Metal Levels in Delaware Bay Horseshoe Crab Eggs from the Surface Reflect Metals in Egg Clutches Laid beneath the Sand
Abstract
:1. Introduction
2. Material and Methods
2.1. Field Collection
2.2. Metals Analysis
3. Results
3.1. Metals in Horseshoe Crab Eggs from Delaware Bay
3.2. Comparison of Metals in Eggs from the Surface and Clutches
3.3. Locational Comparisons
3.4. Correlations among Metals in Egg Clutches
4. Discussion
4.1. Contaminants in Surface Eggs versus Those in Egg Clutches
4.2. Locational Differences
4.3. Temporal Differences in Metal Levels
- (1)
- As (measured only since 1999) was less than 3000 ppb, then increased in the 4000 ppb to 6000 ppb range until 2012, and in 2019 it was 5247 ppb.
- (2)
- Cd usually averaged below 10 ppb and has remained low in most years.
- (3)
- Cr was quite high in the early 1990s (averaged about 5000 ppb), but declined to about 2050 ppb in 1995, and stayed below an average of 100 ppb since the late 1990s.
- (4)
- Pb averaged nearly 550 ppb in 1994, declined to just over 200 ppb in the next year, and has remained low.
- (5)
- Hg was variable in the 1990s (average of 22 ppb to 300 ppb) and decreased to below 20 ppb thereafter.
- (6)
- Se was 2000–4000 ppb in the mid-1990s, then went down to around 1000 ppb in the late 1990s to 2012 in some sites on the Bay. It was 1726 ppb in 2019.
4.4. Correlations among Clutches
4.5. Potential Effects of Contaminants in Horseshoe Eggs
4.5.1. Effects on Horseshoe Crabs
4.5.2. Effects on Shorebirds
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolbert, E. The Sixth Extinction: An Unnatural History; Henry Holt & Co.: New York, NY, USA, 2014. [Google Scholar]
- Leakey, R.; Lewin, R. The Sixth Extinction: Biodiversity and Its Survival; Weidenfield & Nicholson: London, UK, 1996. [Google Scholar]
- Wilson, E.O. Biodiversity; National Academy of Press: Washington, DC, USA, 1988; p. 521. [Google Scholar]
- Kennish, M.J.; Paerl, H.W. Coastal lagoons: Critical habitats of environmental change. In Climate Change Effects; CRC Press: New York, NY, USA, 2009. [Google Scholar]
- Correll, M.D.; Wiest, W.A.; Hodgman, T.P.; Shriver, W.G.; Elphick, C.S.; McGill, B.J.; O’Brien, M.K.; Olsen, B.J. Predictors of specialist avifaunal decline in coastal marshes. Conserv. Biol. 2016, 31, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Galbraith, H.; DesRochers, D.W.; Brown, S.; Reed, J.M. Predicting vulnerabilities of North American shorebirds to climate change. PLoS ONE 2014, 9, e108899. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.; Gochfeld, M. Habitat, Population Dynamics, and Metal Levels in Colonial Waterbirds: A Food Chain Approach; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- DeVault, T.L.; Rhodes, O.E., Jr.; Shivik, J.A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 2003, 102, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Montevecchi, W.A. Binary dietary responses of Northern Gannets (Sula bassana) indicate changing food web and oceanographic conditions. Mar. Ecol. Press Ser. 2008, 352, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Carranza, M.M.; Sepulveda-Lozada, A.; Dias-Rerreira, C.; Geissen, V. Distribution and bioconcentration of heavy metals in a tropical aquatic food web: A case study of a tropical estuarine lagoon in SE Mexico. Environ. Pollut. 2016, 210, 155–165. [Google Scholar] [CrossRef]
