Gender Differences in the Severity of Cadmium Nephropathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Collection and Analysis of Blood and Urine Samples
2.3. Estimated Glomerular Filtration Rates (eGFRs)
2.4. Normalization of Excretion Rate
2.5. Statistical Analysis
3. Results
3.1. Descriptive Characteristics of Participants
3.2. Cadmium Exposure Characterization
3.3. Effects of Cadmium Exposure on β2M Excretion
3.4. Effects of Cadmium Exposure on the Prevalence Odds of Tubulopathy
3.5. Effects of Cadmium Exposure on eGFR
3.6. Inverse Relationship of β2M Excretion and eGFR
4. Discussion
4.1. Exposure Levels of Cadmium in Women Versus Men
4.2. The Toxic Manifestation of Cadmium Exposure in Women Versus Men
4.3. Increment of β2M Excretion as GFR Falls
4.4. The Pitfall of Adjusting Excretion Rate to Ecr and Implication for Health Risk Estimation
4.5. Strength and Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Satarug, S.; Baker, J.R.; Reilly, P.E.; Moore, M.R.; Williams, D.J. Cadmium levels in the lung, liver, kidney cortex, and urine samples from Australians without occupational exposure to metals. Arch. Environ. Health 2002, 57, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Barregard, L.; Fabricius-Lagging, E.; Lundh, T.; Mölne, J.; Wallin, M.; Olausson, M.; Modigh, C.; Sallsten, G. Cadmium, mercury, and lead in kidney cortex of living kidney donors: Impact of different exposure sources. Environ. Res. 2010, 110, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Barregard, L.; Sallsten, G.; Lundh, T.; Mölne, J. Low-level exposure to lead, cadmium and mercury, and histopathological findings in kidney biopsies. Environ. Res. 2022, 211, 113119. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Vesey, D.A.; Gobe, G.C.; Phelps, K.R. Estimation of health risks associated with dietary cadmium exposure. Arch. Toxicol. 2023, 97, 329–358. [Google Scholar] [CrossRef]
- Watanabe, T.; Kataoka, Y.; Hayashi, K.; Matsuda, R.; Uneyama, C. Dietary exposure of the Japanese general population to elements: Total diet study 2013–2018. Food Saf. 2022, 10, 83–101. [Google Scholar] [CrossRef]
- JECFA. In Summary and Conclusions, Proceedings of the Joint FAO/WHO Expert Committee on Food Additives and Contaminants, Seventy-Third Meeting, Geneva, Switzerland, 8–17 June 2010; JECFA/73/SC; Food and Agriculture Organization of the United Nations/World Health Organization: Geneva, Switzerland, 2011; Available online: https://apps.who.int/iris/handle/10665/44521 (accessed on 25 June 2023).
- Phelps, K.R.; Gosmanova, E.O. A generic method for analysis of plasma concentrations. Clin. Nephrol. 2020, 94, 43–49. [Google Scholar] [CrossRef]
- Satarug, S.; Swaddiwudhipong, W.; Ruangyuttikarn, W.; Nishijo, M.; Ruiz, P. Modeling cadmium exposures in low- and high-exposure areas in Thailand. Environ. Health Perspect. 2013, 121, 531–536. [Google Scholar] [CrossRef] [Green Version]
- Yimthiang, S.; Pouyfung, P.; Khamphaya, T.; Kuraeiad, S.; Wongrith, P.; Vesey, D.A.; Gobe, G.C.; Satarug, S. Effects of environmental exposure to cadmium and lead on the risks of diabetes and kidney dysfunction. Int. J. Environ. Res. Public Health 2022, 19, 2259. [Google Scholar] [CrossRef]
