|---|---|
Coulombic | Lennard-Jones | Polar Solvation | Non-Polar Solvation | Total | |
WT | −7.55 ± 1.08 | −148.50 ± 7.43 | 31.59 ± 2.63 | −16.75 ± 0.32 | −141.20 ± 7.65 |
F298A | −1.92 ± 1.77 | −135.69 ± 7.86 | 34.12 ± 2.28 | −17.20 ± 0.20 | −120.68 ± 7.56 |
F478A | −2.12 ± 1.83 | −134.83 ± 7.35 | 44.45 ± 5.21 | −17.52 ± 0.37 | −110.02 ± 9.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, K.; Tu, H.; Xie, J.; Yang, Z.; Li, Z.; Chen, Y.; Liu, Y. Phenylalanine Residues in the Active Site of CYP2E1 Participate in Determining the Binding Orientation and Metabolism-Dependent Genotoxicity of Aromatic Compounds. Toxics 2023, 11, 495. https://doi.org/10.3390/toxics11060495
Hu K, Tu H, Xie J, Yang Z, Li Z, Chen Y, Liu Y. Phenylalanine Residues in the Active Site of CYP2E1 Participate in Determining the Binding Orientation and Metabolism-Dependent Genotoxicity of Aromatic Compounds. Toxics. 2023; 11(6):495. https://doi.org/10.3390/toxics11060495
Chicago/Turabian StyleHu, Keqi, Hongwei Tu, Jiayi Xie, Zongying Yang, Zihuan Li, Yijing Chen, and Yungang Liu. 2023. "Phenylalanine Residues in the Active Site of CYP2E1 Participate in Determining the Binding Orientation and Metabolism-Dependent Genotoxicity of Aromatic Compounds" Toxics 11, no. 6: 495. https://doi.org/10.3390/toxics11060495
APA StyleHu, K., Tu, H., Xie, J., Yang, Z., Li, Z., Chen, Y., & Liu, Y. (2023). Phenylalanine Residues in the Active Site of CYP2E1 Participate in Determining the Binding Orientation and Metabolism-Dependent Genotoxicity of Aromatic Compounds. Toxics, 11(6), 495. https://doi.org/10.3390/toxics11060495