Accumulation of Trace Metals in Fruits from Mango and Syzygium guineense Growing in Residential Households from a Contaminated District of Lubumbashi (DR Congo): Is Fruit Consumption at Risk?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Soil and Plant Sampling
2.3. Chemical Analysis of Plants and Soil
2.4. Calculation of Trace Metal Bioconcentration Factors
2.5. Determination of the Safe Weekly Consumption (SWC)
2.6. Statistical Analysis
3. Results
3.1. Soil Mineral Composition in the Tree Rhizosphere
3.2. Accumulation and Bioconcentration Factors of Trace Elements in Plants in Penga Penga and Kalebuka
3.3. Safe Weekly Consumption (SWC)
4. Discussion
4.1. Trace Metal Concentration in the Tree Rhizosphere
4.2. Metal Accumulation in Leaves and Fruits
4.3. Human Exposure and Safe Weekly Consumption
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amisi, Y.; Vranken, I.; Nkulu, M.-F.J.; Lubala, T.R.F.; Kyanika, D.; Nawej, T.S.; Upite, M.F.; Bulambo, J.P.; Bogaert, J. L’activité minière au Katanga et la perception de ses impacts à Lubumbashi, Kolwezi, Likasi et Kipushi1. In Anthropisation des Paysages Katangais; Bogaert, J., Gilles, C., Gregory, M., Eds.; Presses Universitaires de Liége-Agronomiqe Gembloux: Gembloux, Belgium, 2018; pp. 267–279. [Google Scholar]
- Kaniki, A.T.; Tumba, K. Management of mineral processing tailings and metallurgical slags of the Congolese copperbelt: Environmental stakes and perspectives. J. Clean. Prod. 2019, 210, 1406–1413. [Google Scholar] [CrossRef]
- Mbenza, M.; Aloni, K.; Muteb, M. Some considerations on air pollution in Lubumbashi (Shaba, Zaire). Geo-Eco-Trop 1989, 13, 113–125. [Google Scholar]
- Mees, F.; Masalehdani, M.N.N.; De Putter, T.; D’Hollander, C.; Van Biezen, E.; Mujinya, B.B.; Potdevin, J.L.; Van Ranst, E. Concentrations and forms of heavy metals around two ore processing sites in Katanga, Democratic Republic of Congo. J. Afr. Earth Sci. 2013, 77, 22–30. [Google Scholar] [CrossRef]
- Atibu, E.K.; Devarajan, N.; Thevenon, F.; Mwanamoki, P.M.; Tshibanda, J.B.; Mpiana, P.T.; Prabakar, K.; Mubedi, J.I.; Wildi, W.; Poté, J. Concentration of metals in surface water and sediment of Luilu and Musonoie Rivers, Kolwezi-Katanga, Democratic Republic of Congo. Appl. Geochem. 2013, 39, 26–32. [Google Scholar] [CrossRef]
- Muhaya, B.B.; Kunyonga, C.Z.; Mulongo, S.C.; Mushobekwa, F.Z.; Bisimwa, A.M. Trace metal contamination of sediments in Naviundu river basin, Luano and Ruashi rivers, and Luwowoshi spring in Lubumbashi city, Democratic Republic of Congo. J. Environ. Sci. Eng. 2017, 6, 456–464. [Google Scholar]
- Muimba-Kankolongo, A.; Banza Lubaba Nkulu, C.; Mwitwa, J.; Kampemba, F.M.; Mulele Nabuyanda, M.; Haufroid, V.; Smolders, E.; Nemery, B. Contamination of water and food crops by trace elements in the African Copperbelt: A collaborative cross-border study in Zambia and the Democratic Republic of Congo. Environ. Adv. 2021, 16, 100103. [Google Scholar] [CrossRef]
- Pourret, O.; Lange, B.; Bonhoure, J.; Colinet, G.; Decrée, S.; Mahy, G.; Séleck, M.; Shutcha, M.; Faucon, M.-P. Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo). Appl. Geochem. 2016, 64, 43–55. [Google Scholar] [CrossRef]
- Shutcha, M.N.; Mukobo, R.P.; Muyumba, K.D.; Mpundu, M.M.; Faucon, M.P.; Lubalega, K.T.; Ludovic, A.; Annabelle, J.; Vandenheede, N.; Pourret, O.; et al. Fond pédogéochimique et cartographie des pollutions des sols à Lubumbashi. In Anthropisation des Paysages Katangais; Bogaert, J., Gilles, C., Gregory, M., Eds.; Presses Universitaires de Liége-Agronomiqe Gembloux: Gembloux, Belgique, 2018; pp. 215–218. [Google Scholar]