- Zarcinas, B.A.; Pongsakul, P.; McLaughlin, M.J.; Cozens, G. Heavy metals in soils and crops in Southeast Asia. 2. Thailand. Environ. Geochem. Health 2004, 26, 359–371. [Google Scholar] [CrossRef]
- Bloch, M.J.; Basile, J.N. Review of recent literature in hypertension: Updated clinical practice guidelines for chronic kidney disease now include albuminuria in the classification system. J. Clin. Hypertens 2013, 15, 865–867. [Google Scholar] [CrossRef]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Murton, M.; Goff-Leggett, D.; Bobrowska, A.; Garcia Sanchez, J.J.; James, G.; Wittbrodt, E.; Nolan, S.; Sörstadius, E.; Pe-coits-Filho, R.; Tuttle, K. Burden of chronic kidney disease by KDIGO categories of glomerular filtration rate and albuminuria: A Systematic review. Adv. Ther. 2021, 38, 180–200. [Google Scholar] [CrossRef] [PubMed]
- Soveri, I.; Berg, U.B.; Björk, J.; Elinder, C.G.; Grubb, A.; Mejare, I.; Sterner, G.; Bäck, S.E.; SBU GFR Review Group. Measuring GFR: A systematic review. Am. J. Kidney Dis. 2014, 64, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Becker, C.; Inker, L.A. Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: A systematic review. JAMA 2015, 313, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Suwatvitayakorn, P.; Ko, M.S.; Kim, K.W.; Chanpiwat, P. Human health risk assessment of cadmium exposure through rice consumption in cadmium-contaminated areas of the Mae Tao sub-district, Tak, Thailand. Environ. Geochem. Health 2020, 42, 2331–2344. [Google Scholar] [CrossRef]
- Swaddiwudhipong, W.; Nguntra, P.; Kaewnate, Y.; Mahasakpan, P.; Limpatanachote, P.; Aunjai, T.; Jeekeeree, W.; Punta, B.; Funkhiew, T.; Phopueng, I. Human health effects from cadmium exposure: Comparison between persons living in cadmium-contaminated and non-contaminated areas in northwestern Thailand. Southeast Asian J. Trop. Med. Publ. Health 2015, 46, 133–142. [Google Scholar]
- Zhou, X.; Xu, C.; Dong, J.; Liao, L. Role of renal tubular programed cell death in diabetic kidney disease. Diabetes Metab. Res. Rev. 2023, 39, e3596. [Google Scholar] [CrossRef]
- Yao, L.; Liang, X.; Qiao, Y.; Chen, B.; Wang, P.; Liu, Z. Mitochondrial dysfunction in diabetic tubulopathy. Metabolism 2022, 131, 155195. [Google Scholar] [CrossRef]
- Madrigal, J.M.; Ricardo, A.C.; Persky, V.; Turyk, M. Associations between blood cadmium concentration and kidney function in the U.S. population: Impact of sex, diabetes and hypertension. Environ. Res. 2018, 169, 180–188. [Google Scholar] [CrossRef]
- Navas-Acien, A.; Tellez-Plaza, M.; Guallar, E.; Muntner, P.; Silbergeld, E.; Jaar, B.; Weaver, V. Blood cadmium and lead and chronic kidney disease in US adults: A joint analysis. Am. J. Epidemiol. 2009, 170, 1156–1164. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, P.M.; Costanzi, S.; Naticchia, A.; Sturniolo, A.; Gambaro, G. Low level exposure to cadmium increases the risk of chronic kidney disease: Analysis of the NHANES 1999–2006. BMC Public Health 2010, 10, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.S.; Ho, W.C.; Caffrey, J.L.; Sonawane, B. Low serum zinc is associated with elevated risk of cadmium nephrotoxicity. Environ. Res. 2014, 134, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Argyropoulos, C.P.; Chen, S.S.; Ng, Y.H.; Roumelioti, M.E.; Shaffi, K.; Singh, P.P.; Tzamaloukas, A.H. Rediscovering beta-2 microglobulin as a biomarker across the spectrum of kidney diseases. Front. Med. 2017, 4, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portman, R.J.; Kissane, J.M.; Robson, A.M. Use of B2-microglobulin to diagnose tubulo-interstitial renal lesions in children. Kidney Int. 1986, 30, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, C.; Nguyen-Simonnet, H.; Vincent, C.; Revillard, J.-P.; Pellet, M.V. Renal tubular absorption of beta 2 microglobulin. Kidney Int. 1984, 26, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Peterson, P.A.; Evrin, P.-E.; Berggard, I. Differentiation of glomerular, tubular, and normal proteinuria: Determination of urinary excretion of B2-microglobulin, albumin, and total protein. J. Clin. Investig. 1969, 48, 1189–1198. [Google Scholar] [CrossRef] [Green Version]
- Satarug, S.; Vesey, D.A.; Gobe, G.C.; Đorđević, A.B. The validity of benchmark dose limit analysis for estimating permissible accumulation of cadmium. Int. J. Environ. Res. Public Health 2022, 19, 15697. [Google Scholar] [CrossRef]
- Satarug, S.; Vesey, D.A.; Nishijo, M.; Ruangyuttikarn, W.; Gobe, G.C. The inverse association of glomerular function and urinary β2-MG excretion and its implications for cadmium health risk assessment. Environ. Res. 2019, 173, 40–47. [Google Scholar] [CrossRef]
- Mashima, Y.; Konta, T.; Kudo, K.; Takasaki, S.; Ichikawa, K.; Suzuki, K.; Shibata, Y.; Watanabe, T.; Kato, T.; Kawata, S.; et al. Increases in urinary albumin and beta2-microglobulin are independently associated with blood pressure in the Japanese general population: The Takahata Study. Hypertens. Res. 2011, 34, 831–835. [Google Scholar] [CrossRef]
- Kudo, K.; Konta, T.; Mashima, Y.; Ichikawa, K.; Takasaki, S.; Ikeda, A.; Hoshikawa, M.; Suzuki, K.; Shibata, Y.; Watanabe, T.; et al. The association between renal tubular damage and rapid renal deterioration in the Japanese population: The Takahata study. Clin. Exp. Nephrol. 2011, 15, 235–241. [Google Scholar] [CrossRef]
- Vahter, M.; Berglund, M.; Akesson, A. Toxic metals and the menopause. J. Br. Menopause Soc. 2004, 10, 60–64. [Google Scholar] [CrossRef] [PubMed]
Parameters | All Subjects, n = 448 | Women, n = 334 | Men, n = 114 | p |
---|---|---|---|---|
Age, years | 51.1 ± 8.6 | 51.5 ± 9.0 | 49.9 ± 7.2 | 0.344 |
BMI, kg/m2 | 24.8 ± 4.0 | 25.2 ± 4.0 | 23.7 ± 3.6 | <0.001 |
Smoking, % | 31.3 | 18.6 | 68.4 | <0.001 |
Hypertension, % | 48.7 | 50.6 | 43.0 | 0.160 |
Diabetes, % | 15.4 | 16.2 | 13.2 | 0.442 |
eGFR a, mL/min/1.73 m2 | 90 ± 18 | 89 ± 19 | 93 ± 16 | 0.145 |
Reduced eGFR b, % | 6.9 | 8.1 | 3.5 | 0.097 |
Plasma creatinine, mg/dL | 0.82 ± 0.22 | 0.78 ± 0.21 | 0.95 ± 0.21 | <0.001 |
Urine creatinine, mg/dL | 114 ± 74 | 108 ± 74 | 132 ± 72 | <0.001 |
Blood Cd, µg/L | 2.75 ± 3.19 | 2.58 ± 3.10 | 3.25 ± 3.41 | 0.038 |
Urine Cd, µg/L | 4.22 ± 5.67 | 4.36 ± 6.14 | 3.82 ± 4.01 | 0.875 |
Urine β2M, µg/L | 3122 ± 18,836 | 2596 ± 17,238 | 4665 ± 22,903 | 0.544 |
Normalized to Ccr (Ex/Ccr) c | ||||
(ECd/Ccr) × 100, µg/L filtrate | 3.19 ± 3.72 | 3.21 ± 3.79 | 3.12 ± 3.55 | 0.639 |
