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Abstract: Dimensionality reduction techniques are crucial for enabling deep learning driven quanti-
tative structure-activity relationship (QSAR) models to navigate higher dimensional toxicological
spaces, however the use of specific techniques is often arbitrary and poorly explored. Six dimen-
sionality techniques (both linear and non-linear) were hence applied to a higher dimensionality
mutagenicity dataset and compared in their ability to power a simple deep learning driven QSAR
model, following grid searches for optimal hyperparameter values. It was found that compara-
tively simpler linear techniques, such as principal component analysis (PCA), were sufficient for
enabling optimal QSAR model performances, which indicated that the original dataset was at least
approximately linearly separable (in accordance with Cover’s theorem). However certain non-linear
techniques such as kernel PCA and autoencoders performed at closely comparable levels, while
(especially in the case of autoencoders) being more widely applicable to potentially non-linearly sepa-
rable datasets. Analysis of the chemical space, in terms of XLogP and molecular weight, uncovered
that the vast majority of testing data occurred within the defined applicability domain, as well as that
certain regions were measurably more problematic and antagonised performances. It was however
indicated that certain dimensionality reduction techniques were able to facilitate uniquely beneficial
navigations of the chemical space.

Keywords: QSAR; dimensionality reduction; deep learning; autoencoder; principal component analysis;
locally linear embedding; grid search; hyperparameter optimisation; mutagenicity; cheminformatics

1. Introduction

Food and drink products contain a variety of chemicals, of which some are intention-
ally present (e.g., additives) while others are unintentionally present (e.g., environmental
contaminants) [1]. The possible risks posed by consumption of food and drink chemicals
to human and animal health, are ideally evaluated via chemical risk assessments (CRAs)
carried out by regulatory bodies, industry and other stakeholders [1]. Current CRA frame-
works are overly reliant on in-vivo studies on live animals [1], which pose significant
ethical, scientific relevancy, and scalability-based concerns for the future of this space. New
Approach Methodologies (NAMs), including in-silico approaches such as Quantitative
Structure-Activity Relationship (QSAR) modelling, may be used to address some of these
limitations and contribute to future frameworks that regulatory bodies may utilise [2].
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QSAR modelling relies on the premise that molecular structures are correlated with
corresponding biological activities [2]; hence, in a toxicological context, QSAR models quan-
tify relationships between toxicological properties of molecules and quantitative metrics
concerning molecular structures. There is no universally agreed upon metric for reliably
quantifying molecular structures [2], however a variety of different approaches exist, such
as structural similarity coefficients (SCs—which quantify structural similarities between
pairs of molecules via techniques such as molecular fingerprinting [2]). QSAR models
frequently use machine learning (ML) to construct models; in a toxicological context, this
typically entails regression algorithms that can predict continuous metrics [3]. However,
classification algorithms are more appropriate for certain endpoints that entail categorical
data (rather than continuous numerical data) and are hence associated with discrete predic-
tions [3]—e.g., mutagenicity is an endpoint where molecules may be assessed into discrete
classes: A (strongly mutagenic), B (weakly mutagenic) and C (non-mutagenic) [4].

Mutagenicity concerns the ability of molecules to induce genetic mutations [4]; this
endpoint is hence the subject of considerable research attention, especially due to its rele-
vance to cancer biology. Additionally, mutagenicity is a widely covered endpoint in existing
QSAR modelling literature, due to a relatively abundant pool of open-source data available,
typically obtained via in-vitro Ames mutagenicity tests [4]. QSAR models of mutagenicity
were compared as part of the 2014 Ames/QSAR International Challenge Project (2014
AQICP), involving a variety of rule-based QSAR frameworks such as SARpy and Toxtree,
as well as statistical QSAR frameworks such as CEASAR and AMBIT. Sensitivity and
specificity scores varied, however none were able to consistently surpass accuracy scores
of 80% (considering both sensitivity and specificity), furthermore with many displaying
imbalance across classes [4]. Deep neural networks (DNNs) are a popular ML technique,
using layers of artificial neurons with weights that may be optimised to form complex mod-
els. A 2021 study used feed-forward DNNs to build a QSAR model of mutagenicity which
was 84% accurate [5], while a separate 2021 study used graph convolutional networks
(GCNs) in order to obtain sensitivity scores that were consistently matching or below 70%
and specificity scores that were consistently above 90% [6].

Although DNNs have demonstrable advantages for QSAR modelling, naturally high
dimensionality may arise in feature spaces built from chemical descriptors, hence deep
learning based QSAR model performances may be impaired by “the curse of dimension-
ality”, where computational cost for a sufficiently complex model scales unfeasibly with
increased dimensionality [7]. This may be alleviated via dimensionality reduction tech-
niques, which either select or extract features to produce lower dimensional spaces, while
aiming to conserve as much useful information as possible, to aid subsequent model sim-
plicity and performance [7]. Our recent research used the 2014 AQICP dataset to construct
feature vectors from SCs and fragment occurrences, for deep learning based QSAR models,
with initial dimensionalities in excess of 104 [8]. Principal component analysis (PCA) was
used to reduce dimensionality to within the 102 order of magnitude, which enabled overall
accuracy scores of ~70% (for individual models using single types of feature vector) and
~78% (for combined models, using both types of feature vector) [8]. Although demonstrably
effective, PCA is a linear dimensionality reduction technique that may fail to sufficiently
conserve any information that exists across higher dimensional manifolds; the authors of
the paper indeed acknowledged this limitation and noted that a potential expansion of
their study could entail the exploration of alternative dimensionality reduction techniques,
particularly non-linear techniques [8]. Other studies involving deep learning driven QSAR
models have made use of dimensionality reduction techniques such as PCA, genetic algo-
rithms, locally linear embedding (LLE), autoencoders and others, however the choice of
specific algorithm has frequently been trivial and relatively few comparisons have been
drawn, hence a research gap has been identified for specifically exploring optimisation and
performance of dimensionality reduction algorithms in this space [7–11].

The aim of this study was therefore to explore, optimise and directly compare the
performance of a diverse variety of dimensionality reduction techniques (both linear and
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non-linear) for enabling deep learning QSAR models of mutagenicity to navigate higher
dimensional toxicological/chemical space as effectively as possible.

