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Abstract: This study aims to propose an indoor air quality prediction method that can be easily
utilized and reflects temporal characteristics using indoor and outdoor input data measured near
the indoor target point as input to calculate indoor PM2.5 concentration through a multiple linear
regression model. The atmospheric conditions and air pollution detected in one-minute intervals
using sensor-based monitoring equipment (Dust Mon, Sentry Co Ltd., Seoul, Korea) inside and
outside houses from May 2019 to April 2021 were used to develop the prediction model. By dividing
the multiple linear regression model into one-hour increments, we attempted to overcome the
limitation of not representing the multiple linear regression model’s characteristics over time and
limited input variables. The multiple linear regression (MLR) model classified by time unit showed
an improvement in explanatory power by up to 9% compared to the existing model, and some
hourly models had an explanatory power of 0.30. These results indicated that the model needs to be
subdivided by time period to more accurately predict indoor PM2.5 concentrations.

Keywords: indoor PM2.5; dwelling; outdoor variables; time; multiple linear regression; prediction model

1. Introduction

Koreans spend around 20.66 hours per day indoors, equivalent to spending more
than 72 years in an indoor environment based on life expectancy as of 2021 [1,2]. As most
modern people spend the majority of their time indoors, it is critical to identify and regulate
the concentration of pollutants in the indoor environment. PM2.5 is particulate matter with
an aerodynamic diameter of 2.5 µm or smaller and is detrimental to health due to its ease
of adsorption and concentration of poisonous substances [3]. Previous studies have shown
that long-term exposure to PM2.5 significantly increases the chances of cardiopulmonary
problems and the mortality of lung cancers [4,5]. Recently, high concentrations of PM2.5 in
the air have become common in Korea. Thus, it is necessary to know the spatial or temporal
distributions of indoor PM2.5 concentrations to prevent adverse health impacts of PM2.5
exposure on occupants.
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Indoor air quality is mostly monitored with measuring devices. However, assessment
of measurement-based indoor air quality requires a significant amount of time and money.
Among the various indoor spaces, difficulties in installing, maintaining, and repairing
measurement devices are of particular note in residential environments [6]. To overcome
the limitations of this measurement-based monitoring, many attempts have been made to
estimate indoor particulate matter (PM10, PM2.5) concentrations. In particular, approaches
through artificial intelligence, such as machine learning and deep learning, are being
intensively researched [7,8]. Models that have been commonly used in these studies are
multiple linear regression (MLR), decision tree model, support vector machine, random
forests, and artificial neural networks (ANN) [9]. However, these prediction models
only estimate parameters based on knowledge of other parameters (temperature, relative
humidity, occupants’ activities, etc.) and are not designed to incorporate time as a variable
or reflect temporal characteristics [9].

Meanwhile, since indoor air quality is affected by various factors, it is necessary to
determine the relative contribution between variables affecting indoor PM2.5 concentration
and determine input variables to accurately predict indoor air quality. Thus, previous
studies have developed prediction models by choosing ventilation conditions, indoor pol-
lutants, indoor airflow, and pressure that can be directly measured or validated indoors as
input variables to increase predictive performance [10,11]. Using input variables obtained
through sampling or surveys, such as ventilation rate, indoor pollutant concentration,
pressure, and airflow, activity pattern information, may result in high performance [12].
However, these variables are difficult to obtain in real-time, making it even more challeng-
ing to predict indoor air quality accurately.

To create an effective indoor concentration prediction model, it should be composed
of easily obtainable variables. According to a previous study, it was found that indoor air
quality was more affected by outdoor air quality than indoor sources in the case of natural
ventilation [13]. When the windows were closed, outdoor sources accounted for 53 to 63%
of indoor PM2.5 concentration. However, this increased to 92% when the windows were
open [14]. In particular, the concentration of PM2.5 in outdoor air can enter indoors through
cracks or gaps in building envelopes and windows, so outdoor PM2.5 is a key factor that
can affect indoor PM2.5 [15].

In most previous studies, outdoor PM2.5 concentrations used fixed station’s data that
were somewhat distant from the target point [16,17]. In the case of Korea, the national
monitoring network is established at the city and count, so the outdoor PM2.5 concentration
may differ from the indoor concentration in the air near the measured point [18]. By contrast,
the I/O ratio, which is calculated as the ratio of the average indoor concentration to the
average outdoor concentration, can estimate the approximate average indoor concentration
through the outdoor concentration [19]. The data used to calculate the I/O ratio in most
studies were performed simultaneously at the outdoor measurement point near the indoor
sampling location [20]. Using the I/O ratio to estimate indoor PM2.5 concentrations can be a
useful approach when it is difficult to obtain direct indoor PM2.5 measurements. However,
it is important to note that the I/O ratio may not accurately reflect the actual indoor
concentration as it assumes that the infiltration of outdoor PM2.5 is constant over time. An
influencing variable of indoor PM2.5 concentration is only the outdoor PM2.5 concentration.
Therefore, the I/O ratio method should be used with caution and supplemented with other
methods to accurately predict the indoor PM2.5 concentration.

The main goal of this study was to overcome the limitations of using fixed station
data as input values, which failed to reflect the temporal characteristics of existing indoor
air quality prediction models. To achieve this, we used the I/O ratio method and utilized
outdoor PM2.5 concentration, temperature, and humidity data measured near the indoor
target point as input data to investigate the relationship between indoor and nearby
outdoor PM2.5 concentrations. Subsequently, the indoor PM2.5 concentration was calculated
using a multiple linear regression (MLR) model, employing easily available variables such
as meteorological data, and the influence of outdoor variables was confirmed through
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weights and error terms. Finally, our aim was to provide an easily utilizable indoor PM2.5
concentration prediction method that can accurately reflect temporal characteristics.

