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Abstract: The leaves of plants can be recommended as a cheap and sustainable environmental
protection tool to mitigate PAHs with high toxicity in the ambient environment because they can
serve as a reactor to remove ambient PAHs. Although previous studies have demonstrated that
PAHs exhibit toxicological features, our knowledge about how ambient PAHs influence the leaves
of plants is limited regarding the leaves of plants reducing ambient PAHs as a reactor. In this study,
1-year-old Rosa chinensis Jacq. with good growth potential was selected as a model plant. The leaves
of Rosa chinensis Jacq. were exposed to 16 types of PAHs in the environmental concentration exposure
group (0.1 µg L−1) and high-concentration exposure group (5 µg L−1) for seven days. In comparison,
the leaves of Rosa chinensis Jacq. were exposed to de-ionized water and were chosen as the control
group. During the exposure periods, the physiological parameters of leaves including, chlorophyll
value, water content, temperature and nitrogen, were monitored using a chlorophyll meter. After
7 days of exposure, the leaves in the control and exposure groups were collected and used for whole-
transcriptome analysis. Our results demonstrate that significant differentially expressed genes were
observed in the leaves of Rosa chinensis Jacq. exposed to individual PAHs at 5 µg L−1 compared to the
control group. These differentially expressed genes were involved in seven main pathways using
bioinformatic analyses. In contrast, the levels of PAHs at environmentally relevant concentrations had
negligible impacts on the physiological parameters and the gene transcription levels of the leaves of
Rosa chinensis Jacq. Our results may provide direct evidence to remove ambient PAHs using terrestrial
trees without considering the risk of PAHs at environmentally relevant concentrations on the leaves
of terrestrial plants.

Keywords: PAHs; whole-transcriptome analysis; exposure; gene transcription levels

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are recognized as teratogenic, carcinogenic
and mutagenic traits by the World Health Organization (WHO) [1,2]. PAHs originate from
the incomplete combustion of fossil fuel and hydrogen-containing substances, including
wood, crop straw, tobacco, etc. Most PAHs are emitted from mobile sources, biomass
burning and coal combustion [3–5]. The emissions of PAHs in China account for ~20% of
the total PAH emissions globally [6]. In North China, mean levels of particulate BaP (a
representative PAH) vary from 1.1 to 14.3 ng m−3 annually, which is higher than the recom-
mended threshold value of 1.0 ng m−3 by the WHO [7,8]. The high BaP concentration in
particle matter could pose a health risk to public health and exhibit ecological toxicological
effects on the ecosystem [9,10]. It is estimated that the inhalation of particulate BaP ranging
from 1.1 to 14.3 ng m−3 could lead to an incremental lifetime cancer risk (ILCR) as high as
3.1 × 10−5, greater than the recommended safe level (10−6) [8].
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The ecological remediation strategy is recommended as a cheap and sustainable
environmental protection tool for mitigating PAHs with high toxicity in the ambient
environment [11–13]. Trees could serve as filters for PAHs, and the leaves of plants could
be treated as a reactor to remove ambient PAHs [14–16]. A previous study indicated
that trees can remove approximately 710,000 tons of air pollutants, including NO2, SO2
and air pollutants, in particulate matter in 55 cities in the United States [17–19]. It is
estimated that plant leaves can absorb 1.71 ± 0.05 g m−2 of air pollutants in particulate
matter per week, from 1960 to 2016 based on 150 field studies across 15 countries [20,21].
Klingberg et al. [12] studied the PAH accumulation in Quercus palustris and Pinus nigra in the
urban landscape of Gothenburg, Sweden. They found a strong association between gaseous
PAH concentrations in leaves and the air. The concentrations of PAH were observed to be
higher in 3-year-old black pine needles relative to those in 1-year-old black pine needles.
In oak leaves, a significant decrease in the concentration of low-molecular-mass PAHs
was found between June and September. In contrast, there was a significant increase
in high-molecular-mass PAHs from June to September. Once PAHs are released into
the atmosphere, they can reach out to the surfaces of leaves in the form of gas and in a
particulate state [22]. The waxes of leaves are considered to be essential substances for
ambient PAH enrichment [23,24]. Yang et al. [22] demonstrated the relationship between
foliage uptake and the inner-leaf translocation of PAHs by Cinnamomum camphora. They
found a negative correlation between the wax contents and the total concentration of
16 PAHs. The transportation of PAHs from foliar dust to cuticular wax was the primary
pathway of leaf accumulation. The values of the translocation factor for PAHs from foliar
dust to cuticular wax were observed to be highly dependent on an increasing tendency of
low-molecular-weight PAHs and a decreasing tendency of high-molecular-weight PAHs.
Tian et al. [24] assessed the differences in the uptake and accumulation of PAHs by leaves
across eight plants in Shanghai, China. They showed the differences in the ability to uptake
and absorb PAHs across eight plants due to variations in the morphology and physiological
characteristics of leaves. The retention of low-molecular-weight PAHs in eight plant leaves
was associated with leaf morphology and physiological characteristics, including surface
roughness, stomatal density, polar components, etc. For medium- and high-molecular-
weight PAHs, wax content and adsorption were found to be the dominant factors in the
accumulation ability of eight plants.