2. Materials and Methods
2.1. Hypothesis and Research Method Overview

Cover’s theorem statistically shows that for any N binary labelled datapoints situated
in a D-dimensional space, there is a high likelihood for the data to be linearly separable
if N ≤ D + 1 (and this probability converges towards 1, as D

N→∞) [12]. While certain
non-linearly separable configurations of high-dimensionality data are possible, the number
of possible linearly separable configurations grows exponentially larger than the number
of possible non-linearly separable configurations, as dimensionality D increases [12]. It
is still possible that some high-dimensionality toxicological datasets may entail certain
relationships between datapoints that result in non-linearly separable data, however this
is unlikely from a statistical perspective [12]. It should also be considered that even
a non-linearly separable dataset may be approximately linearly separable, with only a
comparatively small number of datapoints mishandled by a linear decision boundary.

The total number N of datapoints to be used in this study will be equal to the dataset
dimensionality D, however the number of training datapoints in each case will be lower
(80% of the total balanced data, in each case). It is hence hypothesised that, in accordance to
Cover’s theorem, linear dimensionality reduction techniques will be sufficient for enabling
optimal performance of the deep learning driven QSAR models of mutagenicity trained and
tested within this study, but that nonetheless certain non-linear dimensionality reduction
techniques will perform equivalently well, while posing as more generally applicable
techniques to other datasets where N > D + 1 or otherwise where non-linearly separable
distributions may be anticipated to occur.

2.2. Data Collection and Pre-Processing

The 2014 AQICP dataset was used, following curation measures such as cross-
referencing canonical SMILES (simplified molecular-input line-entry system) and CAS
Registry Number descriptors via the online chemical database PubChem [13], as well
as checking for sufficiently complete Ames mutagenicity data. Only molecules which
passed these initial protocols were included in this study, which resulted in a final curated
dataset of 11,268 molecules. A further characterisation of this curated dataset may be
found in Appendix A. From these 11,268 curated molecules, canonical SMILES descriptors
were standardised via the open-source MolVS Python package (using the default MolVS
function for SMILES standardisation, which makes use of various background operations
via the open-source Python cheminformatics package RDKit, such as removing explicit
H atoms, applying normalisation rules, reionising acidic groups and more) [14,15]. It
should be noted that all Python software developed in this study used Python 3. Following
successful standardisation of canonical SMILES, it was necessary to address a significant
imbalance between different classes in the dataset; molecules listed under mutagenicity
classes A and B were severely outnumbered by molecules listed under class C. In line with
other mutagenicity QSAR studies that used the same dataset, classes A and B were com-
bined into a single “mutagenic” class, whereas class C was assigned as a “non-mutagenic”
class [4]. While this measure improved the balance between classes, it did not fully alleviate
the issue, with the number of non-mutagenic molecules remaining considerably greater
(10,188 non-mutagenic molecules and 1,080 mutagenic molecules). This demonstrates the
appropriate nature of using combined mutagenic class, to assist in alleviating the issue of se-
vere data imbalance as far as possible (and to empower any classification models used with
a sufficient number of datapoints for given classes, which was most intuitively achieved
via a combined single mutagenic class, rather than two even more sparsely populated A
and B classes against a significantly larger C class). Subsequently, perfect balance in the
training data used was enforced via stratification of the dataset into balanced folds, for use
in k-fold cross validation. k-fold cross validation was deemed to be a suitable technique for
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use in this study, given that it is widely applied in similar QSAR modelling studies, as well
as that it may enable insight into the entirety of the sampled dataset, avoiding universal
exclusion of chosen testing data from training the model [16]. 5 folds were constructed
via random sampling of an equal number of molecules from each class (corresponding to
the total number of mutagenic molecules, divided by 5). This resulted in all mutagenic
molecules assigned to folds, but with a considerable number of remaining non-mutagenic
molecules that were unassigned; these non-mutagenic molecules were instead assigned to
a pool of permanent testing data for assisting with later validation of models. Over each
iteration of training and testing a QSAR model, training data consisted of the combined
contents of 4 non-selected folds (i.e., 80% of the balanced fold-assigned data, but just 15% of
the total data), with the testing data composed of the selected fold (i.e., 20% of the balanced
fold-assigned data) combined with the permanent pool of excess non-mutagenic testing
data (hence in total, 85% of the total data assigned as testing data).

Feature engineering took place, for the purpose of adequately quantifying molecu-
lar structures, via a SC-based approach closely comparable to that used in our previous
research [8]. A matrix of Tanimoto coefficients (TCs) was calculated, quantifying struc-
tural similarities between standardised canonical SMILES for each molecule in the curated
dataset and every other molecule (this included trivial TCs between the same molecule,
with perfect similarities of 1.0, for the purpose of maintaining an intuitive square ma-
trix with consistency in the rows and columns of matrix corresponding to particular
molecules) [8]. Functions from RDKit were used to compute TCs, upon first converting
canonical SMILES to Morgan fingerprints (using a specified radius of 3 atoms and a max-
imum size of 2048 bits) [15,17]. The obtained matrix of TCs was the initial feature space,
containing 126,967,824 (11,2682) TCs, with each row as a feature vector (each with a di-
mensionality of 11,268, to be later reduced) for each molecule as a sample; this may be
visualised below in Figure 1:

Figure 1. Schematic diagram of how an N × N matrix of TCs was constructed as a feature space for
N molecules, along with corresponding feature vectors for each molecule. In this study, N = 11,268.
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2.3. Overview of Dimensionality Reduction Techniques

The dimensionality reduction techniques explored in this study were PCA, kernel
PCA (kPCA), independent component analysis (ICA), autoencoders, LLE and isomap. PCA
and the version of ICA used in this study are linear dimensionality reduction techniques,
whereas kPCA, autoencoders, LLE and isomap are non-linear methods [18,19].

