Influence of Reagents on Qualitative Indicators of Artificial Anti-Deflationary Phytocenosis on Waste from a Rare Earth Tailing Facility
Abstract
:1. Introduction
2. Materials and Methods
2.1. A Brief Description of Tailings from the Enrichment of Loparite Ores
2.2. Assessment of the Suitability of Enrichment Tailings for Biological Remediation
2.3. Conducting the Laboratory Experiment
2.4. Chemical Analysis
2.5. Statistical Processing
3. Results and Discussion
3.1. Assessment of Suitability of Enrichment Tailings for Biological Remediation
3.2. Results of the Laboratory Experiment
3.2.1. Biometric Indicators
3.2.2. Analysis of the Content of Macro- and Microelements in the Aerial Parts of Plants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edahbi, M.; Plante, B.; Benzaazoua, M. Environmental challenges and identification of the knowledge gaps associated with REE mine wastes management. J. Clean. Prod. 2019, 212, 1232–1241. [Google Scholar] [CrossRef]
- Loredo, J.; Soto, J.; Álvarez, R.; Ordóñez, A. Atmospheric Monitoring at Abandoned Mercury Mine Sites in Asturias (NW Spain). Environ. Monit. Assess. 2006, 130, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Lilic, N.; Cvjetic, A.; Knezevic, D.; Milisavljevic, V.; Pantelic, U. Dust and noise environmental impact assessment and control in Serbian mining practice. Minerals 2018, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Stovern, M.; Guzmán, H.; Rine, K.; Felix, O.; King, M.; Ela, W.; Betterton, E.; Sáez, A. Windblown Dust Deposition Forecasting and Spread of Contamination around Mine Tailings. Atmosphere 2016, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Gašparac, G.; Jeričević, A.; Kumar, P.; Grisogono, B. Regional-scale modelling for the assessment of atmospheric particulate matter concentrations at rural background locations in Europe. Atmos. Chem. Phys. 2020, 20, 6395–6415. [Google Scholar] [CrossRef]
- Yang, W.; Wang, G.; Bi, C. Analysis of Long-Range Transport Effects on PM2.5 during a Short Severe Haze in Beijing, China. Aerosol Air Qual. Res. 2017, 17, 1610–1622. [Google Scholar] [CrossRef]
- Wang, J.; Xie, X.; Fang, C. Temporal and Spatial Distribution Characteristics of Atmospheric Particulate Matter (PM10 and PM2.5) in Changchun and Analysis of Its Influencing Factors. Atmosphere 2019, 10, 651. [Google Scholar] [CrossRef] [Green Version]
- Krasavtseva, E.; Maksimova, V.; Makarov, D.; Potorochin, E. Modelling of the Chemical Halo of Dust Pollution Migration in Loparite Ore Tailings Storage Facilities. Minerals 2021, 11, 1077. [Google Scholar] [CrossRef]
- Huang, X.; Deng, H.; Zheng, C.; Cao, G. Hydrogeochemical signatures and evolution of groundwater impacted by the Bayan Obo tailing pond in northwest China. Sci. Total Environ. 2016, 543, 357–372. [Google Scholar] [CrossRef]
- Schreiber, A.; Marx, J.; Zapp, P.; Hake, J.; Voßenkaul, D.; Friedrich, B. Environmental Impacts of Rare Earth Mining and Separation Based on Eudialyte: A New European Way. Resources 2016, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Dutta, T.; Kim, K.-H.; Uchimiya, M.; Kwon, E.E.; Jeon, B.-H.; Deep, A.; Yun, S.-T. Global demand for Rare Earth Resources and strategies for Green Mining. Environ. Res. 2016, 150, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Zhang, S.; Wang, L. Environmental biogeochemical behaviors of rare earth elements in soil–plant systems. Environ. Geochem. Health 2005, 27, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Tyler, G. Rare earth elements in soil and plant systems—A review. Plant. Soil 2004, 267, 191–206. [Google Scholar] [CrossRef]