2. Materials and Methods
2.1. Measurement Method

In this study, we measured the indoor and outdoor PM2.5 concentrations, temperature,
and relative humidity for our indoor PM2.5 concentration prediction model. Other meteo-
rological variables were obtained from the automatic weather system (AWS) data provided
by the Korea Meteorological Administration.

First, measurable variables (PM2.5 concentration, temperature, and relative humidity)
were collected from the inside and outside of a house in Bu-Cheon and Nam-Yang-Ju. The
measuring point was located within a residential complex, with the Si-Heung interchange
of the Metropolitan First Circular Expressway approximately 1.8 km to the south and
Nam-Yang-Ju interchange of Metropolitan First Circular Expressway and North Arterial
Road approximately 1 km to the west and north (Figure 1).
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Figure 1. Location (yellow circle) of the monitoring device.

An outdoor air quality measuring instrument (Dust Mon, Sentry Co. Ltd., Seoul,
Republic of Korea) using light scattering was used. This instrument had an error within
80–120% of the total average value of PM2.5 measured using standard equipment based
on variability evaluation among monitoring equipment at the Korea Testing & Research
Institute. The specifications of the measuring instrument are shown in Table 1, and the flow
rate was fixed at 0.5 L/min. Measurement data were collected in real-time through LTE
Cat M1 and stored on an SD card within the instrument. The instrument was attached to
the roof of the third floor of the target house and to the wall of the living room in Bu-Cheon
and to the balcony, and to the room in Nam-Yang-Ju. Indoor and outdoor real-time PM2.5
concentrations were measured simultaneously at one-minute intervals for one-year (1 May
2019 to 30 April 2020 and 27 June 2020 to 22 April 2021).

The meteorological data utilized in the study were obtained from AWS located at the
target points in Bu-Cheon (37◦50′05.49′′ N, 126◦76′36.40′′ E) and Nam-Yang-Ju (37◦63′42.48′′

N, 127◦15′11.84′′ E).
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Table 1. Specifications of the measuring device.

Specification Dust Mon (Sentry Co. Ltd., Seoul, Republic of Korea)

Appearance
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300 (W) × 150 (D) × 430 (H) MM, 9 kg

Metrics
Particulate matter PM2.5

Other Temperature, Relative humidity

Measurement Range Particulate matter 0–100,000 µg/m3

Flux 0.5 L/min
Operating range −30 ◦C~60 ◦C, 0~99% relative humidity (RH)
Working power 220 VAC/60 Hz

Power 144 kW/month
Communications LTE Cat M1

Data storage SD CARD

2.2. Data Analysis
2.2.1. Statistics Analysis

Indoor and outdoor variables, including PM2.5, temperature, and relative humid-
ity, were directly measured and collected at ten-minute intervals. The meteorological
data (wind direction, wind speed, precipitation) were obtained through an AWS, and
atmospheric data and time data (year-month-day 00:00) were extracted by averaging the
minute data over ten-minute intervals. Rows containing missing or negative values were
removed before performing descriptive statistical analysis and correlation analysis using
the statistical program R.

Spearman’s rank correlation analysis, a non-parametric analysis method, was used for
the correlation analysis considering the non-normal distribution of PM concentrations, and
the significance level was set at 0.05.

2.2.2. Selection of Input Variables

The selection of input variables is a crucial consideration in modeling methods because
they determine the model structure and can impact the coefficients and overall perfor-
mance [21–23]. In this study, we aimed to use easily accessible meteorological variables as
input variables. However, these variables exhibit nonlinear characteristics when predicting
PM concentration [24]. This is due to numerous artificial conditions, such as household
heating, transportation, and the activities of occupants, that can affect the immediate PM
concentration [25]. Although using corresponding variables to increase the predictive
power of the model may seem effective, it is not feasible for the purpose of this study,
which is to propose an effective model. Furthermore, since sources that affect particulate
matter concentration differ across regions, applying a variable that can impact immediate
PM concentration is limited to a specific location.

In this study, outdoor PM concentration, temperature, relative humidity, and other
meteorological variables were selected as the main input variables. Additionally, to over-
come the limitation of the existing prediction model’s training data being somewhat distant
from the indoor target point, a measurement method was applied to calculate the I/O ratio.
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Data obtained from measuring devices installed outdoors near the target point were used
to determine the outdoor PM2.5 concentration, temperature, and relative humidity.

The MLR model used in this study is based on the I/O ratio, with the outdoor PM2.5
concentration selected as the initial variable. Other variables, including indoor and outdoor
temperature and relative humidity measured by a sampling device, AWS data (wind speed,
wind direction, and precipitation), as well as the difference between indoor and outdoor
temperature and relative humidity, were also selected as input variables. Currently, the
temperature and relative humidity difference between indoor and outdoor environments
are recognized as contributing factors to natural ventilation, and hence, it was considered
as a potential input variable [26]. The final input variables were chosen based on the results
of correlation analysis and previous research.

To check for multi-collinearity among the independent variables, the variance inflation
factor (VIF) was calculated using Equation (1). A VIF value of 1 indicates independence
among variables, while a value > 5 indicates a high correlation among variables. If the VIF
value is >10, one of the variables violating independence must be removed [27].

VIFi =
1

1− R2
i

(1)

In Equation (1),VIFi is the variance expansion factor for the ith independent variable,
and R2

i is the R2 value of regression analysis after removing the ith independent variable.

2.3. Data Preprocessing before Training

Data pre-processing and learning methods are shown in Figure 2. The dataset was
first processed to remove missing values, after which it was divided into hourly units
based on date and time, resulting in 24 datasets from 0:00 to 23:00. To ensure that the
model predicts a universal level of concentration and improve its performance, outliers
of indoor PM2.5 concentration were removed from the 24 datasets using the interquartile
range method [28]. The equations for calculating the interquartile range (Equation (2)) and
for detecting outliers (Equation (3)) are as follows:

IQR = Q3 −Q1 (2)

Q1 − 1.5× IQR ≤ x ≤ Q3 + 1.5× IQR (3)

In Equations (2) and (3), IQR denotes the interquartile range, Q3 denotes the third
quartile, and Q1 denotes the first quartile.