PCA is a statistical method that attempts to transform higher dimensional data into
a lower dimensional space, according to explained variance along different orthogonal
axes [20]. kPCA follows the same underlying principles as PCA, but makes use of a kernel
for the purpose of more effectively transforming data that may not be linearly separable [19].
The kernel used may trivially be a linear kernel and hence equivalent to PCA, but more
characteristically may be a non-linear kernel such as a radial basis function (RBF), sigmoid
function or others. ICA attempts to separate data into separate components, via the
assumption that those components are distributed in a statistically independent manner,
with a number of more specific algorithms existing [21]. Autoencoders are a specific
type of DNN with architectures (an encoder and decoder connected by a bottleneck) that
naturally transform input data into lower dimensional encoded states, before decoding
to the original state [10,22]. An autoencoder may hence be trained to encode and then
decode data to a sufficiently accurate degree, upon which the encoder may then be used
to perform dimensionality reduction on the data [10,22]. LLE is an algorithm which
quantifies linear relationships between neighbouring datapoints (although these combined
linear relationships may accurately represent a set of points occurring across a non-linear
manifold), before then transforming the data into a lower dimensional space where such
relationships are conserved as much as possible [11,18]. Isomap is comparable to LLE,
aiming to conserve relationships between neighbouring datapoints that are transformed
into a lower dimensional space; however, isomap quantifies geodesic relationships between
neighbours and uses a different set of algorithms to compute the transformation [18,23].

All algorithms, with the exception of autoencoders, were implemented via available
functions of the open-source Python ML library scikit-learn [24]. Autoencoders however
were unavailable as a function of scikit-learn and hence were constructed as an object
using the open-source Python ML library TensorFlow, with the encoder and decoder parts
implemented as constituent objects [25].

2.4. Grid Search for Hyperparameter Optimisation

Before drawing a direct comparison between these dimensionality reduction tech-
niques, it was first imperative to optimise their hyperparameters, to enable a fair and valid
comparison [26]. While scikit-learn had numerous default values for the hyperparameters
of each technique’s function, grid searches for each technique were performed over the
top 2 hyperparameters deemed as most important [25,26]. The hyperparameters and their
values were explored as follows:

• PCA, as a comparatively simpler technique and with already demonstrated effec-
tiveness via default values in our previous research (which used the same dataset
and closely comparable feature engineering), was neglected from grid search efforts;
default values for more trivial hyperparameters were simply used [8,20,24].

• kPCA was similarly not considered for a grid search, although 2 different kernels were
used for comparison purposes: an RBF function and a sigmoid function. Aside from
this, default values for more trivial hyperparameters were used [24].

• The FastICA algorithm was used for ICA, with whitening strategy varied between use
of arbitrary variance (default) and use of unit variance (note that it was assumed that
the data was not already whitened), as well as maximum number of allowed iterations
of the algorithm linearly varied between 200 (default) and 1000, with steps of size 100.
Aside from this, default values were used for other hyperparameters [24].

• Autoencoders were configured using the sigmoid activation function in encoder neu-
rons, whereas the ReLU activation function was used in the decoder neurons. The
Adam optimisation algorithm was used for stochastic optimisation, along with mean



Toxics 2023, 11, 572 6 of 24

squared error to compute losses. Shuffling of data between epochs was enabled,
whereas the number of epochs was varied geometrically between 10 and 1280 (dou-
bling with each step). The number of layers in the encoder and decoder were kept
equal and varied via “number of steps to bottleneck” which referred to the number of
layers before and after the bottleneck layer, for the encoder and decoder respectively;
this number was varied linearly between 1 (for the most simple type of autoencoder
with 3 layers in total) and 5 (a more complex autoencoder with 11 layers in total).
For each given value for number of steps to bottleneck, the size of the first and last
autoencoder layer would always be 11,268 (the original dimensionality), whereas the
size of the bottleneck layer would be that of the chosen latent space, however the
sizes of the layers between was configured as a geometric series—e.g., for the decoder
layers to start from the latent space size and reach 11,268 within the chosen number of
steps, maintaining the same common ratio each time. This common ratio naturally
changed for different values for number of steps to bottleneck layer and hence was
recalculated for these different values. Each common ratio was equivalently used for
configuring the sizes of encoder layers, except via division rather than multiplication
(as the geometric series would operate in reverse). Any decimal values for layer sizes
obtained via these geometric series were simply rounded to the nearest whole number.

• LLE was varied in terms of strength of regularisation constant and number of neigh-
bours considered for each point. The strength of the regularisation constant was varied
geometrically between 10−6 and 10−2 (note that the default value was 10−3), with
a common ratio of 10. The number of neighbours considered was varied linearly
between 5 (default) and 115, with step sizes of 10. Aside from this, default values were
used for other hyperparameters [24].

• Isomap was varied in terms of number of neighbours considered for each point, as
well as eigenvalue decomposition algorithm. The number of neighbours considered
was varied in an identical manner to that of LLE, whereas eigenvalue decomposition
algorithm was varied between Arnoldi decomposition and the LAPACK (linear algebra
package) solver [24]. It should be noted that for Arnoldi decomposition, it was further
necessary to specify a maximum number of iterations, which was hence varied in an
identical manner to that used for the ICA hyperparameter grid search [24]. Aside from
this, default values were used for other hyperparameters [24].

In all cases, the algorithms (at each state of chosen hyperparameters) were fitted to
training data (a matrix of all feature vectors from 4 of the 5 folds) and then used to transform
testing data (a matrix feature vectors from the remaining fold and the permanent testing
data pool). This was repeated, using a different fold for the testing data each time, giving a
total of 5 iterations. The reduced dimensional space was controlled at 100 dimensions in all
cases, for the purposes of the grid search stage, to enable a suitably simple and valid search
for hyperparameter value combinations. It is further noted that a reduced dimensionality
of 100 (achieved via PCA) was found to be sufficient in our previous research [8]. Following
dimensionality reduction across each combination of hyperparameters for each algorithm,
simple DNNs were constructed to train on and classify the new data, via multi-layer
perceptron (MLP) classifiers with 2 hidden layers containing 500 artificial neurons each.
These MLPs were implemented through functions of scikit-learn and used the ReLU
activation function, along with Adam optimisation and a maximum number of 1000 epochs
(while all other hyperparameters were kept at default values) [24]. Obtained sensitivity
and specificity scores (regarding mutagenic predictions as positive, while non-mutagenic
predictions as negative) were used to calculate overall accuracy, via finding their weighted
average (according to prevalence of each respective class, in the testing data).

2.5. Final Comparison of Dimensionality Reduction Techniques

Adopting the optimal hyperparameter values from the grid search stage, dimen-
sionality reduction techniques were compared. Final dimensionality was varied over the
following values: 2, 4, 8, 10, 20, 50, 100, 200, 300. These values were chosen to cover a suffi-
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ciently wide search space that would be likely to demonstrate convergence in performance,
to a sufficiently large reduced dimensionality for conserving information. Upon obtain-
ment of transformed feature spaces over all algorithms, iterations and dimensionalities,
comparison was enabled via training and testing of identical MLP classifiers as described in
Section 2.3. Metrics used for comparison included overall accuracy, sensitivity, specificity,
positive predictive value (PPV) and negative predictive value (NPV).

