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Abstract: The composition of amino acids forming the active site of a CYP enzyme is impactful
in its substrate selectivity. For CYP2E1, the role of PHE residues in the formation of effective
binding orientations for its aromatic substrates remains unclear. In this study, molecular docking
and molecular dynamics analysis were performed to reflect the interactions between PHEs in the
active site of human CYP2E1 and various aromatic compounds known as its substrates. The results
indicated that the orientation of 1-methylpyrene (1-MP) in the active site was highly determined by
the presence of PHEs, PHE478 contributing to the binding free energy most significantly. Moreover,
by building a random forest model the relationship between each of 19 molecular descriptors of
polychlorinated biphenyl (PCB) compounds (from molecular docking, quantum mechanics, and
physicochemical properties) and their human CYP2E1-dependent mutagenicityas established mostly
in our lab, was investigated. The presence of PHEs did not appear to significantly modify the
electronic or structural feature of each bound ligand (PCB), instead, the flexibility of the conformation
of PHEs contributed substantially to the effective binding energy and orientation. It is supposed
that PHE residues adjust their own conformation to permit a suitablly shaped cavity for holding the
ligand and forming its orientation as favorable for a biochemical reaction. This study has provided
some insights into the role of PHEs in guiding the interactive adaptation of the active site of human
CYP2E1 for the binding and metabolism of aromatic substrates.

Keywords: aromatic compounds; CYP2E1; phenylalanine; molecular simulation; random forest

1. Introduction

Biotransformation enzyme-dependent metabolism is one of the most important pro-
cesses experienced by xenobiotics present in the human body. Among various families of
biotransformation enzymes, cytochrome P450s (CYPs) as a superfamily of monooxygenases
play a major role in the metabolism of various exogenous and endogenous compounds [1].
The active site of each CYP enzyme is formed by the residues of involving amino acids
(AA) and a Fe ion-containing heme group, which provides a hydrophobic cavity and
determines the conformation (orientation) of substrate binding [2–4]. Studies have shown
that increased flexibility of the conformation of the AAs in the active site of CYP102A1 is
favorable for reaching an orientation of substrate binding, particularly for a short distance
from ligand to the Fe iron in the heme as valid for electron transfer [5]. In human CYP3A4,
several AAs in the active site (including ARG 106, ARG 372, GLU 374, PHE 108, and PHE
213) are involved in directing the effective binding of most substrates [6]. Additionally,
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threonine (THR) 303 in the active site of human CYP2E1 is significant for stable binding of
4-methylpyrazole via forming hydrogen bonds [4]. Subsequent to directed mutations in
the active site of human CYP2B4 (F296A, T302A, I363A, and V367L involved), the affinities
of various substrates to the enzyme, the rates of product formation, and the potencies
of known inhibitors for the mutated CYP2B4 were all tremendously changed, which evi-
dences the importance of those AAs in the catalyzing activity and substrate specificity of
the enzyme [7].

The aromatic AAs (e.g., PHEs) in the active site of CYP2E1 have been proven to be
of great importance for stabilizing a hydrophobic cavity, sustaining the substrate binding,
guiding its orientation, and determining the site of metabolism (SOM) [3,4]. In our previous
studies, some phenyl group-containing chemicals appeared to be activated by human
CYP2E1 for cytogenetic toxicity [8–13]. For example, 1-methylpyrene (1-MP), which is
a rodent carcinogen abundantly present in cigarette smoke [14], vehicle emissions [15],
smoked or barbecued foods [16], and spills of crude oil [17], has been identified as a
substrate for human CYP2E1, with its benzylic hydroxide as the major metabolite [18].
However, CYP2E1 is known to oxidize only small-sized chemicals, such as ethanol and
trichloroethylene, since its active site is rather small [4]. As 1-MP has four conjugated benzyl
groups, seemingly too large to be hold in the active site of CYP2E1, we were interested in
the use of this compound in the docking study for understanding how 1-MP could bind
into the small active site as effective for a biochemical reaction, especially for a role of the
conformational flexibility of PHEs in the active site.