Most PAHs can enter plant leaves through the stomata [23]. Lipid components in
the waxes of leaves can interact with ambient PAHs through adsorption [25]. Then, the
absorbed PAHs can penetrate the surfaces of leaves through the stomata and migrate to
the internal tissues of the leaves [23]. Prigioniero et al. [25] used optical microscopy and
infrared spectroscopy to explore the relationships between the uptake rates of PAHs and
leaf surface functional traits in four Mediterranean evergreen trees, including Chamaerops
humilis, Citrus × aurantium, Magnolia grandiflora and Quercus ilex during adry month. They
suggested that cutin in the dewaxed leaves of evergreen trees is the main contributor to the
uptake of PAHs.

Prior studies have documented the mitigation effects of PAHs by trees and the pro-
cesses of PAHs from the ambient environment to the internal tissues of leaves [26–28]. De
Nicola et al. [27] compared the ability to capture PAHs from ambient air between evergreen
(P. pinaster) and deciduous trees (Q. robur). The results of the findings indicated that the
uptake of PAHs increases with the diameter at the breast height of trees. The evergreen
tree (P. pinaster) enhanced the ability to capture higher amounts of low- and medium-
molecular-weight PAHs compared to that of the deciduous tree (Q. robur). Anna et al. [28]
linked the ability to remove PAHs and the canopy water storage capacity of coniferous
trees. They measured 18 types of PAHs in the needles of three coniferous trees, including
Pinus sylvestris L., Picea abies (L.) H. Karst and Abies alba mill. Samples were collected in
three locations in Czarna Rózga Forest Reserve, Poland. They found that increases in the
canopy water storage capacity were associated with the total content of hydrophobic PAHs
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in needles within the same species. This study demonstrated that the canopy water storage
capacity is an essential parameter for capturing hydrophobic PAHs.

However, limited studies have illustrated the toxicological effects of PAHs on plant
leaves during the migrating processes from the ambient environment to the internal tis-
sues [21]. Thus, this study aims to investigate the responses of plant leaves under exposure
to PAHs at an environmentally relevant level and higher level withwhole-transcriptome
analysis. This study could accumulate evidence on the physiological and pathological
responses of plants under exposure to ambient PAHs.