- Cánovas, C.; Basallote, M.; Macías, F. Distribution and availability of rare earth elements and trace elements in the estuarine waters of the Ría of Huelva (SW Spain). Environ. Pollut. 2020, 267, 115506. [Google Scholar] [CrossRef]
- Tang, S.; Zheng, C.; Chen, M.; Du, W.; Xu, X. Geobiochemistry characteristics of rare earth elements in soil and ground water: A case study in Baotou, China. Sci. Rep. 2020, 10, 11740. [Google Scholar] [CrossRef]
- Fabijańczyk, P.; Zawadzki, J. Complementary Use of Magnetometric Measurements for Geochemical Investigation of Light REE Concentration in Anthropogenically Polluted Soils. Minerals 2021, 11, 457. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, X.; Nie, L.; McKinley, J.; Liu, H.; Zhang, B.; Han, Z. Geochemical background and dispersion pattern of the world’s largest REE deposit of Bayan Obo, China. J. Geochem. Explor. 2020, 215, 106545. [Google Scholar] [CrossRef]
- Gaberšek, M.; Gosar, M. Meltwater chemistry and characteristics of particulate matter deposited in snow as indicators of anthropogenic influences in an urban area. Environ. Geochem. Health 2020, 43, 2583–2595. [Google Scholar] [CrossRef]
- Zhou, H.; Chun, X.; Lü, C.; He, J.; Du, D. Geochemical characteristics of rare earth elements in windowsill dust in Baotou, China: Influence of the smelting industry on levels and composition. Environ. Sci. Process. Impacts 2020, 22, 2398–2405. [Google Scholar] [CrossRef]
- Luo, Y.; Yuan, H.; Zhao, J.; Qi, Y.; Cao, W.; Liu, J.; Guo, W.; Bao, Z. Multiple factors influence bacterial community diversity and composition in soils with rare earth element and heavy metal co-contamination. Ecotoxicol. Environ. Saf. 2021, 225, 112749. [Google Scholar] [CrossRef]
- Schulz, S.; Brankatschk, R.; Dümig, A.; Kögel-Knabner, I.; Schloter, M.; Zeyer, J. The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences 2013, 10, 3983–3996. [Google Scholar] [CrossRef] [Green Version]
- Pagano, G.; Aliberti, F.; Guida, M.; Oral, R.; Siciliano, A.; Trifuoggi, M.; Tommasi, F. Rare earth elements in human and Animal Health: State of Art and Research priorities. Environ. Res. 2015, 142, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Gwenzi, W.; Mangori, L.; Danha, C.; Chaukura, N.; Dunjana, N.; Sanganyado, E. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ. 2018, 636, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Mesyats, S.P.; Volkova, E.Y. Basic provisions of the strategy of returning disturbed lands of technogenic landscapes to the biosphere fund. Mining information and analytical bulletin (MIAB). Ecology of resource use. Spec. Issue 2014, 12, 3–11. (In Russian) [Google Scholar]
- Lychagin, E.V.; Sinitsa, I.V. Improvement of methods for fixing dusty surfaces. Min. Inf. Anal. Bull. 2007, 8, 136–140. (In Russian) [Google Scholar]