2.4. Multiple Linear Regression Model

Multiple linear regression (MLR) is a technique used for modeling the linear relation-
ship between two or more variables. The model is fitted such that the sum of squares
of differences between observed and predicted values is minimized [29]. The following
represents an MLR model:

y = a1x1 + a2x2 + a3x3 + · · ·+anxn + ε (4)

In Equation (4), y is the dependent variable (PM2.5), x1, x2, xn are independent vari-
ables, ε is the intercept.

MLR was used to create a prediction model for indoor PM2.5 concentration. Prior to the
application of the MLR procedure, all data were normalized according to Equation (4) [30].

Zi =
xi −min(x)

max(x)−min(x)
(5)
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In Equation (5), Zi denotes ith normalized value, xi denotes ith observed value for the
variable x, min(x) denotes minimum value in the dataset, max(x) denotes maximum value
in the dataset. MLR model was formulated using Scikit-learn (version 1.0.2) [31].
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In this study, we aim to develop a real-time indoor PM2.5 concentration prediction
model using gradient descent, which is a method used for estimating model weights in
deep learning models such as neural networks.

The gradient descent methods include full gradient descent (i.e., batch gradient de-
scent), stochastic gradient descent (SGD), and mini-batch gradient descent [32]. Full
gradient descent uses the entire dataset to update the parameters once, but it can take a
long time to calculate the coefficients if the dataset is large. In the case of the SGD method,
an appropriate gradient can be obtained for one data point that has been randomly sam-
pled from all the data to update the weight quickly. With mini-batch gradient descent,
the gradient is calculated using a randomly selected batch size [33]. This method is often
used because it is known to solve the problem of gradient vanishing and exploding, which
can prevent finding better weight. However, very recently, it has been discovered that
mini-batching is not necessary to resolve the non-vanishing variance issue inherent in the
original SGD methods [31].
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The regression coefficient of the prediction model was calculated using the SGD
method and scikit-learn’s “SGD-Regressor” library for training. Default values were used
for hyper-parameters that could not be adjusted, except for the regularization intensity
(alpha) and initial learning rate (eta0) parameters [31].

Regularization is a method used to prevent the overfitting of MLR. Ridge regression
(L2), a type of weight regularization method, was applied to utilize all the selected variables.
Ridge regression includes a penalty term, as shown in Equation (6), which helps to improve
the overfitting problem of the model by adjusting the alpha value of the penalty term
to reduce the overall weight. The larger the alpha value, the stronger the regularization
intensity; when alpha is zero, regularization is not applied. To apply an appropriate
regularization intensity, we adjusted the alpha value to a multiple of 10 within the range of
0.0001 to 10. (

argmin
w, b

)
1
n ∑n

i=1

(
yi − ŷi)

2 (6)

Error =
(

argmin
w, b

)
1
n ∑n

i=1

(
yi − ŷi)

2 + aw2
i (7)

where yi is the measured value, ŷi is the predicted value, n is the number of data, w2
i is the

weight and a is alpha.
Meanwhile, the initial learning rate (eta0) was set to 0.001 instead of the default value

of 0.01. This change was made because when eta0 was set to the default value, it converged
to local optimization instead of global optimization.

The dataset was split into 70% training data and 30% test data for use in the SGD
model. Random classification was applied using the ‘train_test_split’ and ‘random_state’
libraries in the scikit-learn package. The SGD models were trained using the training
dataset, and their performance was assessed using the testing data that were not used
during training.

2.5. Performance Indicators

The accuracy of the MLR methods was evaluated using the coefficient of determination
(R2), root-mean-square error (RMSE), and mean absolute error (MAE). The R2 value is
commonly used to explain how much of the variability in the predicted data can be
explained by the relationship between the predicted and observed values. The RMSE and
MAE are used to measure the difference between the measured and predicted values. The
equations for these performance indicators are given in Equations (8)–(10), respectively [34]:

R2 = 1− RSS
TSS

= 1− ∑n
i=1
(
yi − ŷi)

2

∑n
i=1(yi − y)2 (8)

RMSE =

√
∑n

i=1(yi − ŷi)2

n
(9)

MAE =
∑|yi − ŷi|

n
(10)

where yi, ŷi, and y are the measured and predicted values of each output variable, and n is
the number of samples.

3. Results
3.1. Distribution Characteristics of Indoor and Outdoor Measurement Data

As a result of identifying the distributions of measurement data, indoor PM2.5 concen-
tration was 10.31± 13.70 µg/m3, the outdoor PM2.5 concentration was 26.28 ± 20.69 µg/m3,
and the I/O ratio was 0.39 and median ratio was 0.29 (Table 2). To investigate the distribu-
tion of each variable, skewness, and kurtosis were calculated. As a result, indoor PM2.5
concentrations were found to have positively skewed and highly peaked distributions,
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with skewness values of 4.44 and kurtosis values of 50.27. Similarly, outdoor PM2.5 concen-
trations were found to have similar distributions. By contrast, temperature and relative
humidity were found to have approximately normal distributions.

Table 2. Distribution of indoor and outdoor measurement variables.