- Rolfhus, K.R.; Hall, B.D.; Monson, B.A.; Paterson, M.J.; Jeremiason, J.D. Assessment of mercury bioaccumulation within the pelagic food web of lakes in the western Great Lakes region. Ecotoxicology 2011, 20, 1520–1529. [Google Scholar] [CrossRef] [PubMed]
- McDonald-Madden, E.; Sabbadin, R.; Game, E.T.; Baxter, P.W.J.; Chades, I.; Possingham, H.P. Using food-web theory to conserve ecosystems. Nat. Commun. 2016, 7, 10245. [Google Scholar] [CrossRef] [Green Version]
- Fairbrother, A. Federal environmental legislation in the US for protection of wildlife and regulation of environmental contaminants. Ecotoxicology 2009, 18, 784–790. [Google Scholar] [CrossRef]
- Burger, J.; Gochfeld, M. Effects of chemicals and pollution on seabirds. In Biology of Marine Birds; Schreiber, B.A., Ed.; CRC Press: Boca Raton, FL, USA, 2001; pp. 485–576. [Google Scholar]
- Braune, B.M.; Gaston, A.J.; Hobson, K.A.; Gilchrist, H.G.; Mallory, M.L. Changes in trophic position affect rates of contaminant decline in two seabird colonies in the Canadian Arctic. Ecotoxicol. Environ. Saf. 2015, 115, 7–13. [Google Scholar] [CrossRef]
- Lange, T.R.; Royals, H.E.; Connor, L.L. Mercury accumulation in largemouth bass (Micropterus salmoides) in a Florida Lake. Arch. Environ. Contam. Toxicol. 1994, 27, 466–499. [Google Scholar] [CrossRef]
- Bidone, E.D.; Castilhos, Z.C.; Santos, T.J.S.; Souza, T.M.C.; Lacerda, L.D. Fish contamination and human exposure to mercury in Tartarugalzinho River, Northern Amazon, Brazil: A screening approach. Water Air Soil Pollut. 1997, 97, 9–15. [Google Scholar] [CrossRef]
- Burger, J.; Tsipoura, N.; Niles, L.; Dey, A.; Jeitner, C.; Gochfeld, M. Heavy metals in biota in Delaware Bay, NJ: Developing a food web approach in contaminants. Toxics 2019, 7, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nygard, T.; Lie, E.; Roy, N.; Steinnes, E. Metal dynamics in an Antarctic food chain. Mar. Pollut. Bull. 2001, 42, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, K.F.; Jackson, N.L.; Smith, D.R.; Weber, R.G. Transport of horseshoe crab eggs by waves and swash on an estuarine beach: Implications for foraging shorebirds. Estuar. Coast. Shelf Sci. 2006, 70, 438–444. [Google Scholar] [CrossRef]
- Smith, D.R. Effect of horseshoe crab spawning density on nest disturbance and exhumation of eggs: A simulation study. Estuar. Coasts 2007, 30, 287–295. [Google Scholar] [CrossRef]
- Smith, J.A.M.; Dey, A.; Williams, K.; Diehl, T.; Feigin, S.; Niles, L.J. Horseshoe crab egg availability for shorebirds in Delaware Bay: Dramatic reduction after unregulated horseshoe crab harvest and limited recovery after 20 years of management. Aquat. Conserv. Mar. Freshw. Ecosyst. 2022, 1, 1–13. [Google Scholar] [CrossRef]
- Tsipoura, N.; Burger, J. Shorebird diet during spring migration stop-over on Delaware Bay. Condor 1999, 101, 635–644. [Google Scholar] [CrossRef]
- Atlantic States Marine Fisheries Commission (ASMFC). Interstate Fishery Management Plan for Horseshoe Crab; ASMFC: Washington, DC, USA, 1998. [Google Scholar]
- Atlantic States Marine Fisheries Commission. A Framework for Adaptive Management of Horseshoe Crab Harvest in the Delaware Bay Constrained by Red Knot Conservation; ASMFC: Washington, DC, USA, 2009. [Google Scholar]
- McGowan, A. Horseshoe crab (Limulus polyphemus) movements following tagging in the Delaware inland bays, USA. Estuar. Coasts. 2018, 41, 2120–2127. [Google Scholar] [CrossRef]