- Devi, R.M.; Madhavan, N.; Adhavan, N.; Bhattacharyya, A.; Arumugam, N. Dust Suppressant Compositions, Methods for Making and Methods for Using. WO Patent WO2013108057 A1, 25 July 2013. [Google Scholar]
- Masloboev, V.; Svetlov, A.; Konina, O.; Mitrofanova, G.; Turtanov, A.; Makarov, D. Selection of Binding Agents for Dust Prevention at Tailings Ponds at Apatite–Nepheline Ore Processing Plants. J. Min. Sci. 2018, 54, 329–338. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.; Lee, T.; Kim, M. Tailings Storage Facilities (TSFs) Dust Control Using Biocompatible Polymers. Min. Metall. Explor. 2019, 36, 785–795. [Google Scholar] [CrossRef]
- Wang, L.; Ji, B.; Hu, Y.; Liu, R.; Sun, W. A review on in situ phytoremediation of mine tailings. Chemosphere 2017, 184, 594–600. [Google Scholar] [CrossRef]
- Slukovskaya, M.V.; Kremenetskaya, I.P.; Mosendz, I.A.; Ivanova, T.K.; Drogobuzhskaya, S.V.; Ivanova, L.A.; Novikov, A.I.; Shirokaya, A.A. Thermally activated serpentine materials as soil additives for copper and nickel immobilization in highly polluted peat. Env. Geochem. Health 2023, 45, 67–83. [Google Scholar] [CrossRef]
- Silambarasan, S.; Logeswari, P.; Sivaramakrishnan, R.; Cornejo, P.; Sipahutar, M.K.; Pugazhendhi, A. Amelioration of aluminum phytotoxicity in solanum lycopersicum by co-inoculation of plant growth promoting Kosakonia radicincitans strain CABV2 and Streptomyces corchorusii strain CASL5. Sci. Total Environ. 2022, 832, 154935. [Google Scholar] [CrossRef]
- Břendová, K.; Zemanová, V.; Pavlíková, D.; Tlustoš, P. Utilization of biochar and activated carbon to reduce CD, Pb and Zn phytoavailability and phytotoxicity for plants. J. Environ. Manag. 2016, 181, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Evseev, A.V.; Shahpenderian, E.A.; Sultygova, K.S. Aerosol inflow of industrial pollutants into the environmental components of the Central Kola impacted region. Ecosyst. Ecol. Dyn. 2021, 5, 94–112. [Google Scholar] [CrossRef]
- Sorokina, T.Y. Pollution and Monitoring in the Arctic. In Global Arctic; Finger, M., Rekvig, G., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Hanaček, K.; Kröger, M.; Scheidel, A.; Rojas, F.; Martinez-Alier, J. On thin ice—The Arctic commodity extraction frontier and environmental conflicts. Ecol. Econ. 2022, 191, 107247. [Google Scholar] [CrossRef]
- Suk, N.I.; Kotelnikov, A.R.; Kovalskii, A.M. Compositions of minerals of loparite-bearing rocks of Lovozerskii alkaline massif and phisics-chemistry conditions of mineral paragenesis formation. Bull. KRAUNTs Earth Sci. 2012, 1, 41–58. (In Russian) [Google Scholar]
- Krasavtseva, E.A.; Maksimova, V.V.; Makarov, D.V.; Selivanova, E.A.; Ikkonen, P.V. Studies of properties and composition of loparite ore mill tailings. J. Min. Sci. 2021, 57, 531–538. [Google Scholar] [CrossRef]
- Maksimova, V.V.; Krasavtseva, E.A.; Savchenko, Y.E.; Ikkonen, P.V.; Elizarova, I.R.; Masloboev, V.A.; Makarov, D.V. Study of the composition and properties of the beneficiation tailings of currently produced loparite ores. J. Min. Inst. 2022, 256, 642–650. [Google Scholar] [CrossRef]
- Lomtadze, V.D. Engineering geology. In Engineering Petrology: A Textbook for Universities Studying in the Specialty “Hydrogeology and Engineering Geology”, 2nd ed.; Nedra: Leningrad, Russia, 1984; 511p. [Google Scholar]