- Mpinda, M.T.; Mujinya, B.B.; Mees, F.; Kasangij, P.K.; Van Ranst, E. Patterns and forms of copper and cobalt in Macrotermes falciger mounds of the Lubumbashi area, DR Congo. J. Geochem. Explor. 2022, 238, 107002. [Google Scholar] [CrossRef]
- Leblanc et Malaisse, F. Lubumbashi, un Écosystème Urbain Tropical; Université Nationale du Zaire: Lengeza, Zaire, 1978. [Google Scholar]
- Mpundu Mubemba, M. Contaminations des sols en Éléments Traces Métalliques à Lubumbashi (Katanga/R.D. Congo). Évaluation des Risques de Contamination de la Chaîne Alimentaire et Choix de Solutions de Remédiation. Ph.D. Thesis, Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo, 2010. [Google Scholar]
- Shutcha, M.N.; Mubemba, M.M.; Faucon, M.-P.; Luhembwe, M.N.; Visser, M.; Colinet, G.; Meerts, P. Phytostabilisation of Copper-Contaminated Soil in Katanga: An Experiment with Three Native Grasses and Two Amendments. Int. J. Phytoremediat. 2010, 12, 616–632. [Google Scholar] [CrossRef]
- Munyemba, K.F. Quantification et Modélisation de la Dynamique Paysagère Dans la Région de LUBUMBASHI: Évaluation de L’impact Écologique des Dépositions Issues de la Pyrométallurgie. Ph.D. Thesis, Faculté des Sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo, 2010; p. 284. [Google Scholar]
- Munyemba, K.; Bamba, I.; Djibu, K.J.P.; Amisi, M.; Veroustraete, F.; Ngongo, L.M.; Bogaert, J. Occupation des sols Dans le Cône de Pollution à Lubumbashi; Presses Universitaires de Lubumbashi: Lubumbashi, Democratic Republic of the Congo, 2008; Volume 1, pp. 19–22. [Google Scholar]
- Banza, C.L.N.; Nawrot, T.S.; Haufroid, V.; Decree, S.; De Putter, T.; Smolders, E.; Kabyla, B.I.; Luboya, O.N.; Ilunga, A.N.; Mutombo, A.M.; et al. High human exposure to cobalt and other metals in Katanga, a mining area of the Democratic Republic of Congo. Environ. Res. 2009, 109, 745–752. [Google Scholar] [CrossRef]
- Cheyns, K.; Banza, C.L.N.C.; Ngombe, L.K.; Asosa, J.N.; Haufroid, V.; De Putter, T.; Nawrot, T.; Kimpanga, C.M.; Numbi, O.L.; Ilunga, B.K.; et al. Pathways of human exposure to cobalt in Katanga, a mining area of the D.R. Congo. Sci. Total Environ. 2014, 490, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Mukendi, R.A.M.; Banza, C.L.N.; Mukeng, C.A.K.; Ngwe, J.T.M.; Mwembo, A.N.A.N.; Kalenga, P.M.K. Exposition de l’homme aux éléments tracés métalliques et altération du sperme: Étude menée dans les zones minières du Haut-Katanga en République Démocratique du Congo. Pan Afr. Med. J. 2018, 30, 35. [Google Scholar] [CrossRef] [PubMed]
- Nkuku, C.; Rémon, M. Stratégies de Survie à Lubumbashi (RD Congo). Enquête sur 14000 Ménages Urbains; Mémoires Lieux de Savoir; Archive Congolaise: Harmattan, Paris, 2006. [Google Scholar]
- INS. In Annuaire Statistique; Ministère de Plan et de la Révolution de la Modernité & PNUD: Kinshasa, Democratic Republic of the Congo, 2014; p. 560.
- Shutcha, M.N.; Faucon, M.-P.; Kamengwa Kissi, C.; Colinet, G.; Mahy, G.; Ngongo Luhembwe, M.; Visser, M.; Meerts, P. Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical Africa (Katanga, DR Congo). Ecol. Eng. 2015, 82, 81–90. [Google Scholar] [CrossRef]
- Mwanasomwe, K.L. Amélioration du Procédé de Phytostabilisation Avec les Espèces Ligneuses Pour la Production des Services Écosystémiques en Milieux Pollués Urbains et Périurbains de L’arc Cuprifère Katangais. Ph.D. Thesis, Gembloux Agro Bio-Tech, Université de Liège, Liege, Belgium, 2022; p. 217. [Google Scholar]
- FAO; WHO. CF/10 INF/1. Working Document for Information and Use in Discussions Related to Contaminants and Toxins in the GSCTFF. 2016, p. 150. Available online: http://www.fao.org/fao-who-codexalimentarius (accessed on 15 February 2023).