2.6. Defining the Applicability Domain

There are numerous means for defining the applicability domain (AD), to charac-
terise the applicability of QSAR models [27]. In this study, the AD was defined via first
plotting XLogP (a computational approximation of LogP, i.e., partition coefficient) against
approximate molecular weight (MW), for each molecule (with both metrics obtained from
PubChem) [13]. The AD was then defined as a rectangular region of this two-dimensional
chemical space, with boundaries defined by the minimum and maximum XLogP and MW
values of the training dataset, for each k-fold iteration. Any molecules from the testing
dataset with (XLogP, MW) coordinates outside of this region, were deemed as existing
outside the AD.

3. Results and Discussion
3.1. Grid Search

From the results of the grid search, it was deemed that for ICA, arbitrary variance
performed marginally better than unit variance in terms of overall accuracy scores, with the
most optimal scores occurring between 700 and 900 maximum iterations, although this was
possibly a mere statistical fluctuation in otherwise considerably uniform data (Figure 2a).
Uncertainty values appeared uniform and trivially fluctuating, although use of arbitrary
variance overall gave rise to lower uncertainties than use of unit variance (Figure 2b). It
was decided from this grid search that the ICA algorithm would use arbitrary variance and
a maximum number of 800 iterations (a natural middle ground between 700 and 900).
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For autoencoders, a tendency for improved model performance was observed as
hyperparameter states progressed to the lower-right corner of the heat map, i.e., min-
imal autoencoder complexity and larger numbers of epochs were optimal (Figure 3a).
Affirming this, an approximate trend of lower uncertainty values was apparent along this
direction in hyperparameter space (Figure 3b). Nonetheless, a slight decline in overall
accuracy was present when increasing the number of epochs from 640 to 1280, for the sim-
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plest autoencoder architecture; the most optimal performances instead occurred between
160–640 epochs. Thereby, 320 epochs were selected for further use, as a natural middle
ground of this optimal range, whereas the selected architecture would follow just 1 step to
the bottleneck (i.e., an autoencoder with 3 layers in total).

Figure 3. For autoencoders: (a) Heat map of mean overall accuracy scores obtained from grid
search, over all 5 iterations; (b) Complementary heat map of percentage uncertainty values (standard
deviation) on mean overall accuracy scores.

For LLE, a general trend was uncovered, of more optimal performances for increased
numbers of neighbours and decreased regularisation constants (Figure 4a). This was less
clearly reflected in uncertainty values, which appeared overall more uniform and to have
otherwise varied in a random manner (Figure 4b). Although the overall trend in LLE
performance is clear, it does not perfectly hold for every hyperparameter state. It was
decided from these results that the regularisation constant would be controlled at 10−6,
whereas the number of neighbours would be controlled at 115 (as this was the lowest
number of neighbours, with the lowest uncertainty value, which resulted in the most
optimal performance when using a regularisation constant of 10−6).

Figure 4. For LLE: (a) Heat map of mean overall accuracy scores obtained from grid search, over all
5 iterations; (b) Complementary heat map of percentage uncertainty values (standard deviation) on
mean overall accuracy scores.

The results for the grid search for isomap shows negligible variation across varied
numbers of neighbours considered, albeit with a slight improvement in average perfor-
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mance as numbers were increased beyond 20 (Figure 5a,b). No variation in performance
or corresponding uncertainty occurred across different eigenvalue decomposition algo-
rithms, nor for different maximum iteration values when using Arnoldi decomposition.
Although the success of the isomap parameter optimisation was limited, the available
evidence suggested that the number of neighbours would be optimally configured at 65.
This configuration not only lead to the tied most optimal performance, along with lowest
uncertainty, but also served as a natural middle ground between other values that per-
formed comparably well. The eigenvalue decomposition algorithm was set as “auto” to
enable the software to choose the most efficient algorithm of the two (both appeared to be
identical in performance, through the grid search).

Figure 5. For isomap: (a) Heat map of mean overall accuracy scores obtained from grid search, over
all 5 iterations; (b) Complementary heat map of percentage uncertainty values (standard deviation)
on mean overall accuracy scores.

Overall, the grid search stage of this study was of mixed success. Clear and coherent
optimisations were reached for autoencoders (Figure 3) and LLE (Figure 4), demonstrable
via their heatmaps, although their optimal states were notably within proximity of the
lower-left bounds of the heat maps. Hence a more optimal state may exist outside the
bounds of the search space, which could be explored in future research. A less distinct
optimised state was found for ICA (Figure 2), which may indicate that the search space
was not wide or precise enough, or that alternatively other hyperparameters should have
been varied instead. Despite this, some level of optimisation was still possible via the
ICA grid search. The least success from the grid search however occurred for isomap
(Figure 5), where the varied eigenvalue decomposition algorithms and maximum number
of iterations (when using Arnoldi decomposition) had no observed impact on QSAR model
performance. This indicates that the choice of including these hyperparameters for the
isomap grid search was not optimal. While the search space for numbers of neighbours did
have some level of variance in overall accuracy (Figure 5a), no clear trend was discernable
and the variance was furthermore not clearly distinguishable from possible naturally
occurring statistical noise in the data. This indicates that the search space for the number
of neighbours hyperparameter was insufficient, even if it was sufficient for the LLE grid
search (Figure 4).

Overall, grid search offers an appropriate approach for this study, as it would not have
been feasible to choose hyperparameters, search spaces and required levels of resolution
through any exact theoretical a priori deduction, for such a complex dataset containing
11,268 dimensions; instead a level of starting assumption was necessary. Nonetheless, a
potential future research direction could be to expand considered hyperparameters, their
respective search spaces and respective levels of resolution, based on the outcomes of
an initial grid search (particularly based on whether sufficient optimisations could be
found from the initial grid search). The uneven and arbitrary nature of the resolutions
between different grid searches could also be more coherently standardised via a clear
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methodology, for a future study. Additionally, the inherent limitations of grid searches as a
hyperparameter optimisation method (particularly the limitation of resolution of the search
space and potentially missing more optimal states between chosen search values) could
be addressed via choosing another optimisation approach such as random searches and
Bayesian optimisation, perhaps to be ran in parallel to grid searches, followed by a final
comparison of optimised hyperparameters found [26].