- Lukina, N.; Poljanskaja, L.; Orlova, M. Nutrient Regime of Soils in Northern Taiga Forests; Nauka: Moscow, Russia, 2008; 342p. (In Russian) [Google Scholar]
- State Standard 17.5.1.03-86; Nature Protection (SSOP). Earth. Classification of Overburden and Enclosing Rocks for Biological Land Reclamation. Protection of Nature. Lands: Sat. Gosts. M. IPK Standards Publishing House: Moscow, Russia, 2002. (In Russian)
- Krasavtseva, E.; Ivanova, T.; Maksimova, V.; Mosendz, I.; Kanareykina, I.; Panikorovskii, T.; Shirokaya, A.; Slukovskaya, M. Improvement of the hydrophysical properties of substrates of technogenic landscapes using expanded vermiculite. IOP Conf. Ser. Earth Environ. Sci. 2021, 848, 12144. [Google Scholar] [CrossRef]
- Kremenetskaya, I.; Ivanova, L.; Chislov, M.; Zvereva, I.; Vasilieva, T.; Marchevskaya, V.; Semushin, V.; Slukovskaya, M. Physicochemical transformation of expanded vermiculite after long-term use in hydroponics. Appl. Clay Sci. 2020, 198, 105839. [Google Scholar] [CrossRef]
- Krasavtseva, E.; Gogoi, H.; Svetlov, A.; Leiviskä, T.; Makarov, D. Removal of Sulfate and Metals from Wastewater of a Mining Enterprise by a Dual Sorbent System: A Case Study. Mine Water Env. 2023, 42, 200–208. [Google Scholar] [CrossRef]
- Padalkin, N.V.; Evshin, P.N. Modified sorbents based on opoka for water purification. Proc. Kola Sci. Cent. Russ. Acad. Sci. 2019, 10, 262–269. (In Russian) [Google Scholar]
- Ramenskaya, M.L.; Andreeva, V.N. Key to Higher Plants of the Murmansk Region and Karelia; Nauka: Leningrad, Russia, 1982; 435p. (In Russian) [Google Scholar]
- Vangronsveld, J.; Cunningham, S.C. Metal-Contaminated Soils: In Situ Inactivation and Phytorestoration; Springer: Berlin/Heidelberg, Germany, 1998; 265p. [Google Scholar]
- Ivanova, L.A.; Gorbacheva, T.T.; Slukovskaya, M.V.; Kremenetskaya, I.P.; Inozemtseva, E.S. Innovative technologies for reclamation of disturbed lands. Ecol. Prod. 2014, 2, 58–68. (In Russian) [Google Scholar]
- Galende, M.A.; Becerril, J.M.; Barrutia, O.; Artetxe, U.; Garbisu, C.; Hernández, A. Field assessment of the effectiveness of organic amendments for aided phytostabilization of a Pb–Zn contaminated mine soil. J. Geochem. Explor. 2014, 145, 181–189. [Google Scholar] [CrossRef]
- Sariev, A.K.; Zelensky, V.M. Grass mixtures and seeding rates of perennial grasses. Vestn. KrasGAU 2009, 5, 40–45. (In Russian) [Google Scholar]
- Fedorets, N.G.; Sokolov, A.I.; Shiltsova, G.V.; Germanova, N.I.; Kryshen, A.M.; Antipina, G.S. The Initial Stages of the Formation of Biogeocenoses on the Technogenic Lands of the European North; Karelian Scientific Center of the Russian Academy of Sciences: Petrozavodsk, Russia, 1999; 74p. (In Russian) [Google Scholar]
- Ramos, S.J.; Dinali, G.S.; Oliveira, C.; Martins, G.C.; Moreira, C.G.; Siqueira, J.O.; Guilherme, L.R.G. Rare Earth Elements in the Soil Environment. Curr. Pollut. Rep. 2016, 2, 28–50. [Google Scholar] [CrossRef] [Green Version]
- Dold, B. Evolution of Acid Mine Drainage Formation in Sulphidic Mine Tailings. Minerals 2014, 4, 621–641. [Google Scholar] [CrossRef] [Green Version]