- Langunu, S. Efficacité à Long Terme D’une Phytostabilisation Assistée In Situ Sur un sol Fortement Contaminé Par les Éléments Traces Métalliques à Lubumbashi. Ph.D. Thesis, Faculté des sciences Agronomiques, Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo, 2022; p. 65. [Google Scholar]
- Faucon, M.P.; Shutcha, M.N.; Meerts, P. Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: Influence of washing and metal concentrations in soil. Plant Soil 2007, 301, 29–36. [Google Scholar] [CrossRef]
- Miller, D.A.; White, R.A. A Conterminous United States Multilayer Soil Characteristics Dataset for Regional Climate and Hydrology Modeling. Earth Interact. 1998, 2, 1–26. [Google Scholar] [CrossRef]
- Maiti, S.K.; Kumar, A.; Ahirwal, J. Bioaccumulation of metals in timber and edible fruit trees growing on reclaimed coal mine overburden dumps. Int. J. Min. Reclam. Environ. 2016, 30, 231–244. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, Y.; Ghosh, A.; Song, Y.; Chen, H.; Tang, M. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead–zinc mine area: Potential applications for phytoremediation. Environ. Sci. Pollut. Res. 2015, 22, 13179–13193. [Google Scholar] [CrossRef]
- Pelkonen, R.; Alfthan, G.; Järvinen, O. Element Concentrations in Wild Edible Mushrooms in Finland. Finn. Environ. 2008, 25, 1–42. Available online: http://hdl.handle.net/10138/38380 (accessed on 15 February 2023).
- Mujinya, B.B.; Van Ranst, E.; Verdoodt, A.; Baert, G.; Ngongo, L.M. Termite bioturbation effects on electro-chemical properties of Ferralsols in the Upper Katanga (D.R. Congo). Geoderma 2010, 158, 233–241. [Google Scholar] [CrossRef]
- Hale, B.; Evans, L.; Lambert, R. Effects of cement or lime on Cd, Co, Cu, Ni, Pb, Sb and Zn mobility in field-contaminated and aged soils. J. Hazard. Mater. 2012, 199–200, 119–127. [Google Scholar] [CrossRef]
- Tang, J.; Cao, C.; Gao, F.; Wang, W. Effects of biochar amendment on the availability of trace elements and the properties of dissolved organic matter in contaminated soils. Environ. Technol. Innov. 2019, 16, 100492. [Google Scholar] [CrossRef]
- Narendrula, R.; Nkongolo, K.K. and Beckett, P. Comparative Soil Metal Analyses in Sudbury (Ontario, Canada) and Lubumbashi (Katanga, DR-Congo). Bull. Environ. Contam. Toxicol. 2012, 88, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Lubalega, K.T. Metal Contamination and Termite Mounds around Lubumbashi. Master’s Thesis, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo, 2009; p. 55. [Google Scholar]
- Mwanasomwe, J.K.; Langunu, S.; Shutcha, M.N.; Colinet, G. Effects of 15-Year-Old Plantation on Soil Conditions, Spontaneous Vegetation, and the Trace Metal Content in Wood Products at Kipushi Tailings Dam. Front. Soil Sci. 2022, 2, 934491. [Google Scholar] [CrossRef]
- Simon, L. Potentially Harmful Elements in Agricultural Soils. In PHEs, Environment and Human Health; Bini, C., Bech, J., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 85–150. [Google Scholar] [CrossRef]