The molecular size of documented substrates for CYP2E1 seems to vary largely. Ben-
zene and its hydroxylated metabolites (phenol and hydroquinone) are simplest aromatic
substrates for human CYP2E1, thereby they are activated for mutagenic effects [8]. How-
ever, the PHEs in the active site appear to have little effect on these small ligands during the
metabolism process [19]. It is likely that the PHEs in the active site are primarily important
for directing the binding of larger (such as multiple phenyl groups-containing) ligands.
Polychlorinated biphenyls (PCBs, contain two phenyl rings connected by a single bond),
which are a large group of persistent organic pollutants with various health effects, includ-
ing neuro/behavioral abnormalities [20], endocrine disruptions [21], overweight [22], and
cancers [23], are substrates for different CYP2 enzymes giving rise to differently structured
products. For example, PCB 95 and PCB 136 may be metabolized by human CYP2B6 to
their meta-hydroxylated metabolites, while para-hydroxylated metabolites of PCBs were
the major products formed by human CYP2E1 [24]. Interestingly, the amino acid sequences
of the active sites of both enzymes are quite similar to each other [3], except that PHE 478
in CYP2E1 is different from the ortholog site in CYP2B6 (VAL477), and it is likely that this
discrepancy is involved in forming varying orientations of PCBs in the different active sites.

Collectively, the importance of PHEs in the active site of a CYP enzyme for substrates
containing varying number of phenyl groups may vary in some way. To gain deeper insights
into the role of PHEs in directing the binding and effective orientation of aromatic substrates
in the active site of human CYP2E1, computational simulation methods such as molecular
docking, molecular simulation, quantum chemistry approaches, and random forest model
were employed in this study. Meanwhile, based on the established documents of human
CYP2E1-activated mutagenicity of aromatic compounds in mammalian cells, a preliminary
exploration of the screening value of the ligand-enzyme molecular docking analysis in the
prediction of human CYP2E1-activated promutagens as candidate compounds to be tested
in subsequent genotoxicity assays, was also conducted.

2. Materials and Methods
2.1. Preparation of Protein and Ligand Structures

The primary 3D structures of human CYP2E1 were obtained from RCSB Protein
Data Bank (3LC4, 3KOH, 3GPH, 3E4E, 3T3Z, and 3E6I for CYP2E1). Ligands of this 3D
model were removed before protein energy minimization. Charmm36 force field was used
for all protein residues [25], and the TIP3P model was applied for water molecules [26].



Toxics 2023, 11, 495 3 of 12

Energy minimization was performed by Gromacs (Version 2018.4) [27] using the steep
algorithm with 0.01 nm for step size and was stopped when the maximal force was less than
1000.0 kJ/mol/nm. The 3D structures of ligands were built by Avogadro [28] and prelimi-
narily optimized by using GFN2-XTB method [29].

2.2. Molecular Docking

Molecular docking was performed by using Autodock version 4.2 suits [30]. Before
docking, water molecules were removed from the protein structures. Gasteiger charges
were added to the protein and ligands. The grid box was set to cover the active zone of
proteins. The center of grid was on element Fe in the heme and the grid point values
of x-, y-, and z-axes were set to 60, 60, and 60 with a spacing of 0.375 Å (1 Å is equal
to 0.1 nm). Lamarckian genetic algorithm (LGA) [31] was performed for ligand-protein
docking calculations. The default parameters of LGA were used and the number of LGA
runs was set to 50. The 50 conformations were clustered by using a root-mean-square
deviations (RMSD)-tolerance of 2.0 Å, then the typical conformation of each cluster was
analyzed. The best conformation of protein-ligand complex was selected on the basis of
mean binding energy score, the number in each cluster, and the distance between a ligand
and the heme.

2.3. Molecular Equilibration, Dynamic and Free Energy Calculation

The best conformation of each ligand-protein complex as obtained from molecular
docking was further used for molecular dynamics analysis. Protein and ligands were
described by Charmm36 force field and CgenFF (the official CHARMM general force field
server), respectively [25,32]. The canonical molecular dynamics with periodic boundary
condition was performed by using GROMACS (Version 2018.4), with parameters being set
according to previous descriptions [19]. Briefly, short-range nonbonded interactions were
cut off at 1.2 nm, with long-range electrostatics calculated using the particle mesh Ewald
(PME) algorithm. The bonds to H were constrained with LINCS algorithm. After energy
minimization, isothermic-isopyknic ensemble (NVT) for 100 ps was performed, of which
temperature was maintained at 310 K. Following NVT equilibration, isothermic–isobaric
ensemble (NPT) for 100 ps was performed and the pressure was maintained at 1.0 bar. For
both NVT and NPT equilibration, the position of ligands was restrained, and modified
Berendsen thermostats were set for protein-ligand complex and other components. Finally,
the production MD simulations were conducted for 50 ns without any restraints. Modified
Berendsen thermostat and Parrinello-Rahman were applied to maintain temperature and
pressure, respectively. The time step of integration was 2 fs and the energy and coordinates
of the system were recorded every 10 ps.