Variable Units I/O N Mean ± S.D. Median Max
I/O Ratio

Skewness Kurtosis
Mean Median

PM2.5 µg/m3 Indoor 80,572 10.31 ± 13.70 6.00 460.56
0.39 0.29

4.44 50.27
Outdoor 80,572 26.28 ± 20.69 21.00 227.00 1.76 5.38

Temperature ◦C
Indoor 80,572 27.01 ± 2.61 27.00 33.30

2.15 2.16
0.28 −0.36

Outdoor 80,572 12.55 ± 10.65 12.50 40.00 −0.06 −0.80

Relative
humidity %

Indoor 80,572 46.29 ± 18.61 41.06 94.25
0.61 0.48

1.39 1.18
Outdoor 80,572 75.37 ± 22.89 86.19 99.90 −0.91 −0.42

This study aimed to develop an indoor PM2.5 concentration prediction model that
reflects temporal characteristics. Thus, the distribution characteristics of indoor PM2.5
concentrations by time were determined (Figure 3). Indoor PM2.5 concentrations were
higher between 7–10 h and 19–21 h than at other times. Furthermore, it was verified that
an extreme concentration compared to the average indoor PM2.5 concentration appeared in
the evening (17–20 h).
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3.2. Selection of Input Variables

To select input variables that can predict indoor PM2.5 well, the correlation coefficient
was checked (Figure 4). Indoor PM2.5 concentration was found to have the highest cor-
relation with PM2.5 (r = 0.43) among outdoor parameters, followed by relative humidity
(r = 0.40) and wind speed (r = −0.17) (p < 0.05). In the case of indoor parameters, tem-
perature (r = −0.43) (p < 0.05) had a high correlation. The indoor/outdoor temperature
difference had a weak negative correlation (r = −0.17), and the relative humidity difference
had a negative correlation (r = −0.41) (p < 0.05).
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Initially, input variables with a correlation coefficient of 0.1 or higher were selected
from the available variables [35]. Then, VIF, a multicollinearity indicator, was used to
select the final set of input variables. The VIF values were 9.38 for outdoor PM2.5, 2.33
for indoor temperature, 1.28 for wind speed, 3.75 for outdoor relative humidity, 1.32 for
temperature difference (∆Temp), and 5.33 for relative humidity difference (∆RH), due
to the concern of multicollinearity. Finally, the selected input variables were outdoor
PM2.5, indoor temperature, wind speed, outdoor relative humidity, temperature difference
(∆Temp), and relative humidity difference (∆RH).

3.3. Model Training Result
3.3.1. MLR Model

The result of the training MLR model by the previous method is summarized in Table 3.
As a result of checking the model’s performance, the explanatory power of the model that
did not reflect time series characteristics was found to be 25%, and the RMSE and MAE
were 4.87 and 3.66, respectively. Furthermore, as a result of checking the weight of the
model, it was confirmed that the outdoor PM2.5 concentration had the greatest effect on the
indoor PM2.5 concentration (16.44), and the indoor temperature was found to have the next
negative effect (−9.44).

Table 3. The results of the MLR model.

Model
N

(Train/Test)
Coefficients

Intercept. RMSE MAE R2
a b c d e f

Previous
method

72,300
(50,610/21,690) 16.44 −9.44 4.46 −0.71 −4.57 0.69 9.62 4.86594 3.66157 0.25
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The calculated regression coefficients and error terms are as follows:

PM2.5in = a·PM2.5out + b·Temp.in + c·RHout + d·WSout+e · 4 Temp. + f · 4 RH + ε (11)

where a, b, c, d, e, and f denote regression coefficients and the measured and predicted
values of each output variable, and ε denote error terms.

3.3.2. MLR Model Divided by Hour

At this time, unlike the previous model, the prediction model separated the dataset per
hour, removed outliers using the interquartile range, and calculated the prediction model
through the pre-processed dataset. The prediction model for indoor PM2.5 concentration
separated per hour was learned (Table 4).

The explanatory power of the model divided into time periods was determined to be
about 20~34%, and the RMSE and MAE were confirmed to be 4~7 and 3~5, respectively.
The explanatory power of the time-specific model was found to be improved by up to 9%,
and the error between the measured value and the predicted value was improved.

The explanatory power of each model divided per hour was the highest at 0.34 for
H4 (4:00~4:59) models. The RMSE and MAE of the H15 (15:00~15:59) model were 3.34157
and 2.55109, respectively, showing the smallest error between the measured value and the
predicted value.

Table 4. The results of the MLR model separated per hour.

Model N
(Train/Test) RMSE MAE R2 Model N

(Train/Test) RMSE MAE R2

H0 2113/906 4.41158 3.36610 0.25 H12 2097/899 5.12931 3.72021 0.28
H1 2153/923 4.57719 3.54399 0.31 H13 2116/907 5.16333 3.78103 0.24
H2 2204/945 4.49406 3.41214 0.31 H14 2109/905 4.23131 3.13249 0.24
H3 2223/953 4.65165 3.53079 0.29 H15 2073/889 3.34157 2.55109 0.33
H4 2199/942 4.75141 3.60395 0.34 H16 2072/889 3.94571 2.91574 0.28
H5 2199/943 4.61411 3.57164 0.30 H17 2064/885 4.39213 3.26841 0.25
H6 2137/916 4.80890 3.69874 0.31 H18 2093/897 4.70427 3.61987 0.28
H7 2132/914 6.50780 5.01471 0.25 H19 2143/919 5.65613 4.12237 0.20
H8 2140/918 7.17099 5.37863 0.22 H20 2133/915 5.59225 4.18854 0.24
H9 2136/916 6.87636 5.08694 0.33 H21 2089/896 5.10041 3.79425 0.25

H10 2150/922 6.57170 4.95590 0.31 H22 2074/889 4.89382 3.64940 0.28
H11 2141/918 5.64699 4.10089 0.25 H23 2077/891 4.54320 3.38853 0.24

At this time, unlike the previous model, the prediction model separated the dataset per
hour, removed outliers using the interquartile range, and calculated the prediction model
through the pre-processed dataset. The prediction model for indoor PM2.5 concentration
separated per hour was learned (Table 5).