2. Experimental Section
2.1. Exposure Experiments

In this experiment, 1-year-old Rosa chinensis Jacq. with good growth potential and
no diseases were selected. Each individual of Rosa chinensis Jacq. was planted in a 15 cm-
diameter flowerpot with a height of 15 cm. The cultivation environment had a photoperiod
of 12/12 h (light/darkness). The exposure experiments included three groups, which
were the control group, the low-concentration exposure group and the high-concentration
exposure group. The exposure chemical reagents were a mixture of 16 polycyclic aromatic
hydrocarbons [13]. The 16 types of PAHs were naphthalene, anthracene, acenaphthene,
fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo (a) anthracene, benzo
(b) fluoranthene, benzo (k) fluoranthene, picene, indeno (1, 2, 3-cd) pyrene, benzo (g,
h, i)perylene, dibenzo (a, i)pyrene and dibenzo (a, h)pyrene. We used the mixtures of
16 PAHs as the exposure chemicals because these 16 types of PAHs are frequently detected
in the ambient environment [2,14–16]. The choice of the mixtures of PAHs rather than
individual PAHs with high toxicity in the exposure experiment was in accord with the real
environmental conditions [11–13]. An amount of 200 µg mL−1 of PAH mixture dissolved
in a methanol solution was selected as the standard solution. The levels of the low-
concentration exposure group and high-concentration exposure group were set to be 0.1
and 5 µg L−1 for individual PAHs, respectively. The level of 5 µg L−1 for individual
PAHs was prepared using 100 µL of PAHs at 200 µg mL−1 and 4000 mL of de-ionized
water. Then, the level of 0.1 µg L−1 for individual PAHs was prepared using 1 mL of
PAHs at 5 µg mL−1 and 50 mL of de-ionized water. Thus, due to methanol being used
as the solvent in the standard solution, it was estimated that the levels of methanol were
25 µL L−1 in the low-concentration exposure group and 0.5 µL L−1 in the high-concentration
exposure group. The production of methanol in leaves occurred with leaf development
and expansion [29]. It was found that the methanol emission of leaves ranged from 10.0 to
26.8 µg g−1 [29]. Because methanol existed in the leaves, it was expected that trace amounts
of methanol existed in the exposure solution, ranging from 0.5 to 25 µL L−1, which have
negligible effects on the physiological conditions of the leaves. Each group included four
replicates.

Before the exposure experiment, the leaves of Rosa chinensis Jacq. were washed with
de-ionized water three times. Then, in the low-concentration exposure group, the levels of
individual PAHs at 0.1 µg L−1 were sprayed on the leaves of Rosa chinensis Jacq. once a day,
and in the high-concentration exposure group, 5 µg L−1 of individual PAHs was sprayed on
the leaves once per day. The control group was carried out with the same procedure using
de-ionized water on four replicated healthy leaves with similar ages and leaf areas [30].
During the experiment, the levels of chlorophyll, leaf water content and nitrogen in the
leaves were measured using a chlorophyll meter (YT-YC, YunTang Technology, Shandong,
China) simultaneously every day [31,32]. For each measurement, four leaf replicates in each
group were measured. The mean levels of chlorophyll, leaf water content, and nitrogen
in the leaves were treated as the daily mean concentrations.Prior studies have shown that
the overall degradation half-lives of PAHs on leaves varies from approximately 0.6 to 7
days at room temperature [33]. It is expected that the trace levels of PAHs are decomposed
due to the photo- and biodegradation effect within one week. To conduct the exposure
experiment in real environmental conditions, the entire exposure experiment was preceded
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by 7 days at a temperature ranging from 18 to 20 ◦C and humidity ranging from 40 to 50%.
After the exposure experiment, 5 g of leaves of each sample from the low-concentration
exposure group and high-concentration exposure group was collected and stored at−80 ◦C
for transcriptomic sequencing analysis.