- Adamczyk-Szabela, D.; Wolf, W.M. The Impact of Soil pH on Heavy Metals Uptake and Photosynthesis Efficiency in Melissa officinalis, Taraxacum officinalis, Ocimum basilicum. Molecules 2022, 27, 4671. [Google Scholar] [CrossRef]
- Tauqeer, H.M.; Turan, V.; Iqbal, M. Correction to: Production of Safer Vegetables from Heavy Metals Contaminated Soils: The Current Situation, Concerns Associated with Human Health and Novel Management Strategies. In Advances in Bioremediation and Phytoremediation for Sustainable Soil Management; Malik, J.A., Ed.; Springer International Publishing: Cham, Switzerland, 2022; p. C1. [Google Scholar] [CrossRef]
- Podar, D.; Maathuis, F.J.M. The role of roots and rhizosphere in providing tolerance to toxic metals and metalloids. Plant Cell Environ. 2022, 45, 719–736. [Google Scholar] [CrossRef]
- Boim, A.G.F.; Melo, L.C.A.; Moreno, F.N.; Alleoni, L.R.F. Bioconcentration factors and the risk concentrations of potentially toxic elements in garden soils. J. Environ. Manage 2016, 170, 21–27. [Google Scholar] [CrossRef]
- Liu, G.; Chen, T.; Cui, J.; Zhao, Y.; Li, Z.; Liang, W.; Sun, J.; Liu, Z.; Xiao, T. Trace Metal(loid) Migration from Road Dust to Local Vegetables and Tree Tissues and the Bioaccessibility-Based Health Risk: Impacts of Vehicle Operation-Associated Emissions. IJERPH 2023, 20, 2520. [Google Scholar] [CrossRef]
- Oti, W.O. Bioaccumulation Factors and Pollution Indices of Heavy Metals in Selected Fruits and Vegetables from a Derelict Mine and Their Associated Health Implications. Int. J. Environ. Sustain. 2015, 4, 1. [Google Scholar] [CrossRef]
- Mpundu, M.M.; Useni, S.Y.; Mwamba, M.T.; Kateta, M.G.; Mwansa, M.; Ilunga, K.; Kamengwa, K.C.; Kyungu, K.; Nyembo, K.L. Trace metal levels in soils from different vegetable gardens in the mining town of Lubumbashi and risks of contamination of vegetable crops. J. Appl. Bios. 2013, 65, 4957–4968. [Google Scholar]
- Mununga Katebe, F.; Raulier, P.; Colinet, G.; Ngoy Shutcha, M.; Mpundu Mubemba, M.; Jijakli, M.H. Assessment of Heavy Metal Pollution of Agricultural Soil, Irrigation Water, and Vegetables in and Nearby the Cupriferous City of Lubumbashi, (Democratic Republic of the Congo). Agronomy 2023, 13, 357. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Report Fruit and Vegetable Initiative, Report of the Meeting; WHO: Geneva, Switzerland, 2003; pp. 25–27. [Google Scholar]
- Hung, H.C.; Joshipura, K.J. Fruit and vegetable intake and risk of major chronic disease. J. Natl. Cancer Inst. 2004, 96, 1577–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Food Safety, Decision of the Thirteenth World Health Assembly, New York, NY; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Ogunkunle, A.T.J.; Bello, O.S.; Ojofeitimi, O.S. Determination of heavy metal contamination of street-vending fruits and vegetables in Lagos state, Nigeria. Int. Food Res. J. 2014, 21, 2115–2120. [Google Scholar]
- Shareef, R.S.; Mamat, A.S.; Al-Shaheen, M.R.; Aslam, M.S. Study of heavy metals in mango (Mangifera indica L.) in Perlis, Malaysia. Indian Res. J. Pharm. 2015, 2, 299–303. [Google Scholar]