The grid search stage of the study provides an early level of insight into the feasi-
bility of the explored dimensionality reduction algorithms and their respective chosen
hyperparameters, as overall accuracy scores approximately between 60–70% were obtained,
with comparatively insignificant levels of uncertainty. This indicates that all configured
dimensionality reduction techniques were able to reduce the dimensionality of the feature
space, while conserving sufficient information to empower simple MLP classifiers to per-
form measurably more accurately than a random guess and comparable to performance
metrics obtained through our previous research [8]. While the controlled dimensionality of
100 may have inhibited certain techniques from producing more optimal feature spaces,
the later stage of subsequent comparison of performances over numerous ascending dimen-
sionalities would help alleviate this limitation, while the controlled value of 100 dimensions
is deemed as having maintained an appropriate and feasible set of conditions for a valid
prior grid search.

3.2. Comparative Performances of Dimensionality Reduction Techniques

Direct comparison of dimensionality reduction technique performances, using opti-
mised hyperparameters, is illustrated in Figure 6:

A convergence of overall accuracy scores was observed, for the majority of models,
at 100 dimensions and beyond (Figure 6a). However, the sensitivity scores showed a
gradually increasing trend for the highest performing models, even beyond 100 dimensions
(Figure 6b). For specificity scores, similar trends and findings were found to theose of
overall accuracy scores, due to the imbalanced nature of classes in the data (Figure 6c).
Furthermore, similar trends were present for PPV and NPV values, however the PPV
values were significantly smaller than the NPV values, naturally due to the data imbalance
between mutagenic and non-mutagenic molecules (Figure 6d,e).

The overall convergence displayed in Figure 6 (especially Figure 6a,c) suggested
that optimal dimensionality was approximately reached via the dimensionality reduction
techniques and hence no further useful information could be provided through increased di-
mensionality. This also implies that the search space and resolution of dimensionalities was
sufficient. Although sensitivity scores in Figure 6b do not show an absolute convergence,
the gradient of improvement for dimensionalities increased beyond 100 is notably more
gradual and hence convergence is approximately inferable. Additionally, the imbalance of
mutagenic molecules (significantly outnumbered by non-mutagenic molecules) may call
into question the exact accuracy of any trends discerned solely in terms of sensitivity.

Overall, the results indicate that accuracy scores peaked within range of ~70%, even
for the best performing dimensionality reduction techniques, which is also in line with
the results of our previous study [8]. It is however possible that autoencoders may have
been capable of reaching higher peak overall accuracy scores, at higher dimensionalities,
as evidenced by a less visibly converged gradient of improvement, as well as reaching
a peak above all other techniques at the maximum tested dimensionality of 300. The
best performing technique is not absolute or conclusive from the results, as PCA, both
forms of kPCA, ICA and autoencoders performed with closely comparable average overall
accuracies, furthermore with considerable overlap between margins of error. At certain
dimensionalities, LLE also performed at comparable levels. PCA, both forms of kPCA
and ICA demonstrated more robust sensitivity scores than any of the other methods,
however more equivalent performance was observed from autoencoders and LLE in terms
of specificity.



Toxics 2023, 11, 572 11 of 24

Figure 6. Comparative performance metrics graphs for all optimised dimensionality reduction
techniques, over ascending dimensionalities, in terms of: (a) Overall accuracy; (b) Sensitivity;
(c) Specificity; (d) PPV (positive predictive value); (e) NPV (negative predictive value); (Note that
for aiding clarity in comparing more pertinent high performance results at higher dimensionalities,
y-axis cutoffs exclude lower performances at lower dimensionalities.
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The consistently high performance of linear dimensionality reduction techniques,
often greater than the performance of non-linear techniques, strongly suggests that the
original 11,268-dimensional dataset was linearly separable, or at least approximately so.
This is in line with Cover’s theorem and the underlying hypothesis of this study [12].
Although non-linear techniques such as kPCA, autoencoders and LLE overall performed
comparably to PCA and ICA (which further affirms the hypothesis), PCA and ICA as
linear techniques offer generally simpler and often more efficient techniques for processing
high-dimensionality datasets into more manageable feature spaces for deep learning driven
QSAR models. That said, molecules in toxicological space are not randomly distributed and
hence potential non-linearly separable relationships in higher dimensional toxicological
datasets may be more appropriately handled with autoencoders and LLE, in the absence of
any a priori knowledge, as they in any case can perform in a comparable manner to linear
techniques for data that are linearly separable. It is hence a more robust strategy to use
generally applicable non-linear dimensionality reduction techniques, such as autoencoders,
not just for datasets where N > D + 1 (and hence with increased likelihood of non-linear
separability), but also when a priori knowledge of the dataset’s separability is lacking
and/or difficult to characterize.

Isomap significantly underperformed throughout the different graphs of Figure 6,
in comparison to the other dimensionality reduction techniques explored. This however
could be expected, given the failure of the isomap hyperparameter grid search to uncover
any clear optimal state; isomap has demonstrated effectiveness in numerous other QSAR
modelling studies and may have performed measurably better, given a more robust hyper-
parameter Optimisation and resulting final hyperparameter configuration. On this note,
other dimensionality reduction techniques may have also been hindered by the limitations
of the grid search stage of this study, hence while some level of conclusions may be drawn
from the results of this study, it is also important to note the limitations of these findings.
Similarly, the simplicity of the MLP classifiers with only 2 hidden layers of 500 neurons,
may have capped the potential of the results to reach higher peak accuracy scores, although
the controlled nature of the MLP classifiers nonetheless serves as a valid means for drawing
comparison between competing dimensionality reduction techniques. Nonetheless, it is
possible that the peak overall accuracy scores within range of ~70% from Figure 6a may
have been due to the limitations of the MLP classifier stage of the QSAR model, rather than
any of the employed dimensionality reduction techniques, hence a future expansion to the
study may benefit from varying the complexity of the DNNs used for classification.