As a result of checking the regression coefficient of the MLR model, it was established
that the variable that had the greatest effect on the indoor PM2.5 concentration was the
indoor temperature at the H9 model, and it was confirmed that it had the greatest negative
(−) effect at −17.11. The outdoor PM2.5 was found to have the next largest positive (+)
effect, with 15.70 at H8.

The calculated regression coefficients and error terms are as follows:

PM2.5in = at·PM2.5out(t) + bt·Temp.in(t) + ct·RHout(t)+dt·WSout(t) + et · 4 Temp.(t) + ft · 4 RH(t) + εt (12)

where at, bt, ct, dt, e, and ft denote regression coefficients, and the measured and predicted
values of each output variable, and εt denote error terms.
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Table 5. The results of the MLR model separated per hour.

Model
Coefficients

Intercept. Model
Coefficients

Intercept.
a b c d e f a b c d e f

H0 14.00 −6.45 5.83 −0.29 −0.16 −0.19 4.47 H12 8.22 −5.21 5.64 −1.97 −3.61 0.22 6.17
H1 13.62 −6.41 6.76 −0.56 0.07 −0.73 3.50 H13 9.78 −3.63 4.67 −2.27 −4.25 −0.84 6.56
H2 9.86 −6.92 5.83 0.27 −0.38 0.03 4.05 H14 6.76 −3.86 4.69 −1.45 −4.53 −0.33 6.20
H3 8.92 −8.17 5.63 1.40 −0.86 0.84 4.04 H15 4.98 −3.22 3.35 −1.72 −5.28 −0.87 6.75
H4 10.06 −8.50 5.27 0.19 −0.03 0.17 4.70 H16 5.72 −2.66 3.61 −1.53 −4.41 −0.56 5.77
H5 9.60 −9.36 4.81 3.31 −0.40 0.95 5.15 H17 6.86 −2.87 3.17 −0.82 −6.02 −1.26 6.91
H6 8.70 −8.01 5.12 2.45 0.65 0.3 3.84 H18 9.11 −3.61 3.09 −2.23 −6.92 −0.58 8.55
H7 14.73 −7.58 5.27 0.34 2.45 −0.86 5.19 H19 10.91 −4.63 4.37 −2.61 −3.76 −0.06 6.74
H8 15.70 −15.77 9.09 −0.56 −2.23 3.74 9.27 H20 9.51 −4.59 5.90 −2.81 −3.04 0.40 5.86
H9 12.15 −17.11 9.56 0.59 −3.58 5.12 9.85 H21 10.07 −5.07 4.99 −3.10 −1.95 0.16 6.02

H10 12.12 −13.90 7.43 0.03 −4.47 1.67 11.85 H22 10.26 −4.39 5.82 −2.87 −0.76 −1.06 4.30
H11 8.84 −9.03 5.49 −1.72 −4.51 0.79 10.18 H23 10.68 −4.83 5.35 −1.40 −1.64 −0.43 4.42

4. Discussion
4.1. Indoor PM2.5 Concentration and Outdoor Variables

The study aimed to propose a method for predicting indoor PM2.5 concentration
by time by adding meteorological variables based on the I/O ratio method using PM2.5
concentration data measured in outdoor air adjacent to indoors. To confirm the correlation
between indoor and outdoor PM2.5 concentrations, PM2.5 was measured in outdoor air
adjacent to indoors. The outdoor PM2.5 concentration at the study site was found to be
26.28 ± 20.69 µg/m3, which is approximately twice the domestic annual average standard
of 15 µg/m3. This concentration is also 1.5 times higher than the annual average PM2.5
concentration (20 µg/m3) of Seoul in 2021, according to the Air Quality Annual Report of
the Ministry of Environment [36]. The indoor PM2.5 concentration was determined to be
14.86 ± 15.23 µg/m3, which is lower than the standard (35 µg/m3) for facilities used by
sensitive classes in the indoor air quality management standard [37].

As a result of checking the indoor PM2.5 concentration characteristics by time zone,
the highest concentration was 14.51 µg/m3 at 9:00, and the PM2.5 concentration between 7
and 10 o’clock was higher than at other times. In the afternoon, it gradually increased after
18:00, appeared high at 11.62 µg/m3 at 20:00, and then gradually decreased. These results
were similar to those of previous studies [38–43]. The indoor PM2.5 concentration in the
morning was higher than at other times, which could be due to occupants preparing for
the day, cooking breakfast, or opening windows for ventilation. In the evening, the PM2.5
concentration gradually increased, which could be due to occupants returning home and
cooking dinner. The outdoor PM2.5 concentrations on weekdays near apartments gradually
increased from 6:00 a.m. and peaked at 9:00 a.m. [39]. It is assumed that this was due to the
fact that car traffic and population movement during commuting hours affect the outdoor
PM2.5 concentration in locations where residential complexes are concentrated, such as the
study site.

After conducting a correlation analysis between indoor PM2.5 and outdoor PM2.5,
it was found that the concentration of indoor PM2.5 had a correlation coefficient greater
than 0.43 with the outdoor PM2.5 concentration. However, these results showed a lower
correlation with outdoor PM2.5 compared to previous studies [40–44]. Meanwhile, in a
dry urban environment where atmospheric dust events frequently occur, the correlation
between indoor and outdoor PM2.5 (r = 0.82) was confirmed to be very high even when
the windows were closed [41]. These findings suggest that the indoor PM2.5 concentration
can also increase when the wind speed is strong or when the PM2.5 concentration in the
outdoor air is high. In addition, it was also validated that the outdoor PM2.5 concentration
had a quantitative effect on the indoor PM2.5 concentration even with the windows closed
in offices in downtown areas where dust storms did not frequently occur [39]. These results
suggest that the outdoor PM2.5 concentration can be used as an indicator to predict the
indoor PM2.5 concentration and that the correlation between indoor and outdoor PM2.5
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concentrations can be improved by considering the following meteorological variables with
wind speed and direction.