- Širić, I.; Eid, E.M.; El-Morsy, M.H.E.; Osman, H.E.M.; Adelodun, B.; Abou Fayssal, S.; Mioč, B.; Goala, M.; Singh, J.; Bachheti, A.; et al. Health Risk Assessment of Hazardous Heavy Metals in Two Varieties of Mango Fruit (Mangifera indica L. var. Dasheri and Langra). Horticulturae 2022, 8, 832. [Google Scholar] [CrossRef]
- Mangambu, M.; Mushagalusa, K.; Kadima, N. Contribution à l’étude photochimique de quelques plantes médicinales antidiabétiques de la ville de Bukavu et ses environs (Sud-Kivu, R.D.Congo). J. Appl. Biosci. 2014, 75, 6211. [Google Scholar] [CrossRef] [Green Version]
- Badou, R.B.; Yedomonhan, H.; Tossou, M. Diversité d’usages et Statut de conservation de Syzygium guineense (Willd.) DC. subsp. macrocarpum (Engl.) F. White (Myrtaceae) au Bénin. Int. J. Environ. Stud. 2019, 76, 827–842. [Google Scholar] [CrossRef]
- Sferrazzo, G.; Palmeri, R.; Vanella, L.; Parafati, L.; Ronsisvalle, S.; Biondi, A.; Basile, F.; Li Volti, G.; Barbagallo, I. Mangifera indica L. Leaf Extract Induces Adiponectin and Regulates Adipogenesis. Int. J. Mol. Sci. 2019, 20, 3211. [Google Scholar] [CrossRef] [Green Version]
- Drabo, C.; Nikiema, Z.S.; Dianda, O.Z.; Dao, A.; Sanou, J.; Sawadogo, M. Usage thérapeutique du manguier (Mangifera indica L.; Anacardiaceae) au Burkina Faso. VertigO 2023, 23, 39346. [Google Scholar] [CrossRef]
Parameters | Penga Penga | Kalebuka |
---|---|---|
pH KCl | 6.3 (4.8–7.8) | 6.8 (5.4–8.2) |
TOC (%) | 1.6 (0.5–3.0) | 1.2 (0.4–0.2) |
Co (mg.kg−1) | 21 (4.6–90) | 1.9–2.5 |
Cu (mg.kg−1) | 2966 (213–17,096) | 48 (45.3–50) |
Zn (mg.kg−1) | 202 (21–736) | 18.2 (0–36.4) |
Trace Metals | SWI (mg per Week) |
---|---|
As | 1.26 |
Cd | 0.35 |
Co | 9.8 |
Cu | 210 |
Pb | 1.5 |
Zn | 180 |
Parameters | Penga Penga | Kalebuka | References |
---|---|---|---|
pH | 7.7 (6.7–8.4) a | 6.4 (4.5–7.7) b | 4.9–6.8 |
Al2O3 (%) | 2.5 (1.4–5.0) a | 3.0 (1.4–4.6) b | 1.9–10.7 |
Fe2O3 (%) | 4.3 (2.7–9.1) a | 4.5 (2.5–6.5) a | 0.9–7.4 |
Ca (%) | 0.7 (0.1–2.3) a | 0.3 (0.1–1.0) b | - |
K (%) | 0.9 (0.4–2.0) a | 1.0 (0.5–1.6) a | - |
Mn (mg.kg−1) | 251 (89–679) a | 292 (77–717) a | - |
AsT (mg.kg−1) | 12.8 (3–81) a | 7.6 (3–16) b | - |
CuT (mg.kg−1) | 1379 (60–4670) a | 189 (22–695) b | 20–456 |
PbT (mg.kg−1) | 142 (17–547) a | 33 (2.0–110) b | 7–82 |
ZnT (mg.kg−1) | 467 (129–1236) a | 115 (31–275) b | 26–180 |
AsS (mg.kg−1) | <0.01 | <0.01 | - |
CdS (mg.kg−1) | 0.07 (<0.01–0.5) a | 0.13 (<0.01–1.05) a | - |
CoS (mg.kg−1) | 0.31 (0.013–3.8) a | 0.17 (0.01–1.7) a | - |
CuS (mg.kg−1) | 1.4 (0.2–7.4) a | 0.7 (0.04–11.8) b | - |
PbS (mg.kg−1) | 0.11 (0.03–0.4) a | 0.1 (0.06–0.4) a | - |
ZnS (mg.kg−1) | 0.4 (0.01–6.9) a | 1.7 (0.007–12.3) a | - |
Species | Leaves | Fruit | FAO/WHO Limits | |||
---|---|---|---|---|---|---|
Penga Penga | Kalebuka | Penga Penga | Kalebuka | |||
As | M. Indica | 0.2 a | 0.1 b | 0.1 | <0.001 | 0.1 |
(0.08–0.3) | (0.07–0.24) | (0.05–0.2) | ||||
S. guineense | 0.1 a | 0.05 b | 0.02 | <0.001 | ||
(0.07–0.2) | (0.04–0.08) | (0.00–0.1) | ||||
Cd | M. Indica | 0.1 a | 0.14 a | 0.19 a | 0.09 b | 0.2 |
(0.07–0.3) | (0.05–0.22) | (0.1–0.3) | (0.01–0.4) | |||
S. guineense | 0.2 a | 0.09 a | 0.2 a | 0.03 b | ||
(0.06–0.8) | (0.03–0.3) | (0.1–0.3) | (0.02–0.05) | |||