Molecular Mechanics/Poisson-Boltzmann Surface Area (MMPBSA) method was used
to estimate the free energies of protein-ligand complex [33]. In this study, MMPBSA
calculation was performed by using gmx_mmpbsa (version 2022.11.19) [34]. Five hundred
snapshots of each complex were extracted from the last 10 ns of molecular simulations.

2.4. Tunnel Analysis

As ligands need to pass tunnels to reach the active site of any enzyme, Caver 3.0
software was applied to identify the potential tunnels leading to the active site of human
CYP2E1 [35]. Five hundred snapshots were sampled from the molecular trajectories of
1-MP-CYP2E1 complex during the last 10 ns. The heme group was set as the starting
point for tunnel searching. The probe radius and the clustering threshold was 1.0 and
4.5 Å, respectively. The other parameters were established using default settings. After
calculations, tunnels were visualized by VMD (version 1.9) [36] and the parameters of the
tunnel bottleneck were collected for further investigation.
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2.5. GFN2-xTB- and DFT-Based Simulations

For a semi-empirical description of the each PCB binding to the active site of CYP2E1
(or its F478V mutant), the GFN2-xTB method was applied to perform geometry optimiza-
tion and calculate the fractional occupation density analysis (FOD) [37]. The analytical
linearized Poisson-Boltzmann (ALPB) model was employed to provide the implicit solva-
tion in chloroform for the total system.

The quantum mechanics calculation was performed by using ORCA 5.0 [38]. The
structure of each PCBs and its PHE complexe were optimized by using the unrestricted
hybrid B3LYP functional [39] in combining with the def2-svp basis set [40]. The wave func-
tions and more accurate energies of the N, N + 1, and N − 1 electronic states were obtained
using single-point calculations with PWPB95 functional [41] and the def2-TZVPP basis
was set for the optimized structures. Since the B3LYP functional cannot well describe the
medium to long range dispersion interactions of the reaction system, D3-BJ correction de-
veloped by Grimme was used to correct the dispersion calculation in all systems [42,43]. In
addition, structure optimization and frequency calculations were performed synchronously
to confirm that the structure was in the ground state.

2.6. Random Forest Model

The dataset used in this study includes 33 PCBs with 19 features (Supplementary
Material, Table S3) to build the binary classification model for predicting the human
CYP2E1-dependent mutagenicity of PCBs. These features were collected from molecular
docking, GFN2-xtb calculation, DFT calculation and CompTox Chemicals Dashboard [44].
30% of the data were randomly sampled from the dataset and set as a test dataset to
quantify the prediction performance of the developed Random Forest models [45]. The
number of trees in the ensemble (ntree) was set to 1000 and the terminal node size (nodesize)
was 5. The number of randomly selected predictor variables at each node (mtry) was
determined by grid search tuning based on lowest RMSE (root-mean-square error) with a
5-fold cross-validation and 20 repeats [46,47]. To determine the performance of the model
the mean values of the parameters (including accuracy, precision, recall rate, and F1 score)
were determined.

3. Results
3.1. The Significance of Conformational Flexibility of PHE Residues for the Affinity of Aromatic
Substrates to Human CYP2E1