Moreover, based on the analysis, indoor PM10 had the highest correlation coefficient
of 0.95, followed by outdoor PM10, outdoor PM2.5, indoor temperature, ∆RH, outdoor
RH, wind speed, and ∆T, in that order (p < 0.05). Excluding indoor PM10, significant
correlations were found between outdoor PM10 and PM2.5 concentrations with indoor
PM2.5 and indoor temperature also showed a significantly negative correlation with indoor
PM2.5 concentrations (r = −0.43). Additionally, a significantly high positive correlation of
0.40 or more was observed between outdoor RH and ∆RH.

In other words, meteorological conditions can significantly impact indoor PM concen-
tration levels, as they can affect the particle size depending on the indoor air exchange rate,
relative humidity, and the origin of the air mass [45,46]. Therefore, it can be inferred that
outdoor meteorological variables may be used to predict indoor PM2.5 concentrations.

4.2. Previous Studies about Indoor PM2.5 Concentration Prediction Model

In this study, the MLR model was used to predict indoor PM2.5 concentration, and
the model was subdivided by time period. The results of previous studies that used the
MLR model to predict indoor PM2.5 concentration are presented in Table 6. Three out of
five studies used survey results as indoor variables, including questions on the number
of pets, rooms, air purifiers, use of air fresheners, occupant activity patterns, and building
characteristics [36,46,47]. However, the model that was mainly composed of survey items
had an explanatory power of 0.35, which was lower than other studies. Other input
variables used in these studies included indoor PM10, PM2.5 concentration, temperature,
relative humidity, and ventilation rate [36].

All studies have verified that outdoor PM2.5 concentration is a crucial input variable
in predicting indoor PM2.5 concentration, using outdoor-related variables such as PM10,
PM2.5 concentration, temperature, relative humidity, wind speed, NO2, CO2, etc. [46–49].
Therefore, it can be inferred that outdoor PM2.5 concentration plays a significant role in
determining indoor PM2.5 concentration.

In this study, the prediction model was subdivided by time period. Although no study
subdivided the model by time period, as in our study, one study classified it by season,
showing that the explanatory power of each model differed by season, and the annual
model performed the best. However, this result was influenced by the dataset size, which
is an important parameter for model evaluation. Furthermore, the regression coefficient
of outdoor PM2.5 in the MLR model varied by season, with autumn (0.58), winter (0.69),
spring (0.69), and annual (0.88) seasons showing different effects on indoor PM2.5 [48].

Most studies used data measured for a short period of time, ranging from 48 h to four
months, for model training rather than data collected over a year. Additionally, one study
used outdoor data from a national measurement network that was distant from the indoor
measurement point. Some studies measured both indoor and outdoor air quality at nearby
locations simultaneously, as in our study, but most used data were measured for a short
period of time.

The performance of the prediction model was evaluated, and the model that used data
measured in the experimental building had the lowest RMSE (0.09) and highest R2 (0.99) val-
ues, followed by the model predicting PM2.5 concentration in school indoor spaces [48,49].
However, the model developed for residential interiors had an explanatory power of less
than 50% based on the validation score [36,46,47]. This is likely due to the significant
variation in indoor pollutant concentrations based on individual occupant characteristics,
as well as the presence of various sources in living spaces, unlike laboratory buildings
or schools. Nevertheless, even when using input variables such as direct measurements
or survey results for indoor pollutant concentrations, ventilation rates, or other factors,
similar explanatory power to the time zone-based model proposed in this study was ob-
served [36,46,47]. It is expected that the model could, to some extent, reflect the activity
patterns of occupants through further subdivision.
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Table 6. Summary of indoor PM2.5 prediction studies using MLR model.

Indoor Type
Variable Time Division

(O/X) (1) Data RMSE R2 Ref.
Indoor Outdoor

Dwelling Survey result PM2.5 X

(1) Country: America
(2) Sampling period: 48 h
samping
(3) Sampling the indoor and
outdoor data simultaneously,
nearby

- 0.35 [36]

Apartment
Survey results,

building
characteristics

PM2.5
concentration,
temperature,
wind speed

X

(1) Country: Mongolia
(2) Sampling period: 7 days,
during 24 h
(3) Indoor data: The direct
measurement of indoor air
(4) Outdoor data: The
national monitoring network

0.48,
0.50 (val) (2)

0.52,
0.49 (val) [46]

Dwelling

PM10_2.5,
survey result,

VOCs,
building

characteristics

PM10_2.5, RH,
PM2.5

X

(1) Country: Japan
(2) Sampling period: 7 days,
during 24 h
(3) Sampling the indoor and
outdoor data simultaneously,
nearby

15.70 (val) 0.42 (val) [47]

School

Relative
humidity,

temperature,
Ventilation

PM2.5, CO2,
wind speed,

PM10

O

(1) Country: Israel
(2) Sampling period: 7 days,
7:00–12:00 in winter and
spring, 12:00–17:00 in fall
(3) Indoor and outdoor
measurements alternately at
15 min intervals

0.17 (Fall),
0.13 (Winter),
0.14 (Spring),
0.08 (Annual)

0.58 (Fall),
0.69 (Winter),
0.69 (Spring),
0.88
(Annual)

[50]

Laboratory
building

Temperature,
Relative

humidity,
PM10, NO2

Temperature,
Relative

humidity,
PM10, NO2,

PM2.5

X

(1) Country: America
(2) Sampling period:
May-September 2020 during
24 h
(3) Sampling the indoor and
outdoor data simultaneously,
nearby
(4) Reflection of time delay
effect (TSR model)

0.09 0.99 [51]

(1) Time division (O/X): whether the model was divided by time (season, month, hour, etc.). (2) val: score of
validation data.