2.2. Transcriptome Sequencing

RNA quantification and the qualification of RNA integrity in leaves were assessed
using the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technolo-
gies, Santa Clara, CA, USA) [34]. Total RNA was used as input material for the RNA
sample preparations. Briefly, mRNA was purified from total RNA using poly-T oligo-
attached magnetic beads. Fragmentation was carried out using divalent cations under an
elevated temperature in First-Strand Synthesis Reaction Buffer (5X). First-strand cDNA
was synthesized using a random hexamer primer and M-MuLV Reverse Transcriptase
(RNase H-). Second-strand cDNA synthesis was subsequently performed using DNA
Polymerase I and RNase H. Remaining overhangs were converted into blunt ends via
exonuclease/polymerase activities. After the adenylation of the 3′ends of DNA fragments,
adaptors with hairpin loop structures were ligated to prepare for hybridization. To select
cDNA fragments that were preferentially 370~420 bp in length, the library fragments were
purified with the AMPure XP system (Beckman Coulter, Beverly, MA, USA). Then, PCR was
performed with Phusion High-Fidelity DNA polymerase, universal PCR primers and index
(X) primer. Last, PCR products were purified (AMPure XP system), and library quality
was assessed on the Agilent Bioanalyzer 2100 system. The clustering of the index-coded
samples was performed on a cBot Cluster Generation System using TruSeq PE Cluster Kit
v3-cBot-HS (Illumia, San Diego, CA, USA) according to the manufacturer’s instructions.
After cluster generation, the library preparations were sequenced on an Illumina Novaseq
platform, and 150 bp paired-end reads were generated.

2.3. Bioinformatic Analyses

Raw data (raw reads) in the fastq format were firstly processed through fastp software.
In this step, clean data (clean reads) were obtained by removing reads containing adapters,
reads containing 1 ploy-N and low-quality reads from raw data. Moreover, the Q20, Q30
and GC content of the clean data were calculated. All the downstream analyses were based
on clean data with high quality.

The reference genome and gene model annotation files were downloaded from the
genome website directly. The index of the reference genome was built using Hisat2 v2.0.5,
and paired-end clean reads were aligned to the reference genome using Hisat2 v2.0.5.
We selected Hisat2 as the mapping tool because Hisat2 can generate a database of splice
junctions based on the gene model annotation file and thus a better mapping result than
those of other non-splice mapping tools.

The mapped reads of each sample were assembled via StringTie using a reference-
based approach [34,35]. StringTie uses a novel network flow algorithm as well as an
optional de novo assembly step to assemble and quantify full-length transcripts represent-
ing multiple splice variants for each gene locus.

Counts v1.5.0-p3 was used to count the read numbers mapped to each gene. Then,
the FPKM of each gene was calculated based on the length of the gene and the read count
mapped to each gene. The FPKM, the expected number of Fragments Per Kilobase of
transcript sequence per million base pairs sequenced, considers the effect of the sequencing
depth and gene length for the read count at the same time and is currently the most
commonly used method for estimating gene expression levels.
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The differential expression analysis of two conditions/groups (two biological repli-
cates per condition) was performed using the DESeq2 R package. DESeq2 provides statisti-
cal routines for determining differential expression in digital gene expression data using a
model based on the negative binomial distribution. The resulting p-values were adjusted
using Benjamini and Hochberg’s approach for controlling the false discovery rate. Genes
with an adjusted p-value≤ 0.05 found via DESeq2 were assigned as differentially expressed.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database resource used
for understanding the high-level functions and utilities of the biological system, such as
the cell, the organism and the ecosystem, from molecular-level information, especially
large-scale molecular datasets generated by genome sequencing and other high-throughput
experimental technologies (http://www.genome.jp/kegg/) (accessed on 25 December
2022) [36]. We used the cluster Profiler R package to test the statistical enrichment of
differentially expressed genes in KEGG pathways.

2.4. Statistical Analysis

The summary statistics for data on the levels of chlorophyll, leaf water content and
nitrogen in the leaves are shown as the mean and standard deviation for each day using the
results from the four independent experiments. The Wilcoxon rank-sum test was used to
determine the mean differences in levels across different groups because the dataset has a
non-normal distribution based on the assessment of the Shapiro–Wilk test.We performed a
post hoctest using the Bonferroni methodology to adjust p-values for pairwise comparisons.
Significant differences were considered at an adjusted p-value of <0.05. All statistical
analyses were carried out using SPSS V26.0.