As previously reported, under a molecular docking condition with the residues of
AAs forming the active site of human CYP2E1 set as rigid conformations, the results of the
docking of benzene and its oxidized products to the enzyme are in good agreement with the
experimentally obtained positive genotoxicity results in mammalian cell lines genetically
engineered for stable expression of human CYP2E1 [19]. It appears that setting PHEs
as flexible residues is generally unnecessary for docking small-sized ligands to human
CYP2E1. However, bulky ligands like 1-MP, which have four conjugated phenyl rings,
cannot be docked into the active site of human CYP2E1 under rigid docking settings, as
shown in the (Supplementary Material Table S1, based on the structure of 3E6I). Therefore,
PHE 478, which plays an important role in forming some tunnels in the human CYP2E1
for substrate binding, was set as a flexible residue so that a larger cavity as the active site
can be formed. As a result, 1-MP was successfully docked into the active site of human
CYP2E1, with a binding energy of −9.99 kcal/mol, where the conformational flexibility of
PHE 478 residue (through rotating and moving) provided sufficient space for the entry of
1-MP (Figure 1B). However, the orientations of the benzyl group in 1-MP, which has been
proved to be the main hydroxylation site, did not permit a proper distance (<6.0 Å) to heme
(actually 10.4 Å).
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To further understand the contribution of PHEs to effective binding of 1-MP to human
CYP2E1, all the PHEs (including PHE 106, PHE 115, PHE 207, PHE 298, and PHE 478) in
the active site of human CYP2E1 were set as flexible residues. As shown in Figure 1C, the
binding of 1-MP was thus in a favorable orientation for its hydroxylation at the benzyl
group. The PHE residues induced a way of 1-MP binding to the active site by rotation
and forming π–π bonds to stabilize the ligand binding. Moreover, similar docking results
optimized by setting flexible PHEs were observed in other CYP2E1 structures derived from
different PDB sources (Table S1).

3.2. Impact of PHE 298 and PHE 478 Residues on the Binding of 1-MP to Human CYP2E1 and
Its Orientation

Tunnel analysis showed that tunnels 2b,c were favorable for 1-MP to approach the
active site of human CYP2E1 (Table S2, Figure S1). As PHE 298 and PHE 478 are important
controllers of the “gate” of 2c and 2b tunnel, respectively [4,48], we constructed mutated
protein models with alanine residue at both sites (F289A and F478A), then the role of these
PHEs in the binding of 1-MP to the enzyme was analyzed. The docking results indicated
that 1-MP was able to bind to the active site of each mutant CYP2E1, but with a lower
affinity than that of the wild enzyme (Table 1). Further molecular dynamics simulations
were performed based on the best conformations obtained from molecular docking. As
shown in Figure 2A, the RMSD of each complex was gradually convergent and the system
remained in equilibrium status during the last 40 ns. However, the distances between
1-MP (Cα atom) and the heme (Fe ion) differed greatly in various complexes. Illustrated in
Figure 2B, 1-MP stably bound to the wild-type model with distances around 5 Å, while its
binding to F298 mutant was unstable, with long distances (mostly >10 Å) from the heme;
and in case of F478A mutant drastic fluctuation in the distance was observed, making stable
binding impossible.

The last 10 ns of each complex’s trajectory were extracted for further MMPBSA calcula-
tions. As shown in Table 1, 1-MP was tightly bound to the active site of each CYP2E1 model,
but the binding energy of each 1-MP-mutant protein complex was less negative than that
of 1-MP-wild protein complex. Moreover, the energy contributions from the residues at
the active site of the mutant CYP2E1 models differed from that of the wild type model
(Figure 3 and Table S3). Although the energy contributions from PHE 106 and PHE 116
were slightly increased (with that from PHE 207 and PHE 298 unchanged) in both mutants,
mutations on PHE 478 caused a steep energy change, which suggests an important role of
PHE 478 in the ligand binding and orientation (Figure 3).
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Table 1. Free energy of 1-MP for binding into the active site of wild type and mutant human CYP2E1
protein.

CYP2E1
Models

Energy for 1-MP Binding to the Active Site of Wild-Type/Mutant Human CYP2E1, kJ/mol

Coulombic Lennard-Jones Polar Solvation Non-Polar Solvation Total

WT −7.55 ± 1.08 −148.50 ± 7.43 31.59 ± 2.63 −16.75 ± 0.32 −141.20 ± 7.65
F298A −1.92 ± 1.77 −135.69 ± 7.86 34.12 ± 2.28 −17.20 ± 0.20 −120.68 ± 7.56
F478A −2.12 ± 1.83 −134.83 ± 7.35 44.45 ± 5.21 −17.52 ± 0.37 −110.02 ± 9.35
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3.3. Consistency between Molecular Simulation Results and Historical Data of Human
CYP2E1-Activated Mutagenicity of PCBs in Genetically Engineered Mammalian Cells

Based on previous experimental studies, a series of PCBs are metabolically activated
by human CYP2E1 for mutagenic effects in mammalian cells. Therefore, this study uti-
lized a random forest model that incorporated various factors, such as flexible molecular
docking of PHEs, semi-empirical calculations of PCB−CYP2E1 complex, conceptual den-
sity functional parameters of PCB−PHE complex, and the physical/chemical property of
each PCB (such as molecular weight, chlorine substitution pattern, octanol-water partition
coefficient, concentrations of hydroxylated PCB metabolites in air, and their half-lives in
fish) to investigate the association between these factors and human CYP2E1-activated PCB
mutagenicity, as well as the role of PHEs in the activating process (Table S4).