- Rybnikova, L.S.; Rybnikov, P.A. Patterns of formation of groundwater quality in depleted copper pyrite mines of the Levikhinsky ore field (Middle Urals, Russia). Geochemistry 2019, 64, 282–299. (In Russian) [Google Scholar]
- Krasavtseva, E.; Maksimova, V.; Makarov, D. Conditions Affecting the Release of Heavy and Rare Earth Metals from the Mine Tailings Kola Subarctic. Toxics 2021, 9, 163. [Google Scholar] [CrossRef]
- Ryan, P.R.; Delhaize, E. Characterisation of Al-stimulated efflux of malat from the apices of Al-tolerant wheat roots. Planta 1995, 196, 103–110. [Google Scholar] [CrossRef]
- Taylor, G.L. Current views of the aluminum stress response: The physiological basis of tolerance. Gurr. Top. Plants Biochem. Physiol. 1991, 10, 57–93. [Google Scholar]
- Martin, R.B. Metal ions in biological systems: Aluminium and its role in biology. In Metal Ions in Biological Systems; Sigel, H.B., Sigel, A., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1991; Volume 24, pp. 1–57. [Google Scholar]
- Ma, J.F.; Zheng, S.J.; Heridate, S.; Matsumoto, H. Detoxifying aluminum with buckwheat. Nature 1997, 390, 569–570. [Google Scholar] [CrossRef]
- Farokhzadeh, S.; Fakheri, B.A.; Nezhad, N.M.; Tahmasebi, S.; Mirsoleimani, A.; Heidari, B. Mapping QTLs associated with grain yield and yield-related traits under aluminum stress in bread wheat. Crop Pasture Sci. 2020, 71, 429–444. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, L.; Liang, X.; Dai, P.B.; Zhang, Y.X.; Li, B.H.; Lin, X.Y.; Sun, C.L. Enhancement of polyphenolic metabolism as an adaptive response of lettuce (Lactuca sativa) roots to aluminum stress. Environ. Pollut. 2020, 261, 114230. [Google Scholar] [CrossRef]
- Poschenrieder, C.; Gunse, B.; Corrales, I.; Barcelo, J. A glance into aluminum toxicity and resistance in plants. Sci. Total Environ. 2008, 400, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, B.Q.; Camilo, E.M.; Ileana, E.M.; Manuel, M.E. Aluminum, a friend or foe of higher plants in acid soils. Front. Plant Sci. 2017, 8, 1767. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, S.C.; Hatch, D.J. The effects of low concentrations of aluminum on the growth and uptake of nitrate-N by white clover. Plant Soil 1986, 95, 43–55. [Google Scholar] [CrossRef]
- Matsumoto, H. Cell biology of aluminium toxicity and tolerance in higher plants. Int. Rev. Cytol. 2000, 200, 1–46. [Google Scholar] [CrossRef]
- Zheng, S.J.; Yang, J.L. Target sites of aluminum phytoxicity. Biol. Plant. 2005, 49, 321–331. [Google Scholar] [CrossRef]
- Ma, J.F.; Chen, Z.C.; Shen, R.F. Molecular mechanisms of Al tolerance in gramineous plants. Plant Soil 2014, 381, 1–12. [Google Scholar] [CrossRef]
- Kochian, L.V.; Pineros, M.A.; Liu, J.P.; Magalhaes, J.V. Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annu. Rev. Plant Biol. 2015, 66, 571–598. [Google Scholar] [CrossRef]
- Chauhan, D.K.; Yadav, V.; Vaculík, M.; Gassmann, W.; Pike, S.; Arif, N.; Singh, V.P.; Deshmukh, R.; Sahi, S.; Tripathi, D.K. Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants. Crit. Rev. Biotechnol. 2021, 41, 715–730. [Google Scholar] [CrossRef]
- de Wit, H.A.; Eldhuset, T.D.; Mulder, J. Dissolved al reduces MG uptake in Norway spruce forest: Results from a long-term field manipulation experiment in Norway. For. Ecol. Manag. 2010, 259, 2072–2082. [Google Scholar] [CrossRef]