3. Results and Discussion
3.1. Variations in the Physiological Parameters of Leaves

Figure 1 presents the variations in the chlorophyll value, water content and nitrogen
in the leaves in three groups during the experiment. For the control and exposure groups,
the mean levels of chlorophyll, water content and nitrogen showed a similar variation
trend, which decreased in the first two days and gradually increased on the third and
fourth days due to watering. Then, the mean levels of chlorophyll, water content and
nitrogen lowered steadily to the normal levels in the leaves. This finding indicates that
humidity had an essential role in promoting the levels of chlorophyll and nitrogen in the
leaves [37]. Watering on the leaves had a one-day delay effect on the variations in the levels
of chlorophyll and nitrogen in the leaves. There were no significant differences in the levels
of chlorophyll, water content and nitrogen across the low-concentration exposure group,
high-concentration exposure group and control group. It is worth noting that the mean
levels of chlorophyll in the low-exposure group were observed to be slightly higher than
those in the control group, which may be attributable to the hormesis effects from PAHs [38].
In comparison, the mean levels of chlorophyll were mildly lower than those of the control
group, which may be ascribed to the inhibition effects of high levels of PAHs [38].

3.2. Transcriptome Statistics

After the original data filtering, sequencing error check and the GC content distribution
check, the clean reads were obtained for a follow-up subsequent analysis, and the data are
summarized in the table below. As shown in Table 1, the levels of clean reads varied from
38.5 to 46.8 Gb, whichwere obtained from the sequencing library, with Q30 values in the
range of 91.0–93.2% [39].

http://www.genome.jp/kegg/
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Table 1. Summary of sample sequencing data quality.

Sample Library Raw
Reads

Raw
Bases

Clean
Reads

Clean
Bases

Error
Rate Q20 Q30 GCpct

C1 FRAS220304683-1r 45249234 6.79 G 44431476 6.66 G 0.03 97.42 92.76 45.9
C2 FRAS220304686-1r 47878640 7.18 G 46845610 7.03 G 0.03 97.36 92.7 48.22
C3 FRAS220304684-1r 44127062 6.62 G 42798502 6.42 G 0.03 97.03 91.98 48.1
C4 FRAS220304680-1r 40273130 6.04 G 39445930 5.92 G 0.03 97.49 92.9 45.73
L1 FRAS220304681-1r 42791504 6.42 G 42058236 6.31 G 0.03 97.54 93.02 45.14
L2 FRAS220304682-1r 46399720 6.96 G 45127820 6.77 G 0.03 97.33 92.69 47.96
L3 FRAS220304685-1r 45209526 6.78 G 43244788 6.49 G 0.03 97.03 92.12 48.26
L4 FRAS220304687-1r 45394486 6.81 G 44053436 6.61 G 0.03 97.4 92.76 47.11
H1 FRAS220304677-1r 46123300 6.92 G 44909222 6.74 G 0.03 97.18 92.4 48.88
H2 FRAS220304679-1r 39183628 5.88 G 38560642 5.78 G 0.03 97.44 92.72 45.4
H3 FRAS220304676-1r 42299468 6.34 G 41356972 6.2 G 0.03 97.28 92.45 45.95
H4 FRAS220304678-1r 39450472 5.92 G 38546398 5.78 G 0.03 96.65 91.03 45.57

Raw reads: Number of reads in the original data. Raw bases: Number of bases of the raw data (raw base = raw
reads × 150 bp). Clean reads: Number of reads filtered from raw data. Clean bases: Number of bases filtered from
the raw data (clean base = clean reads × 150 bp). Error rate: Overall data sequencing error rate. Q20: Percentage
of bases with a Phred value greater than 20 in the total. Q30: Percentage of bases with a Phred value greater than
30 in the total. GCpct: Percentages of G and C in the four bases in clean reads.