The results indicated that the random forest model, which was constructed by taking
multiple factors into consideration, was able to predict human CYP2E1-dependent PCB
mutagenicity with some accuracy, as demonstrated by a coincidence rate of 79%, a precision
of 79.3%, a recall of 90%, and an f1 score of 0.838. Furthermore, a detailed analysis of
the importance of each factor indicated that some factors, such as the ligand-to-heme
distance and docking score obtained by molecular docking, the nucleophilicity index
(based on conceptual density functional theory), HOMO−LUMO gap of the ligand, and
half-life in fish, were significant determinants for predicting the human CYP2E1-dependent
PCB mutagenicity (Figure 4). Among these factors, the flexible molecular docking of
PHEs exhibited a dominant influence. Conversely, through quantum chemistry and semi-
empirical analysis PHEs were not significantly influential on the intrinsic properties of
PCBs, which suggests that PHEs may play an important role in regulating the binding
of each PCB to the active site rather than affecting the electronic/chemical properties of
ligands.
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Figure 4. Relative importance of each molecular feature of PCBs in the random forest model. L_NP,
the nucleophilicity of ligand; HLF, fish biotransformation half-life; DBES, binding energy score
obtained from molecular docking with PHE478 set flexible; P_NP, the nucleophilicity of ligand-PHE
complex; L_HLG, the HOMO-LUMO gap of ligand; DtF, the distance from SOM to Fe ion in heme;
FODw, the FOD value of ligand binding to the active site of human CYP2E1; AHR, atmospheric
hydroxylation rate; P_HLG, the HOMO-LUMO gap of ligand-PHE complex; L_EP, the electrophilicity
of ligand; FODp, the FOD value of ligand; OP, the number of ortho-Cl-substitution; FODm, the FOD
value of ligand binding to the active site of F478A mutant; P_EP, the electrophilicity of ligand-PHE
complex; Kow, LogKow: octanol-water partition coefficient; MW, the molecular weight; CN, the
number of Cl-substitution; MP, the number of meta-Cl-substitution; PP, the number of para-Cl-
substitution.
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4. Discussion

The steric shape of the cavity and the AA composition of the active site are important
factors determining the substrate selectivity of an enzyme. In the active sites of the CYP1
enzymes a PHE cluster exists above the heme, thereby they tend to metabolize planar
substrates such as polycyclic aromatic hydrocarbons, dioxins, and dioxin-like PCBs [49,50].
The substrate selectivity of CYP2 isoforms varies greatly, among which CYP2A and 2B
prefer neutral compounds as their substrates, where the substrates of CYP2B are generally
more lipophilic than those of CYP2A. CYP2C and CYP2D, which contain relatively low
numbers of PHEs in their active sites, are more likely to catalyze the metabolism of weakly
acidic and weakly basic substances, respectively [49,51]. The differences in the number
and position of PHE residues may affect the selectivity for, and the affinity of, substrates.
Studies have shown that in human CYP3A4, PHE108, PHE213, PHE220, and PHE241 are
involved in the allosteric effects in F helix/G helix region, resulting in an extension of
helix F and a larger active site; while in CYP3A5, the replacement of PHE at position
108 with LEU leads to changed plasticity of the F/G helix region, producing a substrate-
binding pattern different from that in CYP3A4 [52]. After mutating the HIS85 of CYP101B1
to PHE, there appeared several changes: significantly increased rate of the binding of
hydrophobic substrates to the enzyme, decreased affinity for β-ionone, and shifted site of
oxidation [53]. For CYP2E1, the high proportion of PHE residues in its active site may also
play an important role in its selectivity of substrates and their binding orientation [4].