Co | M. Indica | 3.3 a | 0.3 b | 2.9 a | 0.84 b | 1 |
(2.5–4.1) | (0.1–1.2) | (2.3–3.6) | (0.75–0.88) | |||
S. guineense | 2.7 a | 0.7 b | 0.84 a | 0.79 a | ||
(1.8–4.1) | (0.6–0.82) | (0.7–1.02) | (0.68–0.91) | |||
Cu | M. Indica | 22.2 a | 13 b | 29.3 a | 22.0 b | 40 |
(15–42) | (9–16) | (9–64) | (19–27) | |||
S. guineense | 18.4 a | 19.8 a | 18.9 a | 15.9 b | ||
(13–26) | (17–24) | (15–21) | (14–19) | |||
Pb | M. Indica | 3.3 a | 1.0 b | 2.2 a | 0.31 b | 0.3 |
(1.2–5) | (0.7–1.5) | (0.5–6) | (0.03–0.6) | |||
S. guineense | 2.2 a | 0.8 b | 0.8 a | 0.11 b | ||
(1.1–4.3) | (0.3–1.2) | (0.3–2.4) | (0.01–0.2) | |||
Zn | M. Indica | 47.8 a | 19.7 b | 13.3 a | 9.5 b | 60 |
(19–137) | (12–25) | (9–24) | (7–13) | |||
S. guineense | 20.3 a | 13.9 b | 39.1 a | 14.7 b | ||
(12–45) | (11–16) | (28–47) | (7–70) |
Species | District | As | Cd | Co | Cu | Pb | Zn | Recommendation |
---|---|---|---|---|---|---|---|---|
Mr. Indica | PP | 96 ± 61 | 17 ± 5 | 27 ± 3.5 | 89 ± 57 | 9 ± 6 | 119 ± 34 | 9 |
(35–202) | (8–26) | (34–22) | (14–186) | (2–14) | (60–160) | |||
KLB | 20160 | 86 ± 103 | 93 ± 4.3 | 78 ± 10 | 80 ± 115 | 156 ± 26 | 78 | |
- | (6–280) | (105–89) | (14–186) | (2–14) | (60–160) | |||
S. guineense | PP | 398 ± 253 | 6.6 ± 1.4 | 64 ± 7.3 | 61 ± 6.5 | 12 ± 6.4 | 21 ± 21 | 6.6 |
(62–851) | (5.4–10) | (76–52) | (54–76) | (3.4–27) | (3.5–75) | |||
KLB | 1362 | 69 ± 53 | 68 ± 6.7 | 72 ± 6.2 | 161 ± 235 | 108 ± 38 | 68 | |
- | (38–210) | (60–78) | (60–81) | (35–810) | (14–139) | |||
SWI (mg per Week) | 1.26 | 0.35 | 9.8 | 210 | 1.5 | 180 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langunu, S.; Imabo, P.M.I.; Bibi Fwanda, B.; Kilela Mwanasomwe, J.; Colinet, G.; Ngoy Shutcha, M. Accumulation of Trace Metals in Fruits from Mango and Syzygium guineense Growing in Residential Households from a Contaminated District of Lubumbashi (DR Congo): Is Fruit Consumption at Risk? Toxics 2023, 11, 620. https://doi.org/10.3390/toxics11070620
Langunu S, Imabo PMI, Bibi Fwanda B, Kilela Mwanasomwe J, Colinet G, Ngoy Shutcha M. Accumulation of Trace Metals in Fruits from Mango and Syzygium guineense Growing in Residential Households from a Contaminated District of Lubumbashi (DR Congo): Is Fruit Consumption at Risk? Toxics. 2023; 11(7):620. https://doi.org/10.3390/toxics11070620
Chicago/Turabian StyleLangunu, Serge, Precis Mpia Imanda Imabo, Benie Bibi Fwanda, Jacques Kilela Mwanasomwe, Gilles Colinet, and Mylor Ngoy Shutcha. 2023. "Accumulation of Trace Metals in Fruits from Mango and Syzygium guineense Growing in Residential Households from a Contaminated District of Lubumbashi (DR Congo): Is Fruit Consumption at Risk?" Toxics 11, no. 7: 620. https://doi.org/10.3390/toxics11070620
APA StyleLangunu, S., Imabo, P. M. I., Bibi Fwanda, B., Kilela Mwanasomwe, J., Colinet, G., & Ngoy Shutcha, M. (2023). Accumulation of Trace Metals in Fruits from Mango and Syzygium guineense Growing in Residential Households from a Contaminated District of Lubumbashi (DR Congo): Is Fruit Consumption at Risk? Toxics, 11(7), 620. https://doi.org/10.3390/toxics11070620