- Botton, M.L.; Loveland, R.E. Updating the life history of the Atlantic horseshoe crab, Limulus polyphemus. Jersey Shorel. 2001, 20, 6–9. [Google Scholar]
- Shuster, C.N.; Botton, M.L. A contribution to the population biology of Horseshoe Crabs, Limulus polyphemus (L.) in Delaware Bay. Estuaries 1985, 81, 363–372. [Google Scholar] [CrossRef]
- Niles, L.; Sitters, H.; Dey, A.; Atkinson, P.; Baker, A.; Bennett, K.; Carmona, R.; Clark, K.; Clark, N.; Espoz, C.; et al. Status of the red knot (Calidris canutus rufa) in the Western Hemisphere. Stud. Avian Biol. 2008, 36, 1–185. [Google Scholar]
- Niles, L.J.; Bart, J.; Sitters, H.P.; Dey, A.D.; Clark, K.E.; Atkinson, P.W.; Baker, A.J.; Bennett, K.A.; Kalasz, K.S.; Clark, N.A. Effects of horseshoe crab harvest in Delaware Bay on Red knots: Are harvest restrictions working? BioScience 2009, 59, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.J.; Gonzalez, P.M.; Piersma, T.; Niles, L.J.; de Lima, I.; Nascimento, S.; Atkinson, P.W.; Collins, P.; Clark, N.A.; Minton, C.D.T.; et al. Rapid population decline in red knots: Fitness consequences of refuelling rates and late arrival in Delaware Bay. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2004, 271, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.J.; Gonzalex, P.; Morrison, R.I.G.; Harrington, B.A. Red knot (Calidris canutus). In The Birds of North America; Poole, A., Ed.; Online Cornell Lab of Ornithology: Ithaca, NY, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Mizrahi, D.; Peters, K. Relationship between sandpipers and horseshoe crabs in Delaware Bay: A synthesis. In Biology and Conservation of Horseshoe Crabs; Tanacredi, J.T., Botton, M.L., Smith, D.R., Eds.; Springer: New York, NY, USA, 2009; pp. 65–88. [Google Scholar]
- Brown, S.; Gratto-Trevor, C.; Porter, R.; Weiser, E.L.; Mizrahi, D.; Bentzen, R.; Boldenow, M.; Clay, R.; Freeman, S.; Giroux, M.A.; et al. Migratory connectivity of semipalmated sandpipers and implications for conservation. Condor 2017, 119, 207–224. [Google Scholar] [CrossRef] [Green Version]
- Novcic, I.; Mizrahi, D.S.; Veit, R.R.; Symondson, W.O. Molecular analysis of the value of horseshoe crab eggs to migrating shorebirds. Avian Biol. Res. 2015, 8, 210–220. [Google Scholar] [CrossRef]
- Gerwing, T.G.; Kim, J.H.; Hamilton, D.J.; Barbeau, M.A.; Addison, J.A. Diet reconstruction using next-generation sequencing increases the known ecosystem usage by a shorebird. Ornithology 2016, 133, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Duijns, S.; Niles, L.J.; Dey, A.; Aubry, Y.; Friis, C.; Koch, S.; Anderson, A.; Smith, P.A. Body condition explains migratory performance of a long-distance migrant. Proc. R. Soc. B 2017, 284, 20171374. [Google Scholar] [CrossRef] [Green Version]
- Morrison, R.I.G.; Hobson, K.A. Use of body stores in shorebirds after arrival in high Arctic breeding grounds. Auk 2004, 121, 333–344. [Google Scholar] [CrossRef]
- Burger, J.; Porter, R.R.; Niles, L.; Newstead, D.J. Timing and Duration of Stopovers Affects Propensity to Breed, Incubation Periods, and Nest Success of Different Wintering Cohorts of Red Knots in the Canadian Arctic during the Years 2009–2016; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Andres, B.A.; Smith, P.A.; Morrison, R.G.; Gratto-Trevor, C.L.; Brown, S.C.; Friis, C.A. Population estimates of North American shorebirds, 2012. Wader Study Group Bull. 2013, 119, 178–194. [Google Scholar]