(Eβ2M/Ccr) × 100, µg/L filtrate | 3839 ± 30,422 | 3078 ± 26,986 | 6072 ± 38,837 | 0.212 |
(Eβ2M/Ccr) × 100, µg/L filtrate, % | ||||
<300 | 41.1 | 38.9 | 47.4 | |
300−999 | 34.8 | 35.9 | 31.6 | |
≥1000 | 24.1 | 25.1 * | 21.1 *** | |
Normalized to Ecr (Ex/Ecr) d | ||||
ECd/Ecr, µg/g creatinine | 4.02 ± 4.41 | 4.26 ± 4.62 | 3.30 ± 3.68 | 0.028 |
Eβ2M/Ecr, µg/g creatinine | 3220 ± 21,847 | 3005 ± 22,812 | 3850 ± 18,815 | 0.017 |
Eβ2M/Ecr, µg/g creatinine, % | ||||
<300 | 35.5 | 32.3 | 45.6 | |
300−999 | 34.6 | 34.7 | 34.2 | |
≥1000 | 29.7 | 32.9 | 20.2 ** |
Independent Variables/Factors | Log([Cd]b × 103), µg/L | |||||
---|---|---|---|---|---|---|
Women, n = 334 | Men, n = 114 | |||||
β | η2 | p | β | η2 | p | |
Age, years | −0.170 | 0.057 | <0.001 | −0.004 | 1 × 10−6 | 0.946 |
BMI, kg/m2 | −0.019 | 0.001 | 0.586 | −0.079 | 0.022 | 0.180 |
Log[(ECd/Ccr) × 105], µg/L filtrate | 0.619 | 0.367 | <0.001 | 0.581 | 0.420 | <0.001 |
Smoking | 0.123 | 0.028 | 0.001 | 0.184 | 0.055 | 0.002 |
Diabetes | −0.053 | 0.010 | 0.182 | −0.246 | 0.095 | <0.001 |
Hypertension | 0.048 | 0.007 | 0.162 | −0.061 | 0.004 | 0.287 |
DM × HTN | n/a | 0.016 | 0.023 | n/a | n/a | n/a |
SMK × DM × HTN | n/a | n/a | n/a | n/a | 0.042 | 0.036 |
Adjusted R2 | 0.624 | n/a | <0.001 | 0.661 | n/a | <0.001 |
Independent Variables/Factors | Log[(Eβ2M/Ccr) × 103], µg/L Filtrate | |||||
---|---|---|---|---|---|---|
All Subjects | Women | Men | ||||
β | p | β | p | β | p | |
Age, years | 0.137 | 0.013 | 0.131 | 0.041 | 0.128 | 0.238 |
BMI, kg/m2 | −0.089 | 0.065 | −0.102 | 0.062 | −0.043 | 0.664 |
Log([Cd]b × 103), µg/L filtrate | −0.016 | 0.824 | −0.083 | 0.328 | 0.217 | 0.180 |
Log[(ECd/Ccr) × 105], µg/L filtrate | 0.283 | <0.001 | 0.306 | <0.001 | 0.175 | 0.247 |
Gender | 0.052 | 0.318 | − | − | − | − |
Smoking | 0.063 | 0.255 | 0.093 | 0.094 | −0.065 | 0.526 |
Diabetes | 0.323 | <0.001 | 0.349 | <0.001 | 0.279 | 0.017 |
Hypertension | 0.015 | 0.745 | −0.023 | 0.660 | 0.142 | 0.139 |
Adjusted R2 | 0.105 | <0.001 | 0.125 | <0.001 | 0.059 | 0.060 |
Independent Variables/Factors | Number of Subjects | (Eβ2M/Ccr) × 100 ≥ 300 µg/L | (Eβ2M/Ccr) × 100 ≥ 1000 µg/L | ||
---|---|---|---|---|---|
POR (95% CI) | p | POR (95% CI) | p | ||
Age, years | 448 | 1.036 (1.007, 1.067) | 0.016 | 1.062 (1.027, 1.098) | <0.001 |
BMI, kg/m2 | 448 | 0.971 (0.919, 1.025) | 0.284 | 0.958 (0.896, 1.023) | 0.203 |
Log[(ECd/Ccr) × 105], µg/L filtrate | 448 | 1.940 (1.344, 2.802) | <0.001 | 3.343 (2.036, 5.488) | <0.001 |
Gender (F/M) | 334/114 | 1.406 (0.835, 2.367) | 0.200 | 1.299 (0.687, 2.458) | 0.421 |
Smoking | 140 | 1.067 (0.645, 1.765) | 0.801 | 1.388 (0.763, 2.522) | 0.282 |
Diabetes | 69 | 5.294 (2.526, 11.09) | <0.001 | 11.52 (5.004, 26.50) | <0.001 |
Hypertension | 218 | 1.066 (0.714, 1.592) | 0.753 | 1.535 (0.942, 2.501) | 0.085 |
Independent Variables/Factors | eGFR, mL/min/1.73 m2 | |||||
---|---|---|---|---|---|---|
All Subjects | Women | Men | ||||
β | p | β | p | β | p | |
Age, years | −0.517 | <0.001 | −0.511 | <0.001 | −0.506 | <0.001 |
BMI, kg/m2 | −0.064 | 0.136 | −0.048 | 0.327 | −0.149 | 0.095 |
Log([Cd]b × 103), µg/L filtrate | 0.053 | 0.420 | 0.102 | 0.182 | −0.153 | 0.291 |
Log[(ECd/Ccr) × 105], µg/L filtrate | −0.148 | 0.026 | −0.185 | 0.018 | 0.011 | 0.933 |