- Tan, K.; Keltjens, W.G.; Findenegg, G.R. Calcium-induced modification of aluminum toxicity in sorghum genotypes. J. Plant Nutr. 1992, 15, 1395–1405. [Google Scholar] [CrossRef]
- Shi, Q.H.; Jin, J.; Liu, Y.T.; Zhang, Y.F.; Cai, Z.D.; Ma, Q.B.; Cheng, Y.B.; Wen, R.H.; Nian, H.; Lian, T.X. High aluminum drives different rhizobacterial communities between aluminum-tolerant and aluminum-sensitive wild soybean. Front. Microbiol. 2020, 11, 01996. [Google Scholar] [CrossRef] [PubMed]
- Vance, G.F.; Stevenson, F.J.; Sikora, F.J. Environmental chemistry of aluminum–organic complexes. In The Environmental Chemistry of Aluminum; CRC Press: Boca Raton, FL, USA, 2020; pp. 169–220. [Google Scholar]
- Pilarska, A.A.; Klapiszewski, Ł.; Jesionowski, T. Recent development in the synthesis, modification and application of Mg(OH)2 and mgo: A Review. Powder Technol. 2017, 319, 373–407. [Google Scholar] [CrossRef]
- Haj-Amor, Z.; Araya, T.; Kim, D.-G.; Bouri, S.; Lee, J.; Ghiloufi, W.; Yang, Y.; Kang, H.; Jhariya, M.K.; Banerjee, A.; et al. Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A Review. Sci. Total Environ. 2022, 843, 156946. [Google Scholar] [CrossRef]
- Liu, H.; Todd, J.L.; Luo, H. Turfgrass salinity stress and tolerance—A review. Plants 2023, 12, 925. [Google Scholar] [CrossRef]
- Gensemer, R.W.; Playle, R.C. The bioavailability and toxicity of aluminum in aquatic environments. Crit. Rev. Environ. Sci. Technol. 1999, 29, 315–450. [Google Scholar] [CrossRef]
- Yu-chuan, D.; Wei, L.; Xiaoli, R.; Guohua, X. Effects of different magnesium nutrition on root growth and physiological characteristics of rice. Plant Nutr. Fertil. Sci. 2009, 15, 537–543. [Google Scholar]
- Hernandez-Apaolaza, L. Can silicon partially alleviate micronutrient deficiency in plants? Planta 2014, 240, 447–458. [Google Scholar] [CrossRef]
- Rogalla, H.; Romheld, V. Role of leaf apoplast in silicon–mediated manganese tolerance of Cucumis sativus L. Plant Cell Environ. 2002, 25, 549–555. [Google Scholar] [CrossRef]
- Dragišić Maksimović, J.; Mojović, M.; Maksimović, V.; Römheld, V.; Nikolic, M. Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. J. Exp. Bot. 2012, 63, 2411–2420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farshidi, M.; Abdolzadeh, A.; Sadeghipour, H.R. Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus L.) plants. Acta Physiol. Plant 2012, 34, 1779–1788. [Google Scholar] [CrossRef]
- Bose, J.; Babourina, O.; Rengel, Z. Role of magnesium in alleviation of aluminium toxicity in plants. J. Exp. Bot. 2011, 62, 2251–2264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, S.L.; Liu, X.C.; Fan, N.N.; Zhou, P.; An, Y. Effects of magnesium on growth and photosynthetic system of alfalfa (Medicago sativa L.) under aluminum stress. Chin. J. Grassl. 2018, 40, 31–37. [Google Scholar]
- Kong, X.; Peng, Z.; Li, D.; Ma, W.; Chen, Q. Magnesium decreases aluminum accumulation and plays a role in protecting maize from aluminum-induced oxidative stress. Plant Soil 2020, 457, 71–81. [Google Scholar] [CrossRef]