- Studds, C.E.; Kendall, B.E.; Murray, J.B.; Wilson, H.B.; Rogers, D.E.; Clemens, R.S.; Gosbell, K.; Hassell, J.C.; Jessop, R.; Melville, D.S.; et al. Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat. Commun. 2017, 8, 14895. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.A.; Smith, A.C.; Andres, B.; Francis, C.M.; Harrington, B.; Friis, C.; Morrison, G.; Paquet, J.; Winn, B.; Brown, S. Accelerating declines of North American shorebirds signal the need for urgent conservation action. Ornithol. Appl. 2023, 125, duad003. [Google Scholar]
- Burger, J. Heavy metals in the eggs and muscle of horseshoe crabs (Limulus polyphemus) from Delaware Bay. Environ. Monit. Assess. 1997, 46, 279–287. [Google Scholar] [CrossRef]
- Burger, J.; Tsipoura, N. Metals in horseshoe crab eggs from Delaware Bay, USA: Temporal patterns from 1993 to 2012. Environ. Monit. Assess. 2014, 186, 6947–6958. [Google Scholar] [CrossRef]
- Burger, J.; Dixon, C.; Shukla, R.; Tsipoura, N.; Gochfeld, M. Metal levels in horseshoe crabs (Limulus polyphemus) from Maine to Florida. Environ. Res. 2002, 90, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.; Dixon, C.; Shukla, T.; Tsipoura, N.; Jensen, H.; Fitzgerald, M.; Ramos, R.; Gochfeld, M. Metals in horseshoe crabs from Delaware Bay. Arch. Environ. Contam. Toxicol. 2003, 44, 36–42. [Google Scholar] [CrossRef]
- Burger, J.; Tsipoura, N.; Gochfeld, M. Metal levels in blood of three species of shorebirds during stopover on Delaware Bay reflect level their food, Horseshoe Crab eggs. Toxics 2012, 5, 20. [Google Scholar] [CrossRef] [Green Version]
- Bakker, A.K.; Dutton, J.; Sclafani, M.; Santangelo, N. Accumulation of nonessential trace elements (Ag, As, Cd, Cr, Hg, and Pb) in Atlantic horseshoe crab (Limulus polyphemus) early life stages. Sci. Total Environ. 2017, S96, 69–78. [Google Scholar] [CrossRef]
- SAS. Statistical Analysis Systems (SAS); SAS Institute Inc.: Cary, NC, USA, 2020. [Google Scholar]
- McDonald, J.H. Fisher’s Exact Test of Independence. Handbook of Biological Statistics. 2022. Available online: https://www.biostathandbook.com/fishers.html#:~:text=Fisher%27s%20exact%20test%20is%20more,test%20for%20larger%20sample%20sizes (accessed on 11 May 2023).
- Tanacredi, J.T.; Botton, M.L.; Smith, D. (Eds.) Biology and Conservation of Horseshoe Crabs; Springer: New York, NY, USA, 2009. [Google Scholar]
- Jackson, N.; Saini, S.; Smith, D.; Nordstrom, K. Egg exhumation and transport on a foreshore under wave and swash processes. Estuaries Coasts 2020, 43, 286–297. [Google Scholar] [CrossRef]
- Tsipoura, N.; Burger, J.; Niles, L.; Day, A.; Gochfeld, M.; Peck, M.; Mizrahi, D. Metal levels in shorebird feathers and blood during migration through Delaware Bay. Arch. Environ. Contam. Toxicol. 2017, 72, 562–574. [Google Scholar] [CrossRef]
- Bakker, A.K.; Dutton, J.; Sclafani, M.; Santangelo, N. Environmental exposure of Atlantic Horseshoe Crab (Limulus polyphemus) early life stages to essential trace elements. Sci. Total Environ. 2016, 572, 804–821. [Google Scholar] [CrossRef]