4.3. MLR Model

In the MLR model, the higher the slope, the greater the influence on the dependent
variable, and the larger the intercept, the larger the dependent variable on average [41].
In this study, outdoor PM2.5 concentration and environmental parameters were used as
input variables for the indoor PM2.5 concentration prediction model, and normalized data
were applied to the MLR model to regress the importance of each variable on indoor PM2.5
concentration.

As a result, the study found that the outdoor PM2.5 concentration had the greatest pos-
itive effect on the indoor PM2.5 concentration (16.44), followed by the indoor temperature
(−9.44) having a negative effect. This can be interpreted as the indoor PM2.5 concentration
increases as the outdoor PM2.5 concentration is high and the indoor temperature is low.
It is judged to have influenced according to a previous study using variables similar to
this study, outdoor PM2.5, wind speed, temperature, and relative humidity had an effect
on the indoor PM2.5 concentration in the order, and it was verified that wind speed had a
significant effect unlike in this study [41]. Unlike this study, which considered wind speed
in all directions, it is judged that the difference in importance was caused by the use of
wind speed in consideration of the wind direction affecting the research target point in
the previous study. Additionally, the study found that PM2.5 in the air easily penetrates
indoors through window cracks during winter [43].
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Figure 5 shows the distribution of measured and predicted values from the previous
model. Considering that the predicted value and the measured value are tilted along the
y-axis, it was confirmed that the predicted value was generally underestimated compared
to the measured value.
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On the other hand, it is known that the concentration of PM2.5 in indoor air is greatly
influenced by the activity patterns of occupants and indoor sources [45,50–52]. However,
in order to reflect factors such as indoor sources, survey results must be used, and survey
results are difficult to obtain compared to outdoor variables. Meanwhile, indoor sources
are heavily influenced by occupants’ activities, and according to previous research findings,
except for special events, occupants’ daily activity patterns tend to exhibit similarity by
time period [38–43]. In this study, in order to reflect the distribution characteristics of
indoor PM2.5 concentration by time and activity patterns of indoor occupants, the model
was subdivided by the hour, and the importance of variables in the model by time zone
and the influence on indoor PM2.5 concentration by time zone were analyzed. In order to
check the weight of the variable, the slope and intercept were checked.

As a result, indoor temperature had the greatest effect (–17.11) on indoor PM2.5
concentration, followed by outdoor PM2.5 concentration (15.70). This differed from the
previous model, which did not differentiate between time zones, and highlighted the
importance of segmenting the model. In the case of indoor temperature, it was confirmed
that a significant negative effect was given between 8–10H models, and the outdoor PM2.5
concentration also showed a large weight between 7–10H models. Furthermore, as a result
of checking the intercept, the 8–11H model appeared higher than other models, and it
was found that the indoor PM2.5 concentration appeared high during that time [45]. This
is a result that can verify that there is an indoor source in the corresponding time. In
addition, the intercept of the 18H model was 8.55, which was higher than that of the before
and after models. In the case of the residential environment, it was a result that could be
estimated that the occupant’s cooking activity would be the main indoor source. Prior
research has shown that cooking can double indoor PM2.5 exposure [53]. In addition, it
was confirmed that the indoor PM2.5 concentration lasted for about 30–60 min during
cooking [43]. However, in this study, considering that the indoor concentration is high for
about 3–4 h in the morning, it is judged that there is an additional source, such as cleaning
activity or the concentration of PM2.5 in the outdoor air is high during traffic congestion.

Figure 6 shows the distribution of the measured and predicted values of the proposed
time-specific model. After classification by time period and removing outliers, the model
predicted a wider range of concentrations and showed slightly improved prediction per-
formance compared to the existing model with an average of 27% ± 4%. The R2 values
of Figures 5 and 6 may appear to have little difference, but it is important to note that R2

can be greatly influenced by sample size. Therefore, the observed results are considered
noteworthy. However, the predicted value was generally underestimated compared to the
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measured value, as seen by the tilt of predicted value and the measured values along the
y-axis, similar to the existing model by time period.
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As a result of examining the performance of the MLR model classified by time unit,
the explanatory power was improved by up to 9% compared to the existing MLR model.
Figures 7 and 8 are the test results for indoor PM2.5 concentration per hour; the explanatory
power of the H1, H2, H4, H5, H6, H9, H10, and H15 models was 0.30 or higher, compared
to the existing MLR model. These results show that since the distribution characteristics of
indoor PM2.5 concentrations are different for each time period, a model with high accuracy
can be developed only when the model is subdivided and trained in consideration of
time. In addition, since it was applied to residential space with various indoor sources
and different activity patterns of occupants, the method proposed in this study would
have been applied to indoor spaces such as offices where the types of indoor sources were
relatively few and the activity patterns of occupants were constant. It is considered that the
predictive performance is better.
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Our study trained an MLR model using PM2.5 concentration data collected simulta-
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However, the explanatory power of the time zone-based classification model proposed
in this study was relatively low compared to other studies, possibly due to the limited data
used for model training which were collected from only two households. It is believed
that a more accurate and generalized model can be developed by incorporating a variable
that has a significant impact on indoor PM2.5 concentration. Since this study divided
the model by time zones based on indoor PM2.5 concentration, it is expected that the
limitations of direct measurement and investigation can be partially overcome by reflecting
the distribution characteristics of indoor PM2.5 concentration across different time zones.