Gender | −0.001 | 0.977 | − | − | − | − |
Smoking | 0.025 | 0.610 | 0.018 | 0.717 | 0.071 | 0.438 |
Diabetes | −0.109 | 0.023 | −0.128 | 0.021 | −0.055 | 0.593 |
Hypertension | −0.079 | 0.055 | −0.050 | 0.295 | −0.212 | 0.014 |
Adjusted R2 | 0.279 | <0.001 | 0.281 | <0.001 | 0.249 | <0.001 |
Independent Variables/ Factors | Reduced eGFR a | ||||
---|---|---|---|---|---|
β Coefficients | POR | 95% CI | p | ||
(SE) | Lower | Upper | |||
Age, years | 0.136 (0.027) | 1.146 | 1.086 | 1.209 | <0.001 |
BMI, kg/m2 | 0.020 (0.051) | 1.021 | 0.923 | 1.128 | 0.688 |
Log[(ECd/Ccr) × 105], µg/L filtrate | 1.154 (0.358) | 3.172 | 1.572 | 6.402 | 0.001 |
Gender | −0.542 (0.649) | 0.582 | 0.163 | 2.075 | 0.404 |
Smoking | −0.228 (0.583) | 0.796 | 0.254 | 2.493 | 0.695 |
Diabetes | 1.439 (0.524) | 4.217 | 1.510 | 11.78 | 0.006 |
Hypertension | 0.115 (0.427) | 1.122 | 0.486 | 2.591 | 0.787 |
Independent Variables/ Factors | Reduced eGFR a | ||||
---|---|---|---|---|---|
Number of Subjects | POR | 95% CI | p | ||
Lower | Upper | ||||
Age, years | 448 | 1.140 | 1.072 | 1.211 | <0.001 |
BMI, kg/m2 | 448 | 1.066 | 0.950 | 1.198 | 0.278 |
Log[(ECd/Ccr) × 105], µg/L filtrate | 448 | 2.251 | 1.043 | 4.858 | 0.039 |
Gender (F/M) | 334/114 | 0.674 | 0.176 | 2.583 | 0.565 |
Smoking | 140 | 0.885 | 0.270 | 2.899 | 0.840 |
Diabetes | 69 | 1.216 | 0.394 | 3.753 | 0.734 |
Hypertension | 218 | 1.199 | 0.487 | 2.957 | 0.693 |
(Eβ2M/Ccr) × 100, µg/L filtrate | |||||
<300 | 184 | Referent | |||
300–999 | 156 | 8.310 | 2.655 | 26.01 | <0.001 |
≥1000 | 108 | 33.731 | 4.193 | 271.3 | 0.001 |
Independent Variables/ Factors | Reduced eGFR a | ||||
---|---|---|---|---|---|
Number of Subjects | POR | 95% CI | p | ||
Lower | Upper | ||||
Age, years | 448 | 1.101 | 1.045 | 1.160 | <0.001 |
BMI, kg/m2 | 448 | 1.032 | 0.929 | 1.147 | 0.555 |
Log[(ECd/Ecr) × 103], µg/g creatinine | 448 | 1.278 | 0.630 | 2.593 | 0.497 |
Gender (F/M) | 334/114 | 0.671 | 0.181 | 2.484 | 0.550 |
Smoking | 140 | 0.762 | 0.240 | 2.418 | 0.644 |
Diabetes | 69 | 1.614 | 0.581 | 4.484 | 0.359 |
Hypertension | 218 | 1.041 | 0.449 | 2.415 | 0.926 |
(Eβ2M/Ccr) × 100, µg/g creatinine | |||||
<300 | 160 | ||||
300–999 | 155 | 3.204 | 1.226 | 8.375 | 0.018 |
≥1000 | 133 | 19.042 | 2.387 | 151.907 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yimthiang, S.; Vesey, D.A.; Gobe, G.C.; Pouyfung, P.; Khamphaya, T.; Satarug, S. Gender Differences in the Severity of Cadmium Nephropathy. Toxics 2023, 11, 616. https://doi.org/10.3390/toxics11070616
Yimthiang S, Vesey DA, Gobe GC, Pouyfung P, Khamphaya T, Satarug S. Gender Differences in the Severity of Cadmium Nephropathy. Toxics. 2023; 11(7):616. https://doi.org/10.3390/toxics11070616
Chicago/Turabian StyleYimthiang, Supabhorn, David A. Vesey, Glenda C. Gobe, Phisit Pouyfung, Tanaporn Khamphaya, and Soisungwan Satarug. 2023. "Gender Differences in the Severity of Cadmium Nephropathy" Toxics 11, no. 7: 616. https://doi.org/10.3390/toxics11070616
APA StyleYimthiang, S., Vesey, D. A., Gobe, G. C., Pouyfung, P., Khamphaya, T., & Satarug, S. (2023). Gender Differences in the Severity of Cadmium Nephropathy. Toxics, 11(7), 616. https://doi.org/10.3390/toxics11070616