- Bakker, A.; Dutton, J.; Sclafani, M.; Santangelo, N. Maternal transfer of trace elements in the Atlantic horseshoe crab (Limulus polyphemus). Ecotoxicology 2017, 26, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Moqsud, M.; Sato, K.; Hasan, M.; Yukio, N.; Omine, K. Seasonal variation of contaminated geo-environmental conditions of Yamaguchi Bay tidal flat Japan. Reg. Stud. Mar. Sci. 2017, 10, 27–31. [Google Scholar]
- Itow, T.; Loveland, R.E.; Botton, M.L. Developmental abnormalities in horseshoe crab embryos caused by exposure to heavy metals. Arch. Environ. Contam. Toxicol. 1998, 35, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Botton, M. Toxicity of cadmium and mercury to horseshoe crab (Limulus polyphemus) embryos and larvae. Bull. Environ. Contam. Toxicol. 2000, 64, 137–143. [Google Scholar] [CrossRef]
- Botton, M.L.; Johnson, K.; Helleby, L. Effects of copper and zinc on embryos and larvae of horseshoe crab (Limulus polyphemus). Arch. Environ. Contam. Toxicol. 1998, 35, 25–32. [Google Scholar]
- Itow, T.; Igaashi, T.; Botton, M.L.; Loveland, R.E. Heavy metal limb regeneration in horseshoe crab larvae. Arch. Environ. Contam. Toxicol. 1998, 35, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Ying, Z.; Xie, X.; Li, Y.; Bao, Y.; Ye, G.; Chen, X.; Zhang, W.; Gu, Y. A novel cadmium detoxification pathway in tri-spine horseshoe crab (Tachypleus tridentatus): A 430-million-years-ago organism. Ecotoxicol. Environ. Saf. 2023, 252, 114585. [Google Scholar]
- Ackerman, E.; Ambrogio, E.; Esher, D.; Rhoads, E.; Thomson, R.; Ubiet, L.; Uricheck, A. Contamination issues in the Delaware River basin: Present and future. In Ecology and Restoration of the Delaware River Basin; Majumdar, S.K., Miller, E.W., Sage, L.E., Eds.; PA Academy Sci: Easton, PA, USA, 1988; pp. 234–245. [Google Scholar]
- Sutton, C.C.; O’Herron, J.C.; Zappalorti, R.T. The Scientific Characterization of the Delaware Estuary; Delaware Estuary Program: Philadelphia, PA, USA, 1996. [Google Scholar]
- Amin, S.; Azid, A.; Khalit, S.; Azizan, N.; Aziz, S.; Yusoff, N. Lead (Pb) concentrations in horseshoe crab tissues after exposure. BioSci. Res. 2023, 19, 91–96. [Google Scholar]
- Arif, I.; Shang, Y.; Zhang, C.; Khan, F.; Tan, K.; Waiho, K.; Wang, Y.; Kwan, K.; Hu, M. Combined effects of nanoplastics and heavy metal on antioxidant parameters of juvenile tri-spine horseshoe crabs. Front. Mar. Sci. 2022, 9, 1005820. [Google Scholar] [CrossRef]
- Kwan, B.; Chan, A.; Cheung, S.; Shin, P. Responses of growth and hemolymph quality in juvenile Chinese horseshoe crab Tachypleus tridentatus (Xiphosura) to sublethal tributyltin and cadmium. Ecotoxicology 2015, 24, 1880–1895. [Google Scholar] [CrossRef]
- Kwan, B.K.Y.; Un, V.K.Y.; Cheung, S.G.; Shin, P.K.S. Horseshoe crab as potential sentinel species for coastal health: Juvenile haemolymph quality and relationship to habitat quality. Mar. Freshw. Res. 2018, 69, 894–905. [Google Scholar] [CrossRef]
- McGowan, C.P.; Hines, J.E.; Nichols, J.D.; Lyons, J.E.; Smith, D.R.; Kalasz, K.S.; Niles, L.M.; Dey, A.D.; Clark, N.A.; Atkinson, P.W.; et al. Demographic consequences of migratory stopover linking red knot survival to Horseshoe Crab spawning abundance. Ecosphere 2011, 2, 1–21. [Google Scholar] [CrossRef]
- Dey, A.D.; Niles, L.J.; Smith, J.A.M.; Siyters, H.P.; Morrison, G. Update to the Status for the Red Knots (Calidris canutus rufa) in the Western Hemisphere; NJ Department of Environmental Protection: Trenton, NJ, USA, 2020; 17p.