- Akinwekomi, V.; Kefeni, K.; Maree, J.; Msagati, T. Integrated acid mine drainage treatment using Mg(OH)2 or Mg(HCO3)2 and Ca(OH)2: Implications for separate removal of metals and sulphate. Int. J. Miner. Process. 2016, 155, 83–90. [Google Scholar] [CrossRef]
- Bochkarev, G.R.; Pushkaryova, G.I. Removal of strontium from aqueous media using a natural and modified sorbent. J. Min. Sci. 2009, 45, 290–294. [Google Scholar] [CrossRef]
- Bochkarev, G.R.; Pushkaryova, G.I.; Kovalenko, K.A. Natural sorbent and catalyst to remove arsenic from natural and waste waters. J. Min. Sci. 2010, 46, 197–202. [Google Scholar] [CrossRef]
- Sulaiman, A.; Othman, A.; Ibrahim, I. The use of magnesium oxide in acid mine drainage treatment. Mater. Today 2018, 5, 21566–21573. [Google Scholar] [CrossRef]
- Färm, C. Metal sorption to natural filter substrates for storm water treatment—Column studies. Sci. Total Environ. 2002, 298, 17–24. [Google Scholar] [CrossRef]
- Jucherski, A.; Walczowski, A.; Bugajski, P.; Jóźwiakowski, K.; Rodziewicz, J.; Janczukowicz, W.; Wu, S.; Kasprzyk, M.; Gajewska, M.; Mielcarek, A. Long-term operating conditions for different sorption materials to capture phosphate from domestic wastewater. Sustain. Mater. Technol. 2022, 31, e00385. [Google Scholar] [CrossRef]
- Moskvicheva, E.V.; Abuova, G.B.; Bolotina, I.Y.; Tyurin, A.M. Modeling of sorption processes for natural water purification. Eng. Constr. Bull. Casp. Sea 2017, 1, 35–38. (In Russian) [Google Scholar]
- Krasavtseva, E.A.; Svetlov, A.V.; Makarov, D.V. Bottom sediments of wastewater treatment settling ponds system as a promising complex raw material. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 042082. [Google Scholar] [CrossRef]
- Alkorta, I.; Becerril, J.M.; Garbisu, C. Phytostabilization of metal contaminated soils. Rev. Environ. Health 2010, 25, 135–146. [Google Scholar] [CrossRef]
- Burges, A.; Epelde, L.; Benito, G.; Artetxe, U.; Becerril, J.M.; Garbisu, C. Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal contaminated mine soil. Sci. Total Environ. 2016, 562, 480–492. [Google Scholar] [CrossRef]
- Epelde, L.; Becerril, J.M.; Alkorta, I.; Garbisu, C. Adaptive long-term monitoring of soil health in metal phytostabilization: Ecological attributes and ecosystem services based on soil microbial parameters. Int. J. Phytoremediation 2014, 16, 971–981. [Google Scholar] [CrossRef]
Mineral | Contain, % |
---|---|
Nepheline | 59.17 ± 0.41 |
Feldspar | 18.1 ± 2.03 |
Apatite | 0.85 ± 0.2 |
Loparite | 0.78 ± 0.15 |
Aegirine | 19.4 ± 1.02 |
Diopside | 0.02 ± 0.02 |
Sodalite | 1.39 ± 0.18 |
Lomonosovit | 0.15 ± 0.02 |
Lamprophyllite | 0.12 ± 0.09 |
Eudialyte | 0.02 ± 0.01 |
Index | SiO2 | TiO2 | Al2O3 | Fe2O3tot. | MnO | CaO | MgO |
---|---|---|---|---|---|---|---|
Content, % | 48.08 | 1.10 | 22.47 | 6.03 | 0.23 | 1.63 | 0.45 |
Index | K2O | Na2O | P2O5 | SrO | F | SO3 | LOI * |
Content, % | 4.24 | 13.33 | 0.79 | 0.33 | 0.079 | 0.085 | 1.20 |
Experience Number | Reagent | Reagent Consumption |
---|---|---|
Control | — | — |
Variant 1 | vermiculite | Tailings: vermiculite = 3:1 by volume |
Variant 2 | vermiculite + opoka | Tailings: vermiculite = 3:1 by volume + 10 g of opoka per 1 m2 |
Variant 3 | vermiculite + brucite | Tailings: vermiculite = 3:1 by volume + 10 g of brucite per 1 m2 |