For benzene and its oxidized metabolites, which are known mutagens activated by
human CYP2E1, the docking results were highly consistent with their mutagenic effects
observed in vitro [19]. Benzene exhibited the strongest affinity toward the enzyme, while
the ultimate mutagen 1,4-benzoquinone was difficult to enter the active site of CYP2E1.
As indicated in this study, since benzene and its hydroxylated products are relatively
small compared to aromatic compounds containing two and more phenyl groups, the
PHEs in the active site of CYP2E1 did not show significant regulation on the orientation
of the small ligands. On the other hand, under rigid docking conditions, the space of the
active site of human CYP2E1 is too small to accommodate larger molecules which contain
multiple benzene rings (such as 1-MP), but this barrier (caused by limited cavity size) can
be eliminated by increased conformational flexibility of PHEs [4,54]. In vitro tests indicated
that human CYP2E1 can bind to substrates via ligand recognition and induced fit [55].
Furthermore, molecular dynamics simulations showed that human CYP proteins can make
conformational change through the activities of the F/G loop, B/C loop, and corresponding
α helices, thus the volume of the active site of CYP2E1 can expand from 220 Å3 to 1310 Å3

(when F/G loop is fully open) [55].
Some AAs play an important role in the conformational changes and cavity expansion

in CYP enzymes, among which PHE 478 or PHE at other positions (such as PHE 476 in
human CYP2C9) are important “gatekeeper” amino acids for regulating the entry of sub-
strate to, and its exit from, the active site of each CYP enzyme, and they have an important
impact on the long-range molecular interactions between substrates and CYPs [4,56]. In
this study, via molecular simulation two PHE mutants of CYP2E1 were built for the analysis
of the potential functions of PHE298 and PHE478 in substrate binding and orientation.
The results showed that the mutation of either PHE residue had a negative impact on the
binding affinity and orientation (for catalyzing a biotransformation reaction) of 1-MP to
CYP2E1, and the mutation of PHE478 showed the most significant impact on the binding
status. In addition, it is predicted that the rotation of PHE 478 can connect the catalytic
site to the secondary binding region and form a larger space to hold bulky substrates [54].
Therefore, the conformational changes of PHE 478 in human CYP2E1 might be necessary
for the access of large-sized substrates, including 1-MP and PCBs, to the active site. Our
docking results showed that after the rotation of PHE 478 to some extent, the cavity of the
active site can be enlarged, allowing these bulky molecules to bind to the active site of
human CYP2E1. Nevertheless, even under flexible settings for PHE478 the benzylic group
of 1-MP is still too far from the heme to permit a biochemical reaction [13]. After setting all
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PHE residues in the active site as flexible, most conformations showed that the benzylic
group became closer to the heme, which is consist with the observed production of benzylic
hydroxylation by the enzyme [18]. Therefore, our results suggest that the flexibility of
PHEs may be critical for catalyzing reactions of aromatic substrates, as the aromatic AA
residues in the active site can easily form non-covalent interactions such as π–π interaction
with ligands, thus provide a sufficiently large cavity for the binding of large substrates, and
further adjust their orientation [54,57,58].

It is established that the interactions between the residues of some AAs and a substrate
may affect the process of the transfer of proton/electron, thereby enhancing their reactivity
of the substrate and/or reducing the barrier from a reaction [59,60]. This study has further
explored potential factors involved in substrate-enzyme interaction for the catalysis of
biotransformation reactions, by using a model constructed with data calculated in various
ways. The results indicated that some factors with the substrates, including nucleophilicity,
HOMO−LUMO gap, in vivo half-life, and molecular docking results based on flexible
setting of PHE conformation, contributed substantially to the prediction of human CYP2E1-
activated mutagenicity of PCBs. It looks that PHEs in the active site of human CYP2E1
may participate in locating the site of reaction and the formation of products by enlarging
cavity size for holding bulky substrates and regulating their orientations. However, the list
of PCBs in this study was not based on random choice, but was guided by ever observed
structure-genotoxicity relationships [10–13], thus a bias may have been introduced, leading
to relatively high predictive value of molecular docking for human CYP2E1-activated PCB
mutagenicity [12]. Therefore, in the future it is necessary to use substrates of random
and more diverse structural patterns in the study of PHE−CYP2E1 interaction, to further
identify the role of PHEs in regulating the metabolism of aromatic substrates by human
CYP2E1 and the prediction of metabolically activated toxicity.
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