It was deemed that the chosen selection of PCA, kPCA (using two different non-linear
kernels), ICA, autoencoders, LLE and isomap, was sufficiently diverse in providing a
valid basis for drawing a limited comparison between different dimensionality reduction
techniques, especially in terms of linear techniques vs non-linear, for their suitability
in building deep learning based QSAR models of mutagenicity and other toxicological
endpoints. However 6 dimensionality reduction techniques compared in this study is
not an absolute representation of all dimensionality reduction techniques, especially with
regards to the diverse space of non-linear methods; wider comparison could be explored in
future research.

While it was intended that while all findings of this study would naturally be directly
applicable to the specific dataset used, these results were also aimed to provide insight
into the general suitability of the algorithms explored, for similar QSAR modelling appli-
cations in future. Nonetheless it may be appropriate to extend future studies to include
additional datasets.

3.3. Analysis of Applicability Domain

The AD was calculated across all iterations and is irrespective of dimensionality
reduction technique used.

It was found that an average of 0.15% (2 sf, over all iterations) of molecules were
located outside the AD (Figure 7). This comparatively low level indicated that the QSAR
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models used data that were sufficiently spaced and stratified, although it may additionally
suggest that the definition of the AD used was limited and insufficient for explaining
the ~30% of testing data that were misclassified at peak QSAR model performances (see
Figure 6). It may also be observed from Figure 7 that some of the more prominent and/or
eccentric datapoints outside of the AD are repeated in the testing data across different
iterations; these datapoints hence represent non-mutagenic molecules that were assigned
to the permanent testing data pool (and comparable outliers did not occur in the training
data, as these would have widened the boundaries of the AD accordingly).

It is generally expected that QSAR models are at risk of underperforming when used
to test molecular data that exists outside of their AD, hence the performances of the QSAR
models of this study, for classifying testing molecules outside of the AD, were investigated
(Figure 8):

Figure 8 displays peak performances that were notably higher than the ~70% overall
accuracy scores observed in Figure 6a, for all dimensionality reduction techniques except
for isomap (although even isomap approached ~70% correct classification rate, at lower
dimensionalities). Closely comparable trends were further found to hold in terms of
specificity, however analysis in terms of sensitivity scores was limited, due to a scarcity of
mutagenic molecules outside of the AD (see Appendix B). These findings are unexpected, as
it demonstrates that the majority of QSAR models on average performed more optimally at
classifying molecules outside the AD than at classifying molecules inside the AD. This could
be due to the adopted definition of the AD for this study being insufficient. Although this
is difficult to verify, as any conclusions drawn from comparisons between Figures 6 and 8
may be inherently limited, due to the comparatively much lower amount of molecular
datapoints that were available for constructing Figure 8 (0.15% of molecules, compared to
100% of molecules used to construct Figure 6). Nonetheless, another interesting finding
from Figure 8 is that while techniques such as PCA, kPCA and ICA remained largely
stagnant in performance at 100 dimensions and beyond, autoencoders and LLE continued
to gradually improve in classification rate (with autoencoders outperforming all other
techniques at 300 dimensions). This may indicate that non-linear dimensionality reduction
techniques, particularly autoencoders, at a larger number of dimensions, could perform
more optimally than linear techniques for processing data that contains a larger number
of statistical outliers. The fact that a similar indication was also present from Figure 6a is
reaffirming of the possibility that autoencoders may have reached more optimal overall
accuracy scores at higher dimensionalities. It should however be noted that PCA, kPCA
and ICA outcompeted autoencoders and LLE at lower dimensionalities of 100, despite
PCA and ICA being linear techniques, as well as that PCA and kPCA underwent no grid
search hyperparameter optimisation stage. kPCA, when using the RBF function as a kernel,
surpassed 75% correct classification rate at 100 dimensions and was the most consistent
top-performing technique in Figure 8. Similar findings for kPCA (RBF) at 100 dimensions
are also observable from Figure 6a. The frequently more optimal performance of kPCA
(RBF), compared to PCA and even kPCA (sigmoid), suggests that a RBF kernel was indeed
more optimal for navigating the initial feature space.

Considering the above findings, it was deemed beneficial to obtain further insight into
the classes of molecules which were outside the AD, as well as generally how the classes of
molecules were distributed according to the chemical space used to the define the AD.
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Figure 7. Visualisations of the AD and the positions of testing data molecules relative to it, for:
(a) Iteration 0 (i.e., using fold no. 1 as testing data); (b) Iteration 1 (i.e., using fold no. 2 as testing
data); (c) Iteration 2 (i.e., using fold no. 3 as testing data); (d) Iteration 3 (i.e., using fold no. 4 as
testing data); (e) Iteration 4 (i.e., using fold no. 5 as testing data); Note that in all cases, total testing
data was composed of the given test fold combined with a separate pool of permanently assigned
testing data.
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Figure 8. Line graph displaying correct classification rate (equivalent to overall accuracy) of molecules
outside the AD for each given iteration, by QSAR models, over different reduced dimensionalities
(and powered by different dimensionality reduction techniques).

The vast majority of molecules outside the AD were non-mutagenic, along with a
general majority of statistical outliers from the main cluster body of the visualised chemi-
cal space (Figure 9a). This may be a purely probabilistic phenomenon, as a significantly
larger number of non-mutagenic molecules occurred in the curated dataset, compared
to mutagenic molecules, which is supported by the observation that a minority of muta-
genic molecules also appear as visible outliers, to a certain extent. This suggested that a
minority percentage of both classes naturally were outliers in terms of their distribution in
XLogP/MW chemical space, but that non-mutagenic cases were simply more frequent due
to the inherent data imbalance. Regardless of this, the significance of the findings of Figure 8
may be called into question, given the extremity of the data imbalance of the molecules
outside the AD, implying that the QSAR models were de-facto only being compared by
their ability to classify non-mutagenic outliers; their overall improved performances may
suggest that the MLP classifier simply learned to classify the majority of statistical out-
liers as non-mutagenic (an explanation which is supported by Figure 9a). While initial
stratification of the training data attempted to remove any bias occurring in favour of any
particular class, inherent limitations of the distribution of the classes in chemical space
would have been less easily overcome and appears as a possible fundamental limitation
of the 2014 AQICP dataset. Additionally, the success of the QSAR models in identifying
statistical outliers of the physicochemical XLogP/MW chemical space as non-mutagenic, is
an affirmation of the suitability of the techniques used. This is because the QSAR models
demonstrated predictions that were directly interpretable via the physicochemical space
used for defining the AD, despite having used feature vectors that were more abstract
quantifications of toxicological space, via matrices of TCs between SMILES descriptors.