3.3. Differentially Expressed Genes

We used the concentrations of individual PAHs at 5 µg L−1 to investigate the responses
of leaves under exposure to PAHs at a high concentration. As shown in Figure 2A, signifi-
cant differences in expressed genes were observed after 7 days of exposure between the
high-concentration exposure group and the control group. The numbers of upregulated
and downregulated genes of the high-concentration exposure group relative to the control
group were 1150 and 5502, respectively. It is noteworthy that the concentrations of individ-
ual PAHs in the exposure group were much higher than the levels of individual PAHs at
the environmentally relevant concentration in this study [23,24].
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After exposure to individual PAHs at 0.1 µg L−1 for seven days, differences in ex-
pressed genes between the low-concentration exposure group and the control group were
found to be insignificant. The numbers of upregulated and downregulated genes were
112 and 195, respectively. Although several studies have reported that exposure to PAHs
could lead to changes in the physiological and biochemical processes of leaves, our results
indicate that the changes in the expression of genes in leaves resulting from exposure to
individual PAHs at environmentally relevant concentrations were insignificant.

3.4. KEGG Enrichment Analysis

Subsequently, we performed KEGG enrichment analysis to showwhich genes or path-
ways that the differentially expressed gene cluster was in. KEGGis a comprehensive
database that integrates genome, chemistry and system function information [34]. A padj
of less than 0.05 was used as the threshold for significant enrichment.For the comparison
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between the high-concentration exposure and the control group, significant differentially
expressed genes were assigned into seven main pathways, which included flavone and
flavonol biosynthesis, glyoxylate and dicarboxylate metabolism, RNA polymerase, ribo-
some biogenesis in eukaryotes, porphyrin metabolism, photosynthesis-antenna proteins
and photosynthesis (Figure 3). The photosynthesis pathway includes 24 downregulated
genes, and the photosynthesis-antenna proteins pathway has 15 downregulated genes.
Moreover, the porphyrin metabolismpathway has 1 upregulated and 25 downregulated
genes. Ribosome biogenesis in the eukaryotespathway has 2 upregulated and 43 down-
regulated genes. The RNA polymerasepathway has 3 upregulated and 26 downregulated
genes. The glyoxylate and dicarboxylate metabolismpathway has 4 upregulated and 27
downregulated genes.
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In contrast, there were no significant differentially expressed genes in the KEGG en-
richment analysis between the low-concentration exposure group and the control group
(Figure 4). In general, the gene transcription levels obtained from the KEGG enrichment
analysis exhibited a similar pattern and degree of alterations in comparison to the physio-
logical results, thereby demonstrating that the responses of leaves to exposure to PAHs at
environmentally relevant concentrations were negligible.
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In this study, the mixtures of 16 PAHs at environmental levels, not individual PAHs
with high toxicity, were used to investigate the toxicological effects on the gene transcrip-
tion levels of the leaves of Rosa chinensis Jacq. because these 16 types of PAHs have been
frequently detected in the ambient environment [2,11–16]. Because individual PAHs with
low toxicity could not influence the toxicity of other PAH species [1,7], the findings of
this study could reflect the physiological conditions of leaves under exposure to PAHs at
environmental levels in real situations. Future studies may focus on the physiological con-
ditions of leaves under exposure to individual PAHs at environmental levels, which could
aid in understanding the metabolism mechanism of leaves under exposure to individual
PAHs with different toxicity.

4. Conclusions

In this study, we measured the physiological parameters and gene transcription levels
of the leaves of Rosa chinensis Jacq. exposedtoPAHsin the environmental concentration
exposure group (0.1 µg L−1) and high-concentration exposure group (5 µg L−1). After
exposure toPAHs at 5 µg L−1, significant differences in the gene transcription levels of the
leaves of Rosa chinensis Jacq. were observed relative to the control group. These significant
differentially expressed genes pertain to seven main pathways, which are flavone and
flavonol biosynthesis, glyoxylate and dicarboxylate metabolism, RNA polymerase, ribo-
some biogenesis in eukaryotes, porphyrin metabolism, photosynthesis-antenna proteins
and photosynthesis. On the contrary, environmentally relevantconcentrations of PAHs
had no significant effect on the physiological parameters and gene transcription levels
of the leaves of Rosa chinensis Jacq. during the 7-day exposure period in this study. Our
results illustrate that exposure to ambient PAHs may havea negligible impact on the leaves
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of terrestrial plants at gene transcription levels. The findings of our study highlight the
important roles of terrestrial plants in regulating ambient PAHs.
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