4.4. Influence of Seasonal Characteristics on Prediction Results of PM2.5 Cocentration

Our study trained an MLR model using PM2.5 concentration data collected simulta-
neously indoors and in the nearby outdoor areas, along with hourly meteorological data,
over a period of one year. We categorized the dataset into four seasons: spring (March to
May), summer (June to August), autumn (September to November), and winter (December
to February). We aimed to examine the performance differences of the prediction model ac-
cording to the seasons and determine the impact of seasons on indoor PM2.5 concentrations.
We applied the categorized datasets to the prediction model and compared the results with
the previously calculated test-RMSE of the model (Table 7). The distribution of predicted
values and actual measurements was examined (Figure 9).

Among the four seasons, the RMSE values were found to be highest in the order of
spring, winter, summer, and autumn. When evaluating the model performance based on
different time periods, significant errors were observed in the predicted values compared to
the actual values for H15 in spring and winter, H5 in summer, and H19 in autumn. Upon an-
alyzing the input data of the models during the time periods with high errors, the maximum
concentrations were found to be 171.85 µg/m3, 160.00 µg/m3 in both spring and winter,
126.00 µg/m3 in summer, and 344.40 µg/m3 in autumn, respectively. The substantial
differences between these values and the maximum RMSE values observed during the cor-
responding seasons (spring—60.00 µg/m3, winter—72.00 µg/m3, summer—57.00 µg/m3,
autumn—43.98 µg/m3) indicate the possible presence of indoor pollution sources during
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those specific time periods. These findings are expected to serve as important reference
data for future studies on indoor PM2.5 concentration prediction models.

Table 7. RMSE of the proposed model by season.

Model Year Spring Summer Fall Winter

H0 4.41158 12.34248 6.96156 6.56937 15.74986
H1 4.57719 11.13504 7.01424 6.83583 15.80936
H2 4.49406 8.10813 8.29448 7.56207 13.25280
H3 4.65165 11.32884 10.50381 6.68133 11.75929
H4 4.75141 9.55735 13.42097 7.39000 9.87304
H5 4.61411 9.58722 14.30802 6.70083 9.71402
H6 4.80890 14.22191 13.67163 9.14738 12.81491
H7 6.50780 14.79353 18.09313 11.90778 17.34678
H8 7.17099 17.38503 13.09771 8.77013 20.58378
H9 6.87636 18.37358 15.05030 12.30992 21.72775
H10 6.57170 13.15244 13.09226 8.31716 19.67714
H11 5.64699 11.99965 11.74966 7.32458 17.13957
H12 5.12931 12.72795 12.71104 6.55808 15.19633
H13 5.16333 12.26430 14.66854 8.40014 13.69871
H14 4.23131 9.99186 13.51807 8.57123 12.54090
H15 3.34157 14.57501 15.19851 6.61890 16.26682
H16 3.94571 14.08520 14.94630 5.25771 13.67740
H17 4.39213 10.96050 13.81440 20.00288 12.47072
H18 4.70427 11.03774 12.46243 11.41809 14.39600
H19 5.65613 9.94045 8.85166 17.84064 15.55853
H20 5.59225 14.90723 11.33855 13.60358 21.36625
H21 5.10041 11.61009 8.888941 7.98565 16.00126
H22 4.89382 13.85268 9.27154 7.68929 17.13908
H23 4.54320 13.696636 9.81764 7.23575 16.53751
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5. Conclusions

Most people spend much of their time indoors, and it is important to regulate indoor
air quality to prevent health problems related to exposure to PM2.5. While measuring
devices are commonly used to monitor indoor air quality, it can be difficult and expensive
to assess measurement-based indoor air quality. This study aims to provide a more easily
utilizable indoor PM2.5 concentration prediction method that can accurately reflect temporal
characteristics by utilizing outdoor PM2.5 concentration, temperature, and humidity data
measured near the indoor target point as input data to calculate indoor PM2.5 concentration
through a multiple linear regression model.

To address the limitations of the MLR model and capture the distribution characteris-
tics by time period, the dataset was divided into hourly units. Additionally, outliers were
removed from the dataset during model training by utilizing the interquartile range to
produce a more accurate and universally applicable concentration value.

As a result of the training, a significant difference in model performance was observed
depending on whether or not the time zones were taken into account. By incorporating
temporal characteristics into the training process, the MLR model showed an up to 9% im-
provement in explanatory power compared to the existing model. Some temporal models
demonstrated an explanatory power of 30% or higher.

On the other hand, since the model was trained using data collected from two specific
dwellings, its accuracy may be lower when applied to different indoor spaces. Furthermore,
the explanatory power of the predictive model was relatively low due to the limited
availability of input variables that could be easily obtained. In addition, the fact that indoor
pollution sources and ventilation have a large effect on indoor PM2.5 concentration can be
seen as a major limitation of the model proposed in this study because these variables are
not reflected.

However, in order to propose a practical prediction method and overcome the lim-
itations of limited input variables, it is judged that the indoor and outdoor temperature
difference, relative humidity, and the difference between temperature and humidity can be
substituted for the ventilation rate and indoor pollutants as input variables. Furthermore,
by employing an MLR model that allows us to examine the weights of each variable, we
were able to assess the importance of input variables on an hourly basis. When evaluating
the performance of the models by time period, the prediction performance of the model
during the early morning hours, which corresponded to the sleep duration of occupants
(H~H), showed the best results. By contrast, the models trained on time periods when
occupants are most active, such as H8 and H19, exhibited poorer prediction performance.
These results suggest that indoor pollution sources, not explainable by outdoor variables,
might have influenced indoor PM2.5 concentrations during those specific time periods. It
was evident that time is an essential variable that must be considered when predicting
indoor PM2.5 concentrations.

Furthermore, to gain a more detailed understanding of the factors influencing the
improvement of model performance, we evaluated the model performance by season.
The results showed that the seasonal characteristics had a significant impact on indoor
PM2.5 concentrations and the performance of the prediction models. This study is expected
to serve as valuable reference material for future research on predicting indoor PM2.5
concentrations.
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