Figure 9b appears to display a considerably wider or less dense distribution of mu-
tagenic predictions than that of the true distribution of Figure 9a, but the large density of
datapoints makes this difficult to compare. Normalised histograms of distances from the
median point were hence plotted in Figure 10.

The distributions of both classes of molecules, in terms of distance from the median
point in XLogP/MW chemical space, were exponential distributions and approximately
equivalent, except for the greater definition of the non-mutagenic exponential distribution,
especially across further distance bins, owing to the inherent data imbalance (Figure 10a).
This points to the main limitation of the 2014 AQICP dataset as concerning the inherent
data imbalance, rather than any unequal distribution of the classes. The results also
demonstrated that the MLP classifier mostly followed a balanced prediction of mutagenic
and non-mutagenic molecules, over the combined distribution, with the exception of
extreme outliers (Figure 10b). Certain characteristics of each distribution (such as the lower
normalized frequencies of mutagenic molecules, compared to non-mutagenic molecules,
spanning over bins ~200 to ~500) were captured by the MLP classifier. While this may
indicate sufficient ability of the simple MLP classifiers for capturing subtle differences
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between distributions of mutagenic and non-mutagenic molecules in chemical space, it
may also be a sign of overfitting.

Figure 9. Visualisations of the distributions in chemical space of: (a) Molecules in the dataset that
were mutagenic versus non-mutagenic; (b) Molecules in the dataset that were mainly predicted as
mutagenic versus mainly predicted as non-mutagenic (according to the autoencoder powered QSAR
model at 300 dimensions, across all iterations); Note that in all cases, median position of the entire
dataset is marked, for reference. For an alternative colour-scheme, see Appendix C.

Figure 10. Histograms of Euclidean distances from the median point in XLogP/MW chemical
space for: (a) Molecules in the dataset that were mutagenic versus non-mutagenic; (b) Molecules
in the dataset that were mainly predicted as mutagenic versus mainly predicted as non-mutagenic
(according to the autoencoder powered QSAR model at 300 dimensions, across all iterations); Note
that 1000 bins were used for producing both histograms.

Further insight into the performances of the different dimensionality reduction tech-
niques, over differing Euclidean distances from the median point in XLogP/MW chemical
space, were obtained via the graphical plots of Figure 11.

A universal dip in performance occurred, for molecules closest to the median point in
XLogP/MW chemical space (Figure 11a), although it is suggested that this dip occurred
later (Figure 11b) and hence the earlier positioning of the dip in Figure 11a appears to have
been due to the imprecise nature of the 30 bins used. An additional dip in performance
is visible in Figure 11a, having occurred for all techniques except for isomap, between
x-axis values of ~1100 and ~1300. While this additional dip was also apparent in the raw
data used to construct Figure 11b, the thresholded nature of Figure 11b (where averages
are drawn over the entire dataset within a certain distance) means that higher average
values were maintained from a denser pool of higher-performance molecules at closer
Euclidean distances, with negligible impact from any lower performances over less densely
populated farther regions. Isomap generally performed with local correct classification rates
of 70–80% (Figure 11a), but this figure was lowered by initially poorer performance over
the significantly more densely populated region of chemical space surrounding the median
point. This nonetheless may suggest that isomap, despite having underperformed in terms
of all other measures in this study and having seemingly not undergone a successful
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grid search for hyperparameter optimisation, could possibly offer unique advantages in
coverage of sparser regions of chemical space. This would further suggest that perhaps
the hyperparameter optimisation was more successful than previously realised, but that
merely the performance metrics used for comparison were inherently flawed and biased
towards favouring other algorithms which naturally performed more optimally over the
densest central region of the XLogP/MW chemical space.

Figure 11. Graphical plots showcasing: (a) Average correct classification rate for molecules, over
binned Euclidean distances from the median point in XLogP/MW chemical space (note that 30 bins
were used and that some spaces between plotted points are uneven, due to exclusion of empty
bins); (b) Average correct classification rate for molecules within maximum thresholds for Euclidean
distances from the median point in XLogP/MW chemical space (note that 1000 thresholds were
used); Also note that both graphs are concerning QSAR models that used 300-dimensional data, over
all iterations.

The initial performance dip region of the chemical space is most coherently displayed
by Figure 11b, which affected all QSAR models to a closely comparable extent, regardless
of dimensionality reduction technique used. This suggests that the particular region of
chemical space in question was fundamentally problematic. Overall accuracy score shown
in Figure 11 was significantly hindered by this performance dip over a considerably more
dense region of the chemical space (see Figure 10); overall accuracy scores more within 80%
may have otherwise been achieved, as per the more successful QSAR model performances
observed over other regions in Figure 11a. It is nonetheless unclear why such a dip
occurred over a distinctly problematic region, with such extensive data availability, nor
how the region is spatially distributed (it is so far only characterised by a directionless
distance range from the median point, but may be concentrated in a more specific location
of an XLogP/MW plot). A future expansion of this study may hence entail a deeper
investigation into more problematic regions of the considered chemical space, as well as
potentially exploring models that can identify and exclude (or otherwise assign lower
reported confidence levels on predictions from) molecules within such regions.

Aside from the above observations, Figure 11b demonstrates that the performances of
PCA, kPCA (both types of kernel), ICA and autoencoders were closely comparable, which
further affirms the hypothesis that non-linear dimensionality reduction techniques would
be sufficient for navigating N ≤ D + 1 training data (as per Cover’s theorem) [12], but that
certain non-linear techniques would perform sufficiently too (while inherently being more
widely applicable to any non-linearly separable datasets used in future QSAR modelling ap-
plications). Although autoencoders mildly outperformed all other techniques in Figure 11b,
this is deemed as having been due to the use of results arising from 300-dimensional data,
which (as per Figures 6a and 8) represents a particular point where autoencoders transiently
outperformed other techniques; 300 dimensions was merely chosen as an arbitrary control,
where some extent of valid further analysis over the XLogP/MW chemical space, as used
for defining the AD, would be possible.
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The trends of Figure 11 were further explored, by directly analysing performances
over different discretised regions of the XLogP/MW chemical space:

This further exploration of QSAR model performance, over all chemical space, un-
covered compatible trends with those of Figure 11 (Figure 12). For all dimensionality
reduction techniques, a certain region, within the densely populated region the median
point, underperformed compared to similarly close and dense regions (Figure 12a–g). This
region occurred directly to the left of the median point and appears to be responsible for
the universal dips in performance observed in Figure 11b. In terms of differences in per-
formances over different regions, between different dimensionality reduction techniques,
distinct differences were found that were supportive of Figure 11a. Isomap in particu-
lar was found to have performed more uniformly than other techniques, albeit in most
cases at a lower overall accuracy, however this held advantages over certain regions of
chemical space (mostly to the right of the median point) that were problematic or of mixed
performance, for other techniques. Although the idea that each technique could offer a
unique insight into toxicological space was demonstrated to a certain extent, many wider
trends concerning problematic regions were found to be universal. Further investigation
revealed an overall balance in superiority of linear and non-linear techniques, over the
studied discretised regions of the chemical space (Figure 12h).