Variant 4 | vermiculite + brucite + opoka | Tailings: vermiculite = 3:1 by volume + 5 g of brucite and opoka per 1 m2 |
Indicator | Normative Values [41] | Actual Values |
---|---|---|
The content of fraction < 0.01 mm, % | 10–75 | 17.6 ± 0.6 |
The pH value | 5.5–8.4 | 8.0 ± 0.2 |
The content of mobile forms of Al, mg/kg | 0–30 | 504 ± 14 |
Aboveground Biomass, g | |||||||
---|---|---|---|---|---|---|---|
Groups | n | Sum | Mean | Variance | Interval | Minimum | Maximum |
Control | 3 | 1.12 | 0.37 | 0.01 | 6 | 4 | 10 |
Variant 1 | 3 | 1.46 | 0.49 | 0.01 | 4 | 8 | 12 |
Variant 2 | 3 | 1.89 | 0.63 | 0.00 | 5 | 9 | 14 |
Variant 3 | 3 | 2.02 | 0.67 | 0.01 | 4 | 10 | 14 |
Variant 4 | 3 | 2.02 | 0.67 | 0.01 | 5 | 9 | 14 |
Plant height, cm | |||||||
Groups | n | Sum | Mean | Variance | Interval | Minimum | Maximum |
Control | 10 | 65 | 6.5 | 2.72 | 0.23 | 0.25 | 0.48 |
Variant 1 | 10 | 100 | 10 | 1.33 | 0.24 | 0.36 | 0.6 |
Variant 2 | 10 | 116.1 | 11.61 | 1.53 | 0.14 | 0.56 | 0.7 |
Variant 3 | 10 | 119.5 | 11.95 | 1.25 | 0.19 | 0.57 | 0.76 |
Variant 4 | 10 | 114 | 11.4 | 2.27 | 0.2 | 0.6 | 0.8 |
Element | Control | Variant 1 | Variant 2 | Variant 3 | Variant 4 |
---|---|---|---|---|---|
K | 30,344 ± 242.6 | 29,517.4 ± 295.7 | 31,496.3 ± 298.2 | 34,682.5 ± 354.2 | 27,878.8 ± 256.4 |
Na | 10,682.5 ± 80.4 | 5564.5 ± 54.3 | 5048.7 ± 52.1 | 4514.8 ± 42.4 | 6345 ± 71.2 |
Ca | 2588.5 ± 22.0 | 3175.8 ± 32.4 | 3574 ± 36.1 | 2828.6 ± 29.3 | 3088.3 ± 32.1 |
Mg | 2577.4 ± 19.2 | 3906.1 ± 40.2 | 4540.9 ± 43.8 | 4161.9 ± 40.3 | 5286.5 ± 54.3 |
Si | 10,715.9 ± 91.7 | 10,998.7 ± 105.8 | 12,557.7 ± 131.1 | 13,569.8 ± 142.7 | 15,941.4 ± 141.3 |
Al | 2156.3 ± 20.9 | 1745.9 ± 14.3 | 1206.8 ± 11.9 | 995.2 ± 10.2 | 1576.8 ± 14.7 |
Cu | 22.4 ± 0.5 | 17.5 ± 0.4 | 19.2 ± 0.8 | 21.9 ± 0.5 | 22.2 ± 0.9 |
Sr | 166.3 ± 1.8 | 170.3 ± 1.9 | 138.9 ± 1.2 | 144.7 ± 1.8 | 172.3 ± 1.7 |
Mn | 150.5 ± 1.7 | 164.4 ± 1.4 | 165.4 ± 1.5 | 169.4 ± 1.4 | 193.6 ± 2.1 |
Zn | 69.6 ± 0.9 | 65.1 ± 0.9 | 66.8 ± 0.6 | 62.1 ± 0.7 | 62.5 ± 0.7 |
La | 38.96 ± 0.8 | 33.42 ± 0.7 | 13.56 ± 0.5 | 23.12 ± 0.6 | 35.51 ± 0.4 |
Ce | 92.64 ± 1.2 | 78.52 ± 0.9 | 30.77 ± 0.8 | 53.79 ± 0.6 | 85.32 ± 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasavtseva, E.A.; Maksimova, V.; Makarov, D. Influence of Reagents on Qualitative Indicators of Artificial Anti-Deflationary Phytocenosis on Waste from a Rare Earth Tailing Facility. Toxics 2023, 11, 629. https://doi.org/10.3390/toxics11070629
Krasavtseva EA, Maksimova V, Makarov D. Influence of Reagents on Qualitative Indicators of Artificial Anti-Deflationary Phytocenosis on Waste from a Rare Earth Tailing Facility. Toxics. 2023; 11(7):629. https://doi.org/10.3390/toxics11070629
Chicago/Turabian StyleKrasavtseva, Eugenia A., Victoria Maksimova, and Dmitriy Makarov. 2023. "Influence of Reagents on Qualitative Indicators of Artificial Anti-Deflationary Phytocenosis on Waste from a Rare Earth Tailing Facility" Toxics 11, no. 7: 629. https://doi.org/10.3390/toxics11070629
APA StyleKrasavtseva, E. A., Maksimova, V., & Makarov, D. (2023). Influence of Reagents on Qualitative Indicators of Artificial Anti-Deflationary Phytocenosis on Waste from a Rare Earth Tailing Facility. Toxics, 11(7), 629. https://doi.org/10.3390/toxics11070629