- Yuan, S.; Wang, Y.; Liu, R.; Zheng, W.; Chong, X. Behaviour and distribution of arsenic in seawater and suspended particulate matter in the adjacent area of the Changjiang Estuary during summer and autumn. Ecotoxicol. Environ. Saf. 2021, 227, 112884. [Google Scholar] [CrossRef] [PubMed]
Metal | Mean + Standard Error | Range (Minimum–Maximum) |
---|---|---|
As | 4529 ± 484.3 | 1400–18,000 |
Cd | 9 ± 2.1 | 0.07–64 |
Cr | 102.1 ± 11.1 | 21–390 |
Pb | 114.8 ± 19.2 | 7.9–570 |
Hg | 12.7 ± 1.0 | 0.1–44.8 |
Se | 1688 ± 169.7 | 410–4700 |
Metals | Clutches (Reeds) | Surface (Reeds) | X2 (p) |
---|---|---|---|
Sample size | 16 | 12 | |
As | 3375 ± 254 | 2058 ± 134 | 11.5 (0.0007) |
Cd | 6.9 ± 1.8 | 34.3 ± 8.1 | 11.4 (0.0007) |
Cr | 133 ± 21.8 | 111 ± 24.4 | 1.5 (NS) |
Pb | 136 ± 18.6 | 355 ± 148 | 0.86 (NS) |
Hg | 11.1 ± 1.5 | 10.3 ± 2 | 0.05 (NS) |
Se | 1667 ± 277.2 | 1837 ± 429 | 0.29 (NS) |
Metals | Villas | Reeds | Moore’s | Fortescue | X2 (p) |
---|---|---|---|---|---|
Sample | 6 | 16 | 10 | 6 | |
As | 11,117 ± 1962 | 3375 ± 254 | 5110 ± 614 | 4600 ± 1024 | 6.48 (0.09) |
Cd | 4.39 ± 3.3 | 6.9 ± 1.7 | 6.4 ± 3.2 | 1.1 ± 0.16 | 13.2 (0.004) |
Cr | 40.3 ± 7.6 | 133.4 ± 21.8 | 85.4 ± 20.3 | 96.5 ± 19.3 | 14.5 (0.002) |
Pb | 64.2 ± 27.8 | 135.6 ± 18.6 | 52 ± 13.4 | 29 ± 13.5 | 5.08 (NS) |
Hg | 12.3 ± 1 | 11.1 ± 1.48 | 17.7 ± 3.3 | 12 ± 1 | 14.7 (0.002) |
Se | 2968 ± 624 | 1667 ± 277 | 785 ± 62 | 2200 ± 313 | 15.1 (0.002) |
As | Cd | Cr | Pb | Hg | Se | |
---|---|---|---|---|---|---|
As | -- | |||||
Cd | −0.25 * | -- | ||||
Cr | −0.44 ** | 0.17 | -- | |||
Pb | −0.27 * | 0.39 ** | 0.34 ** | -- | ||
Hg | 0.2 | −0.36 ** | −0.09 | −0.31 ** | -- | |
Se | 0.09 | −0.22 | −0.08 | 0.03 | 0.005 | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burger, J. Metal Levels in Delaware Bay Horseshoe Crab Eggs from the Surface Reflect Metals in Egg Clutches Laid beneath the Sand. Toxics 2023, 11, 614. https://doi.org/10.3390/toxics11070614
Burger J. Metal Levels in Delaware Bay Horseshoe Crab Eggs from the Surface Reflect Metals in Egg Clutches Laid beneath the Sand. Toxics. 2023; 11(7):614. https://doi.org/10.3390/toxics11070614
Chicago/Turabian StyleBurger, Joanna. 2023. "Metal Levels in Delaware Bay Horseshoe Crab Eggs from the Surface Reflect Metals in Egg Clutches Laid beneath the Sand" Toxics 11, no. 7: 614. https://doi.org/10.3390/toxics11070614
APA StyleBurger, J. (2023). Metal Levels in Delaware Bay Horseshoe Crab Eggs from the Surface Reflect Metals in Egg Clutches Laid beneath the Sand. Toxics, 11(7), 614. https://doi.org/10.3390/toxics11070614