Figure 12. Cont.
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Figure 12. Heat maps of chemical space region-specific overall QSAR model performance at
300 dimensions, over all iterations, for: (a) PCA; (b) kPCA (sigmoid function); (c) kPCA (RBF);
(d) ICA; (e) Autoencoders; (f) LLE; (g) Isomap; A further plot (h) displays whether linear (red with
no lines) or non-linear (blue with diagonal lines) techniques or both equally (purple with dotted
pattern) performed most optimally, for the given regions; Note that in all cases, chemical space was
discretised into 30 equal bins of MW, along with 30 equal bins of XLogP, with empty bins of no data
coloured grey.

4. Conclusions

Our extensive results and analyses presented in this study concluded that the original
hypothesis was largely affirmed; although higher dimensional toxicological space may
contain complex relationships that require conservation via dimensionality reduction, the
statistical argument of Cover’s theorem appears to hold for this application [12]. The
11,268-dimensional training data, containing N ≤ 11,268 datapoints, behaved as at least
approximately linearly separable, as it was sufficiently navigated via linear dimensionality
reduction techniques such as PCA and ICA, while non-linear techniques failed to outper-
form in any significant way (although this may not necessarily hold for datasets of other
endpoints or even for other mutagenicity datasets). The hypothesis however was further
affirmed in its prediction that certain non-linear techniques would demonstrate comparably
optimal performance to linear techniques, while naturally holding the advantage of being
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capable of wider applicability to non-linearly separable datasets; this was indeed the case
for kPCA, autoencoders and (to a somewhat lesser extent) LLE. Although kPCA frequently
outperformed autoencoders in terms of final QSAR model performance, autoencoders
displayed some indication of potential to outperform for higher reduced dimensionalities,
while also carrying the advantage of not being limited through a pre-specified kernel
function that kPCA requires a priori [19].

The grid search for hyperparameter optimisation was of mixed success, especially
performing poorly for isomap, while none of the optimised dimensionality reduction
techniques were able to consistently or significantly outperform PCA or kPCA (of which
both did not undergo any optimisation process). The arbitrary assumptions used for
performing the grid search, over limited sets of hyperparameters, as well as limited search
spaces and resolutions, were identified as key weaknesses to be addressed in future studies,
although the grid search used in this study may be regarded as having successfully enabled
some extent of fair and valid comparison of advanced dimensionality reduction techniques,
despite its key limitations.

The vast majority of molecules tested occurred within the defined AD, although
further analysis cast mixed certainty over the suitability of the possibly oversimplistic AD
definition used. The XLogP/MW chemical space used to define the AD in this study did
however demonstrate relevance in characterising and further investigating the performance
of the QSAR models over chemical space, despite using physicochemical descriptors which
were considerably different from the SMILES-based descriptors originally used to build
the feature space of the QSAR models. From this, it was found that particular regions of
the chemical space were significantly more problematic for the QSAR models than others,
despite in one case being a data-dense region with an approximately equal statistical
distribution of both classes; this particular region significantly contributed to lowering the
most optimal QSAR model overall accuracy scores from within range of ~80% to within
range of ~70%. It was also further uncovered that, despite underperforming in terms of
the majority of summary graphs and metrics, isomap outperformed over certain regions of
chemical space that other techniques were negatively impacted by; indeed each technique
carried a unique insight into navigating toxicological space, although the exponential
distribution of the dataset in chemical space meant that higher performance over the
most central and densely populated regions carried the largest weight for determining
overall performance.

Future expansions to this study could entail a wider use of other advanced dimension-
ality reduction techniques, as well as different (and perhaps more balanced) datasets for
other toxicological endpoints for comparison, especially with application to datasets which
do not satisfy the N ≤ D + 1 condition of Cover’s theorem [12]. Other hyperparameter
optimisation methods may also be explored and utilised, such as random searches and
Bayesian optimisation (or perhaps even separate DNN models for predicting optimal hyper-
parameter values) [26]. The AD could in future be defined through a more advanced means,
such as density-based methods [27], while also deeper investigations into the properties of
problematic regions of chemical space (as well as adjustment of QSAR models to detect
and navigate such spaces) could offer further innovation for this field.
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Appendix A

Figure A1. Bar chart of frequencies of the top 50 most abundant ToxPrint chemotypes, for the curated
11,268 molecules used in the study, using the ToxPrint ChemoTyper software tool [28].
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Figure A2. Histograms characterising the distribution of the 11,268 curated molecules in terms
of: (a) Number of atoms (excluding H atoms); (b) Molecular weight (g/mol), according to Pub-
Chem [13]; Note that in both cases, 50 bins were used.

Appendix B

Figure A3. Comparative performance metrics graphs for all optimised dimensionality reduction
techniques, over ascending dimensionalities, for molecules outside of the defined AD, in terms of:
(a) Sensitivity (b) Specificity; (c) PPV (positive predictive value); (d) NPV (negative predictive value).



Toxics 2023, 11, 572 23 of 24

Appendix C

Figure A4. Alternatively coloured version of Figure 9, for the perusal of colourblind readers; Visuali-
sations of the distributions in chemical space of; (a) Molecules in the dataset that were mutagenic
versus non-mutagenic; (b) Molecules in the dataset that were mainly predicted as mutagenic ver-
sus mainly predicted as non-mutagenic (according to the autoencoder powered QSAR model at
300 dimensions, across all iterations); Note that in all cases, median position of the entire dataset is
marked, for reference.
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